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Abstract

We consider a generalization of Euclid’s proof of the infinitude of primes and show

that it leads to variants of the Euclid-Mullin sequence that provably contain every

prime number.

1 Introduction

Given a finite set {p1, . . . , pk} of prime numbers, let pk+1 be a prime factor of 1 + p1 · · · pk.
Then, as Euclid showed, pk+1 is necessarily distinct from p1, . . . , pk. Iterating this procedure,
we thus obtain an infinite sequence of distinct primes. For instance, beginning with k = 0
(with the convention that the empty product is 1) and choosing pk+1 as small as possible
at each step, one obtains the Euclid-Mullin sequence, A000945. More generally, following
Clark [3], we call any sequence resulting from this construction a Euclid sequence with seed
{p1, . . . , pk}.

One of the central questions in this area was posed by Mullin [5] in 1963: Does the Euclid-
Mullin sequence contain every prime number? Despite a compelling heuristic argument of
Shanks [8] that the answer is yes, even the broader question of whether there is any Euclid
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sequence containing every prime number remains open. (On the other hand, there are Euclid
sequences that provably do not contain every prime. For instance, starting from k = 0 and
choosing pk+1 as large as possible at each step, one obtains the second Euclid-Mullin sequence,
A000946, which is known to omit infinitely many primes [1, 6].) Booker and Irvine [2] showed
that, for any given seed {p1, . . . , pk}, the possible Euclid sequences have a natural directed
graph structure. Although one can prove many interesting properties of the family of graphs
obtained by varying the seed, proving much about any particular graph remains an elusive
goal.

In this note, following a suggestion of Wooley, we consider a generalization of Euclid’s
construction, in the hope that it will be more amenable to proof. Precisely, if {p1, . . . , pk} is a
set of prime numbers, then for any I ⊆ {1, . . . , k}, the number NI =

∏

i∈I pi+
∏

i∈{1,...,k}\I pi
is coprime to p1 · · · pk and has at least one prime factor. Iteratively choosing a set I and a
prime pk+1 | NI , we obtain an infinite sequence p1, p2, . . . of distinct prime numbers, as in
Euclid’s proof. (Note that Euclid’s construction is the special case in which I = ∅ at each
step.)

We call a sequence resulting from this more general construction a generalized Euclid
sequence with seed {p1, . . . , pk}. Our result is that the construction is provably general
enough to obtain every prime.

Theorem 1. For any finite set P of prime numbers, there is a generalized Euclid sequence
with seed P containing every prime.

One particular generalized Euclid sequence, A167604, was defined by Chua, starting with
k = 0 and choosing pk+1 as small as possible at each step. A natural question, analogous
to Mullin’s, is whether Chua’s sequence itself contains every prime. This seems very likely,
but difficult to prove, since there is an obstruction that prevents the terms from always
appearing in numerical order. Precisely, if n = p1 · · · pk is the product of the first k terms of
Chua’s sequence, then the next term pk+1 is the smallest prime factor of

∏

d|n(d+n/d); thus,

d2 +n ≡ 0 (mod pk+1) for some d, so that
(

−n
pk+1

)

= 1. (Alekseyev has conjectured that pk+1

is always the smallest prime satisfying this constraint; see A167604.) Given the well-known
difficulty of proving good bounds for the gaps between sign changes of a quadratic character,
we cannot rule out the possibility that Chua’s sequence is very thin.

We conclude the introduction by mentioning another variant of Euclid’s construction,
due to Pomerance [4, §1.1.3]: given a set of primes {p1, . . . , pk}, let pk+1 be a prime that is
not one of p1, . . . , pk and divides a number of the form d+ 1 for d | p1 · · · pk. Then, starting
from k = 0 and choosing pk+1 as small as possible at each step, one obtains a sequence
containing every prime, and in fact pk is the kth smallest prime for k ≥ 5. While our variant
is arguably truer in spirit to Euclid’s proof (since it is guaranteed to produce only new
primes at each step), Pomerance’s variant has the distinct advantage of exhibiting a specific
sequence containing every prime.
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2 Proof of Theorem 1

Given a prime number q, let Sq ⊆ (Z/qZ)× be the set of residue classes attained by the
squarefree, (q − 1)-smooth, positive integers, i.e.,

Sq =

{

d+ qZ : d ∈ Z>0, d |
∏

p<q

p

}

.

One of the main ingredients in the proof of Theorem 1 is that Sq is large, so that if q is the
smallest prime not yet attained in p1, . . . , pk, then there is a significant chance that q is a
prime factor of d + n/d for some d | n = p1 · · · pk. From computation for small q, it seems
likely that Sq = (Z/qZ)× for all q /∈ {5, 7}. We are not aware of a proof of this, but it turns
out that the following weaker approximation is sufficient for our purposes:

Lemma 2. For any prime q, #Sq >
1
2
(q − 1).

Proof. For squarefree positive integers d ≤ q − 1, the residue classes d+ qZ are distinct and
contained in Sq. By [7], the number of such d is at least 53

88
(q − 1) > 1

2
(q − 1).

In addition, we need one further input from algebraic geometry:

Lemma 3. Let q be an odd prime number and a ∈ (Z/qZ)×.

(i) If q 6= 5 or q = 5 and a 6= 3+5Z then there exists x ∈ (Z/qZ)× such that
(

x+a/x
q

)

6= 1.

(ii) If q /∈ {7, 13} then there exists x ∈ (Z/qZ)× such that
(

x6+a
q

)

6= 1.

Proof. We consider the sum

∑

x∈(Z/qZ)×

(

x+ a/x

q

)

=
∑

x∈(Z/qZ)×

(

x(x2 + a)

q

)

.

For q ≥ 3, x(x2 + a) has no repeated zeros in Z/qZ, so that

{(x, y) ∈ (Z/qZ)2 : y2 = x(x2 + a)}

are the affine points of an elliptic curve. For any fixed x ∈ Z/qZ, the number of y ∈ Z/qZ

such that y2 = x(x2 + a) is 1+
(

x(x2+a)
q

)

. In addition, the curve has one point at infinity, so

by the Hasse bound, we have

1 +
∑

x∈Z/qZ

(

1 +

(

x(x2 + a)

q

))

≤ q + 1 + 2
√
q,
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whence
∑

x∈(Z/qZ)×

(

x(x2 + a)

q

)

≤ 2
√
q.

This last estimate is less than q−1 provided that q ≥ 7, and we check the claim for q ∈ {3, 5}
directly.

Similarly, for q ≥ 5, x6 + a has no repeated zeros in Z/qZ, so that

{(x, y) ∈ (Z/qZ)2 : y2 = x6 + a}

are the affine points of a genus 2 curve. The curve has two points at infinity, so by the Weil
bound, we have

2 +
∑

x∈Z/qZ

(

1 +

(

x6 + a

q

))

≤ q + 1 + 4
√
q,

whence
∑

x∈(Z/qZ)×

(

x6 + a

q

)

≤ 4
√
q − 1−

(

a

q

)

≤ 4
√
q.

This last estimate is less than q − 1 provided that q ≥ 19, and we check the claim for
q ∈ {3, 5, 11, 17} directly.

Theorem 1 follows by induction from the following proposition.

Proposition 4. Let P be a finite set of prime numbers and q the smallest prime not contained
in P . Then there is a generalized Euclid sequence with seed P that contains q.

Proof. Suppose that P = {p1, . . . , pk}, and put n = p1 · · · pk. If q = 2 then n+ 1 is even, so
we may choose 2 as the next term, pk+1. Hence we may assume that q is odd.

Put
S = {d+ qZ : d ∈ Z>0, d | n} ⊆ (Z/qZ)×,

and note that S ⊇ Sq. Suppose first that S = (Z/qZ)×. If
(

−n
q

)

= 1 then it follows that

there is a d | n such that d+ n/d ≡ 0 (mod q), so we can choose q as the next term. On the

other hand, if
(

−n
q

)

= −1 then by Lemma 3(i) we may choose d | n such that
(

d+n/d
q

)

= −1,

provided that q 6= 5 or n 6≡ 3 (mod 5). For this choice of d there must be a prime p | (d+n/d)

such that
(

p
q

)

= −1. Choosing this p as the next term, we replace n by n′ = pn, so that
(

−n′

q

)

= 1, and we may then follow this by q, as above. For q = 5 and n ≡ 3 (mod 5) we

choose d = 1; since n+1 ≡ −1 (mod 5) there is a prime p | (n+1) with p 6≡ 1 (mod 5), and
replacing n by pn gives a different residue with which we can carry out the proof above.

Now suppose that S 6= (Z/qZ)×. We seek to enlarge S by continuing the sequence, i.e.,
we choose p = pk+1 from

T = {p : p prime and p | (d+ n/d) for some d | n},
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and replace P by P ∪ {p}, n by pn and S by S ∪ pS. We are free to repeat this procedure
until either q ∈ T (in which case we may choose q as the next term) or S stabilizes, so that
pS ⊆ S for every choice of p ∈ T . If that is the case then it is easy to see that for every s ∈ S,
S contains the coset sG, where G ≤ (Z/qZ)× is the subgroup generated by {p+ qZ : p ∈ T}.
Thus, S =

⋃

s∈S sG is a union of cosets; in particular, #G divides #S.
Next, let H be a subgroup of (Z/qZ)× of index at least 4. For any h ∈ H, the number of

d ∈ (Z/qZ)× such that d+ n/d = h is at most 2. Hence,

#{d ∈ (Z/qZ)× : d+ n/d ∈ H} ≤ 2#H ≤ 1
2
(q − 1).

By Lemma 2, it follows that there exists d | n such that (d + n/d) + qZ /∈ H. In turn this
implies that p+ qZ /∈ H for some p ∈ T .

For any r | (q − 1), consider the subgroup

Hr =
{

h ∈ (Z/qZ)× : h
q−1

r = 1
}

= {xr : x ∈ (Z/qZ)×},

which has index r in (Z/qZ)×. Let q − 1 =
∏m

i=1 r
ei
i be the prime factorization of q − 1. For

each ri ≥ 5 we apply the above argument with

H = Hri = {h ∈ (Z/qZ)× : reii does not divide the order of h}

to see that G has order divisible by reii . For ri ∈ {2, 3} the index of Hri is too small to apply
the argument, but we may still apply it to Hr2i

(when r2i | (q − 1)) to see that G has order

divisible by rei−1
i . Thus we find that the index of G in (Z/qZ)× divides 6.

If q 6≡ 1 (mod 3) then G has index at most 2, so that 1
2
(q− 1) | #G | #S; by Lemma 2 it

follows that S = (Z/qZ)×, as desired. If q ≡ 1 (mod 3) then we apply the above argument

with H = H6 to see that there exists p ∈ T such that p
q−1

6 6≡ 1 (mod q). Since p
q−1

6 =

p
q−1

2 /p
q−1

3 , it follows that at least one of H2 and H3 does not contain p+ qZ. If p+ qZ /∈ H3

then again G has index at most 2, and we conclude that S = (Z/qZ)× as above.
Hence, we may assume that p+qZ /∈ H2, so that G has index dividing 3. If S = (Z/qZ)×

then we are finished, so we may assume that G = H3 and #S < q − 1. By Lemma 2,
we must have #S > #G, and it follows that #S = 2#G = 2

3
(q − 1). Going through the

argument above with H = H3, since d + n/d = h has at most two solutions for fixed h
and #S = 2#H3, to avoid concluding that there exists p ∈ T such that p + qZ /∈ H3, the
function d 7→ d + n/d must map S 2–1 onto H3. By the quadratic formula, this means in

particular that
(

h2−4n
q

)

= 1 for every h ∈ H3, and thus
(

x6−4n
q

)

= 1 for every x ∈ (Z/qZ)×.

However, that contradicts Lemma 3(ii) for q /∈ {7, 13}, and for q ∈ {7, 13} we verify directly
that #Sq >

2
3
(q − 1). This concludes the proof.
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