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Abstract

We establish various generating functions for sequences associated with central

binomial coefficients, Catalan numbers and harmonic numbers. In terms of these gen-

erating functions, we obtain a large variety of interesting series. Our approach is based

on manipulating the well-known generating function of the Catalan numbers.

1 Introduction

The central binomial coefficients
(

2n
n

)

and the Catalan numbers

Cn =
1

n+ 1

(

2n

n

)

play an important role in many diverse fields such as analysis of algorithms in computer
science, combinatorics, number theory and elementary particle physics. Many facts about
them can be found in [7, 10]. Focusing on the infinite series involving these numbers, we
notice that the generating function of the central binomial coefficients is given by

∞
∑

n=0

(

2n

n

)

xn =
1√

1− 4x
. (1)
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Integrating (1), we get the generating function of the Catalan numbers as follows:

C(x) :=
∞
∑

n=0

Cnx
n =

2

1 +
√
1− 4x

=
1−

√
1− 4x

2x
. (2)

Lehmer [9] found numerous interesting series through (1) by specialization, differentiation
and integration. He defines a series to be interesting if the sum has a closed form in terms of
known constants. In search of interesting series associated with central binomial coefficients,
Catalan numbers and harmonic numbers, investigators have used many different approaches.
For example, by applying the Parseval identity for Fourier series, Borwein et al. [2] established
several interesting sums involving the harmonic numbers Hn. Two elegant results are

∞
∑

n=1

1

n3
Hn =

π4

72
and

∞
∑

n=1

1

n2
H2

n =
17π4

360
. (3)

Chu et al. [5], by invoking the Gauss summation formula for the hypergeometric series,
derived many striking summation identities involving harmonic numbers like

n
∑

k=0

(

n

k

)2

Hk =

(

2n

n

)

(2Hn −H2n). (4)

Recently, by using an appropriate binomial transformation, Boyadzhiev [3] obtained the
generating functions for the sequences

(

2n
n

)

Hn and CnHn. And he showed that

∞
∑

n=0

1

8n

(

2n

n

)

Hn = 2
√
2 ln

(

1 +
√
2

2

)

and
∞
∑

n=0

1

4n
CnHn = 4 ln 2. (5)

In this paper, by manipulating the C(x) in (2), we produce results that match Boyadzhiev’s
and lead to the discovery of more interesting generating functions of sequences, which include
the sequences

(

2n
n

)

(H2n −Hn), Cn(H2n −Hn) and
(

2n
n

)

hn, where

hn = 1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1
. (6)

In particular, we obtain the following most interesting series

∞
∑

n=1

1

8n

(

2n

n

)

hnFn =
1√
10

ln 2 +
1√
2
ln

(

3 +
√
5

2

)

, (7)

∞
∑

n=1

(

2n

n

)

(H2n−1 −Hn)
xn

n
= ln2(C(x)). (8)

Here Fn is the nth Fibonacci number. The identity (8) is proposed by Knuth in a recent
issue of The American Mathematical Monthly [8].

This paper is organized into four sections. In Section 2, we present the proofs of the
main theorems. In Section 3, we gather a large variety of interesting series based on the
main theorems. We end this paper with two remarks in Section 4.
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2 The main theorems

We begin by establishing the generating function of the sequence
(

2n
n

)

Hn. In view of

Hn =
n
∑

k=1

1

k
=

∫ 1

0

(

n−1
∑

k=0

tk

)

dt =

∫ 1

0

1− tn

1− t
dt,

we have
∞
∑

n=1

(

2n

n

)

Hn x
n =

∞
∑

n=1

(

2n

n

)

xn
∫ 1

0

1− tn

1− t
dt

=

∫ 1

0

1

1− t

(

∞
∑

n=1

(

2n

n

)

(xn − (xt)n)

)

dt

=

∫ 1

0

1

1− t

(

1√
1− 4x

− 1√
1− 4xt

)

dt.

Here (1) has been used twice in the last equality. Bernstein’s theorem [1, Thm. 9.30, p. 243]
justifies interchanging the order of integration and summation because of the positivity of the
coefficients. Calculating the definite integral, for example, with Mathematica, we recapture
Boyadzhiev’s generating function of

(

2n
n

)

Hn.

Theorem 1. Let Hn be the nth harmonic number. Then

∞
∑

n=1

(

2n

n

)

Hn x
n =

2√
1− 4x

ln

(

1 +
√
1− 4x

2
√
1− 4x

)

. (9)

As an immediate consequence of (9), integrating both sides of (9) with respect to x, we
reproduce Boyadzhiev’s generating function of the sequence

(

2n
n

)

Cn.

Corollary 2. Let Cn be the nth Catalan number. Then

∞
∑

n=1

CnHn x
n+1 = ln 2 +

√
1− 4x ln(2

√
1− 4x)− (1 +

√
1− 4x) ln(1 +

√
1− 4x)). (10)

Next we turn to determining the generating function for the sequence
(

2n
n

)

(H2n − Hn).
Recall [6, Formula 7.43, Table 351, p. 351],

1

(1− x)m+1
ln

1

1− x
=

∞
∑

n=0

(

m+ n

n

)

(Hm+n −Hm)x
n. (11)

Let m = n. Matching the coefficients of xn in (11) yields
(

2n

n

)

(H2n −Hn) =
n
∑

k=1

1

k

(

2n− k

n

)

. (12)

With (12) in hand, we obtain the following desired generating function.
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Theorem 3. Let Hn be the nth harmonic number. Then

∞
∑

n=1

(

2n

n

)

(H2n −Hn) x
n = − 1√

1− 4x
ln

(

1 +
√
1− 4x

2

)

=
1√

1− 4x
lnC(x), (13)

where C(x), which is given by (2), is the generating function of the Catalan numbers.

Proof. In view of (12), we have

∞
∑

n=1

(

2n

n

)

(H2n −Hn) x
n =

∞
∑

n=1

n
∑

k=1

1

k

(

2n− k

n

)

xn

=
∞
∑

k=1

1

k

(

∞
∑

n=k

(

2n− k

n

)

xn

)

=
∞
∑

k=1

1

k

(

∞
∑

m=0

(

2m+ k

m+ k

)

xm+k

)

(n = m+ k)

=
∞
∑

k=1

xk

k

(

∞
∑

m=0

(

2m+ k

m

)

xm

)

.

Since (see [6, Formula 5.72, p. 203] or [10, A32(b), p. 116])

∞
∑

m=0

(

2m+ k

m

)

tm =
1√

1− 4t

(

1−
√
1− 4t

2t

)k

=
Ck(t)√
1− 4t

,

and − ln(1− t) =
∑

∞

k=1 t
k/k, then appealing to (2), we find that

∞
∑

n=1

(

2n

n

)

(H2n −Hn) x
n =

1√
1− 4x

∞
∑

k=1

1

k

(

1−
√
1− 4x

2

)k

= − 1√
1− 4x

ln

(

1 +
√
1− 4x

2

)

=
1√

1− 4x
lnC(x).

This proves (13).

Integrating both sides of (13) with respect to x, we obtain the generating function for
the sequence Cn(H2n −Hn) as follows:

Corollary 4. Let Cn be the nth Catalan number. Then

∞
∑

n=1

Cn(H2n −Hn) x
n =

1

2x

[

(1−
√
1− 4x) + (1 +

√
1− 4x) ln

(

1 +
√
1− 4x

2

)]

. (14)
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Next, dividing both sides of (1) by x and then integrating from 0 to x, we find that

∞
∑

n=1

(

2n

n

)

xn

n
= −2 ln

(

1 +
√
1− 4x

2

)

= 2 lnC(x).

Repeating the above process one more time gives

∞
∑

n=1

(

2n

n

)

xn

n2
= −2

∫ x

0

1

t
ln

(

1 +
√
1− 4t

2

)

dt. (15)

Dividing both sides of (13) by x then integrating with respect to x, we have

∞
∑

n=1

(

2n

n

)

(H2n −Hn)
xn

n
= −

∫ x

0

1

t
√
1− 4t

ln

(

1 +
√
1− 4t

2

)

dt. (16)

Since H2n = H2n−1 +
1
2n
, combining (15) and (16) yields

∞
∑

n=1

(

2n

n

)

(H2n−1 −Hn)
xn

n
=

∞
∑

n=1

(

2n

n

)

(H2n −Hn)
xn

n
− 1

2

∞
∑

n=1

(

2n

n

)

xn

n2

=

∫ x

0

(

1

t
− 1

t
√
1− 4t

)

ln

(

1 +
√
1− 4t

2

)

dt

=

∫ x

0

2 ln

(

1 +
√
1− 4t

2

) (

ln

(

1 +
√
1− 4t

2

))′

dt

= ln2

(

1 +
√
1− 4x

2

)

,

where we have used
(

ln

(

1 +
√
1− 4t

2

))′

=
1

2t
− 1

2t
√
1− 4t

.

In view of (2), we obtain Knuth’s beautiful identity as follows:

Theorem 5. Let C(x) be the generating function of the Catalan numbers, which is given by

(2). Then
∞
∑

n=1

(

2n

n

)

(H2n−1 −Hn)
xn

n
= ln2C(x). (17)

Combining (9) and (13), we find the generating function of the sequence
(

2n
n

)

H2n.

Theorem 6. Let Hn be the nth harmonic number. Then

∞
∑

n=1

(

2n

n

)

H2n x
n =

1√
1− 4x

[

ln

(

1 +
√
1− 4x

2

)

− 2 ln
√
1− 4x

]

. (18)
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Consequently, integrating both sides of (18) yields the generating function of the sequence
CnH2n.

Corollary 7. Let Cn be the nth Catalan number. Then

∞
∑

n=1

CnH2n x
n =

1

2x

[

(1−
√
1− 4x)− (1 +

√
1− 4x) ln(1 +

√
1− 4x) + ln 2 +

√
1− 4x ln(2− 8x)

]

.

(19)

In view of (6), it follows that hn = H2n − 1
2
Hn. Applying (9) and (18), we arrive at

Theorem 8. Let hn be given by (6). Then

∞
∑

n=1

(

2n

n

)

hn x
n = − 1√

1− 4x
ln
√
1− 4x. (20)

From (20) we have the immediate corollary:

Corollary 9. Let Cn be the nth Catalan number. Then

∞
∑

n=1

Cnhn x
n =

1

2x

(

1−
√
1− 4x+

√
1− 4x ln

√
1− 4x

)

. (21)

3 Interesting series

Equipped with the series (9)–(21) in closed form, and using similar approaches to those used
in [4, 9], we will establish a wide variety of interesting series via specialization, differentiation
and integration.

Notice that the series in (9) converges on [−1/4, 1/4). Setting x = −1/4, 1/8 and −1/8
respectively, we obtain the interesting series

∞
∑

n=1

(−1)n

4n

(

2n

n

)

Hn =
√
2 ln

(

2 +
√
2

4

)

,

∞
∑

n=1

1

8n

(

2n

n

)

Hn = 2
√
2 ln

(

1 +
√
2

2

)

,

∞
∑

n=1

(−1)n

8n

(

2n

n

)

Hn =
2
√
6

3
ln

(

3 +
√
6

6

)

.

Similarly, since the series (10) converges for |x| ≤ 1/4, letting x = ±1/4 yields

∞
∑

n=1

1

4n(n+ 1)

(

2n

n

)

Hn =
∞
∑

n=1

1

4n
CnHn = 4 ln 2,
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∞
∑

n=1

(−1)n+1

4n(n+ 1)

(

2n

n

)

Hn =
∞
∑

n=1

(−1)n+1

4n
CnHn = (4 + 6

√
2) ln 2− 4(1 +

√
2) ln(1 +

√
2).

Along the same lines, via specialization, generating functions (13), (14) and (17)–(21) will
yield numerous interesting series as examples: we list only one for each.

∞
∑

n=1

1

8n

(

2n

n

)

(H2n −Hn) =
√
2 ln(4− 2

√
2),

∞
∑

n=1

1

4n
Cn(H2n −Hn) = 2(1− ln 2),

∞
∑

n=1

1

4n n

(

2n

n

)

(H2n−1 −Hn) = ln2 2,

∞
∑

n=1

1

8n

(

2n

n

)

H2n =

√
2

2
ln

(

3 + 2
√
2

2

)

,

∞
∑

n=1

1

4n
CnH2n = 2(1 + ln 2),

∞
∑

n=1

1

8n

(

2n

n

)

hn =

√
2

2
ln 2,

∞
∑

n=1

1

4n
Cnhn = 2.

In particular, letting x = (1 +
√
5)/16 and x = (1−

√
5)/16 in (20), respectively, in view of

the fact that
√

3±
√
5 =

√
2

2
(
√
5± 1)

and Binet’s formula

Fn =
1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

,

we find that
∞
∑

n=1

1

8n

(

2n

n

)

hnFn =
1√
10

ln 2 +
1√
2
ln

(

3 +
√
5

2

)

,

which is the result (7).
Another step along this path is to apply operator x d

dx
. To avoid tedious demonstration,

we will focus on the generating function (20). Applying x d
dx

to (20) yields

∞
∑

n=1

n

(

2n

n

)

hnx
n =

2x

(1− 4x)3/2
− x ln(1− 4x)

(1− 4x)3/2
.
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If we set x = 1/8, we get

∞
∑

n=1

n

8n

(

2n

n

)

hn =
1

2

√
2 +

1

4

√
2 ln 2.

Operating again by x d
dx
, we obtain

∞
∑

n=1

n2

(

2n

n

)

hnx
n =

2x

(1− 4x)3/2
− x ln(1− 4x)

(1− 4x)3/2
+

16x

(1− 4x)5/2
− 6x ln(1− 4x)

(1− 4x)5/2
.

Setting x = 1/8, we find

∞
∑

n=1

n2

8n

(

2n

n

)

hn =
3

2

√
2 +

5

8

√
2 ln 2.

In general, by induction, for any positive integer k, we find that

∞
∑

n=1

nk

8n

(

2n

n

)

hn = pk
√
2 + qk

√
2 ln 2,

where pk and qk are rational numbers.
It seems that the routine integration operator does not work very well in our cases. For

example, if we divide both sides of (9) by x and then integrate, we obtain

∞
∑

n=1

1

n

(

2n

n

)

Hn x
n =

∫ x

0

2

t
√
1− 4t

ln

(

1 +
√
1− 4t

2
√
1− 4t

)

dt.

This integral is a “higher transcendent”. Indeed, Mathematica gives

∞
∑

n=1

1

n

(

2n

n

)

Hn x
n = 2 ln

√
1− 4x ln

1 +
√
1− 4x

1−
√
1− 4x

+ 2 ln 2 ln(1 +
√
1− 4x)

− ln2(1 +
√
1− 4x) + 2Li2(−

√
1− 4x)− 2Li2(

√
1− 4x)− 2Li2

(

1−
√
1− 4x

2

)

− ln2 2 +
π2

2
,

where Li2(x) is the dilogarithm. In this case, we have difficulty singling out interesting series
since the known exact values of Li2 are very limited.

To bypass this block, we take another route out of these generating functions through
the trigonometric substitution x = 1

4
sin2 t. Beginning with (9) and (10), we have

∞
∑

n=1

1

4n

(

2n

n

)

Hn sin
2n t =

2

cos t
ln

(

1 + cos t

2 cos t

)

, (22)
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∞
∑

n=1

1

4n+1
CnHn sin

2(n+1) t = ln 2 + cos t ln(2 cos t)− (1 + cos t) ln(1 + cos t), (23)

respectively. If we multiply (22) and (23) by cos t and then integrate them from 0 to π/2,
respectively, we obtain

∞
∑

n=1

1

4n(2n+ 1)

(

2n

n

)

Hn = 4G− π ln 2, (24)

∞
∑

n=1

1

4n(2n+ 3)
CnHn = 2 + 4 ln 2− 4G− π + π ln 2, (25)

where G is Catalan’s constant, which is defined by

G :=
∞
∑

k=0

(−1)k

(2k + 1)2
.

If we multiply (22) by t cos t and then integrate from 0 to π/2, since (for example, using
integration by parts)

∫ π/2

0

t cos t sin2n t dt =
1

2n+ 1

(

π

2
− (2n)!!

(2n+ 1)!!

)

,

it follows that
∞
∑

n=1

1

4n(2n+ 1)

(

2n

n

)

Hn

(

π

2
− (2n)!!

(2n+ 1)!!

)

=
1

4
(8πG− π2 ln 2− 7ζ(3)), (26)

where ζ(x) is Riemann’s zeta function. As an immediate consequence of (24) and (26), we
discover another interesting series

∞
∑

n=1

1

(2n+ 1)2
Hn =

1

4
(7ζ(3)− π2 ln 2). (27)

Next, substituting x = 1
4
sin2 t in (9), (17), (9) and (20), respectively, we obtain

∞
∑

n=1

1

4n

(

2n

n

)

(H2n −Hn) sin
2n t = − 1

cos t
ln

(

1 + cos t

2

)

, (28)

∞
∑

n=1

1

4n n

(

2n

n

)

(H2n−1 −Hn) sin
2n t = ln2

(

1 + cos t

2

)

, (29)

∞
∑

n=1

1

4n

(

2n

n

)

H2n sin
2n t =

1

cos t

[

ln

(

1 + cos t

2

)

− 2 ln cos t

]

, (30)

∞
∑

n=1

1

4n n

(

2n

n

)

hn sin
2n t = − 1

cos t
ln cos t. (31)
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By manipulating the parameter t in Eqs. (28)–(31), we obtain many new interesting series.
For example, if we multiply Eqs. (28)–(31), by cos t and then integrate them from 0 to π/2,
we find

∞
∑

n=1

1

4n(2n+ 1)

(

2n

n

)

(H2n −Hn) = π ln 2− 2G,

∞
∑

n=1

1

4n n(2n+ 1)

(

2n

n

)

(H2n−1 −Hn) = 2 + 2 ln 2 + ln2 2 + 4G− π(1 + 2 ln 2),

∞
∑

n=1

1

4n(2n+ 1)

(

2n

n

)

H2n = 2G,

∞
∑

n=1

1

4n (2n+ 1)

(

2n

n

)

hn =
1

2
π ln 2.

Similarly, we can search for interesting series involving the Catalan numbers based on the
identities (14), (19) and (21). Details are left to the reader.

4 Concluding remarks

We conclude this paper with two remarks.

1. To assure accuracy of the results, we verified all the numerical series identities through
Mathematica.

2. Since the first glance at the paper [5], the author has been stimulated by both breadth
and beauty of these identities, and searched for a different way of dealing with Gauss
summation formulas. For instance, we may apply the differential operator to hyperge-
ometric summation formulas, instead of parameter replacements used in [5]. In view
of

∞
∑

n=1

(a)n(b)n
n!(c)n

Hn(c− 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(ψ(c− a) +ψ(c− b)−ψ(c)−ψ(c− a− b)),

where (x)n = x(x+1) · · · (x+n−1), Hn(x) =
∑n

k=1
1

k+x
and ψ is the polygamma func-

tion, we can derive further interesting series involving nonlinear binomial coefficients
and generalized harmonic numbers like

∞
∑

n=1

1

16n(2n− 1)2

(

2n

n

)2

Hn =
12

π
− 16

π
ln 2.

The interested reader is encouraged to pursue results in this direction.
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