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Abstract

This study involves definitions of regular and representational multiple-counting
Jacobsthal sequences of Carmichael numbers. We introduce recurrence relations for
multiple-counting Jacobsthal sequences and show their association with Fermat’s little
theorem. We also provide matrix representations and generalized Binet formulas for
defined sequences. This leads to a better understanding of how certain composite
numbers are distributed among consecutive powers.

1 Introduction

The Jacobsthal sequence [2] is defined as follows:

jn+2 = jn+1 + 2jn, j1 = 1, j0 = 0, n ≥ 0 (1)

Horadam and Hoggatt have written many papers [2, 4, 8] about the Jacobsthal sequence,
which has many remarkable properties, such as counting microcontroller skip instructions
[10] and counting the number of ways to tile a 3 × (n − 1) rectangle with 2 × 2 and 1 × 1
tiles [9]. The Jacobsthal sequence can be expressed in floor function notation [1]. It is given
in the description of sequence A001045 that the elements of the Jacobsthal sequence count
the multiples of 3 in between successive powers of 2, as illustrated in Table 1.
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Interval boundaries
of powers of 2 20 21 22 23 24 25

Number of multiples of 3 0 1 1 3 5
in each interval.

Table 1: Number of multiples of 3 in between powers of 2. The sequence is identical to the
original Jacobsthal sequence.

As the initial motivation of this paper, it is notable that there are other Jacobsthal-like
recurrence relations that hold between some other exponents and bases. For instance, as
it can be understood from a superficial glance at the sequence A007910, when double of
any term is added to three consecutive terms, the very next term is obtained. This study
investigates various aspects of those recurrence sequences.

Another concept that will be discussed in this paper is Fermat’s little theorem [3], which
can be summarized as xρ−1 ≡ 1 (mod ρ). The theorem states that the given condition
is satisfied when ρ and x are coprime and ρ is prime. However, vice versa is not always
true. The condition is still valid for some composite ρs called Fermat pseudoprimes [11],
Carmichael numbers [6] or K1 Knödel numbers [12]. In particular for the x = 2 case, the ρs
are called Poulet numbers [13] or Fermatians [6] if they satisfy Fermat’s given condition [3].

2 Generalized multiple-counting Jacobsthal sequences

Definition 1. Let x and ρ be elements of {2, 3, 4, 5, . . . } and n be an element of {0, 1, 2, 3, . . . }.
The multiple-counting Jacobsthal sequence J(x, ρ) is defined by setting Jn equal to the num-
ber of multiples of ρ which are greater than xn and less than xn+1.

In floor function notation, the number of multiples of ρ less than xn+1 is
⌊
xn+1

ρ

⌋

. There-

fore, the number of multiples of ρ greater than xn and less than xn+1 is found as follows:

Jn =

⌊
xn+1

ρ

⌋

−

⌊
xn

ρ

⌋

(2)

Theorem 2. Let x and ρ be elements of {1, 2, 3, . . . }. Let x and ρ be relatively prime and
satisfy Fermat’s xρ−1 ≡ 1 (mod ρ) condition. For any number n from the set {0, 1, 2, . . . },
the sequence with starting terms J0, J1, . . . Jρ−1 which counts the multiples of ρ between xn

and xn+1 also satisfies the following recurrence relation for ρ ≥ 3:

Jn+ρ−1 = (x− 1)

ρ−2
∑

i=1

Jn−i+ρ−1 + xJn (3)

Proof. The expression in (3) can be transformed to

Jn+ρ−1 = (x− 1)

ρ−1
∑

i=1

Jn−i+ρ−1 + Jn (4)
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Replace Jn with its floor function notation (2). The following expression is obtained when
intermediate elements of the sigma notation are eliminated.

⌊
xn+ρ

ρ

⌋

−

⌊
xn+ρ−1

ρ

⌋

= (x− 1)

(⌊
xn+ρ−1

ρ

⌋

−

⌊
xn

ρ

⌋)

+

⌊
xn+1

ρ

⌋

−

⌊
xn

ρ

⌋

(5)

Let a be an arbitrary constant. Assume xρ−1 is equal to aρ + 1 as a result of the xρ−1 ≡ 1
(mod ρ) condition. When aρ+1 is substituted into (5), the floor function takes the a-terms
out due to its integer exclusion property. Both sides of the equation turn into aJn. The right
and left hand sides then simplify, and the proof is complete.

Example 3. Table 2 contains several examples of multiple-counting sequences for different
ρs and xs

ρ x Notes on sequences

3 2 Identical to Jacobsthal sequence: Jn = Jn−1 + 2Jn−2, n ≥ 2, J0 = 0, J1 = 1

5 3 Jn = 2Jn−1 + 2Jn−2 + 2Jn−3 + 3Jn−4, n ≥ 4, J0 = 0, J1 = 1, J2 = 4, J3 = 11

3 10 Jn = 9Jn−1 + 10Jn−2, n ≥ 2, J0 = 3, J1 = 30

Jn counts (n+ 1)-digit numbers which are divisible by 3

Table 2: Some multiple-counting sequences

In their paper, Cook and Bacon [7] defines various sequences Jn for various ρs, called
higher order Jacobsthal sequences, when x = 2.

Theorem 4. For any element of Jn, the Binet expression

Jn =
n∑

i=1

λn−i+2
i v1,i(

n∑

j=1

v−1
i,j u

ρ−2
j ) (6)

is always satisfied when the key matrix

K(ρ−1)×(ρ−1) =















x− 1 x− 1 . . . x− 1 x− 1 x

1 0 . . . 0 0 0

0 1
. . . 0 0 0

...
. . . . . . . . .

...
...

0 0
. . . 1 0 0

0 0 . . . 0 1 0















satisfies Kun = un+1 for the vector
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un =








u1

u2
...

up−1








=








Jn
Jn−1
...

Jn−p+2








if K is diagonalizable and K’s eigenvector matrix V is non-singular. Note that elements
ui,vij belong to u,V .

Proof. The Binet form for Jn can be obtained using Kalman’s method [5]. After decomposing
K = V ΛV −1, the equation Kun = un+1 is transformed to V ΛV −1un = un+1 where Λ is the
diagonal eigenvalue matrix of K. We only need the top elements of vectors, thus multiply
the expression by

(
1 0 . . . 0

)

a (ρ − 1) × 1 matrix from the left. Any particular term of the sequence Jn satisfies the
equation

Jn =
(
1 0 . . . 0

)
(V Λn−ρ+2(V −1uρ−2)) (7)

Since

(V −1uρ−2) =








v−1
1,1 v−1

1,2 . . . v−1
1,ρ−1

v−1
2,1 v−1

2,2 . . . v−1
2,ρ−1

. . . . . .
. . . . . .

v−1
ρ−1,1 v−1

ρ−1,2 . . . v−1
ρ−1,ρ−1















Jρ−2

Jρ−3
...
J0








and

V =








v1,1 v1,2 . . . v1,ρ−1

v2,1 v2,2 . . . v2,ρ−1

. . . . . .
. . . . . .

vρ−1,1 vρ−1,2 . . . vρ−1,ρ−1








and

Λn−ρ+2 =








λ
n−ρ+2
1 0 . . . 0

0 λ
n−ρ+2
2

. . .
...

...
. . . . . . 0

0 . . . 0 λ
n−ρ+2
ρ−1








are known, we can compute (7) after the required substitution. Recall that λ1, λ2, . . . , λn

denote the eigenvalues of K. After the outcome of the computation is simplified, we obtain
the initial expression (6).

Example 5. Table 3 contains several Binet formulas of multiple-counting sequences for
different ρs and xs
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ρ x Sequence Binet form

3 2 Jn = Jn−1 + 2Jn−2
2n

3
− (−1)n

3

n ≥ 2, J0 = 0, J1 = 1

3 4 Jn = 3Jn−1 + 4Jn−2 4n

n ≥ 2, J0 = 1, J1 = 4

3 10 Jn = 9Jn−1 + 10Jn−2 3 10
n

10

n ≥ 2, J0 = 3, J1 = 30

Table 3: Some Binet forms of multiple-counting sequences when ρ is 3.

3 Generalized multiple-counting representational Ja-

cobsthal sequences

Definition 6. Let x and ρ be elements of {2, 3, 4, 5, . . .} and n be an element of {0, 1, 2, 3, . . . }.
Then S(x, ρ) will be called a multiple-counting representational Jacobsthal sequence when Sn

is equal to the number of integer multiples of ρ, that are greater than 0 and less than xn+1.
Representational sequences can be compactly expressed as

Sn =

⌊
xn+1

ρ

⌋

(8)

The strong interrelation between regular multiple-counting sequences and multiple-counting
representational Jacobsthal sequences is expressed by

Sn =
n∑

i=0

Ji (9)

The summation idea of a multiple-counting Jacobsthal sequence is very similar to the
Jacobsthal representation sequence which Horadam [4] explores in detail. The representation
sequence satisfies a similar recurrence relation. However, the constant term is different.

Theorem 7. Let x and ρ be elements of {1, 2, 3, . . . } and suppose they satisfy Fermat’s
xρ−1 ≡ 1 (mod ρ) condition. For any element n of {0, 1, 2, . . . }, the sequence with starting
terms S0, S1, . . . , Sp−1, which counts multiples of ρ between 0 and xn+1, satisfies the following
recurrence relation:

Sn+ρ−1 = (x− 1)

ρ−2
∑

i=1

Sn−i+ρ−1 + xSn + φ (10)

or

Sn+ρ−1 = (x− 1)

ρ−1
∑

i=1

Sn−i+ρ−1 + Sn + φ, (11)
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where φ is a unique constant derived from the particular combination of ρ, x and the initial
conditions J0, J1, . . . , Jp−2. Note that the formula for φ is

φ =

ρ−1
∑

i=0

Ji − (x− 1)

ρ−1
∑

i=1

i−2∑

j=0

Jj (12)

Proof. Rewrite (11) using property (9):

n+ρ−1
∑

i=0

Ji = (x− 1)

ρ−1
∑

i=1

n−i+ρ−1
∑

j=0

Jj +
n∑

i=0

Ji + φ (13)

Separate (13) into n-dependent and n-independent parts:

ρ−2
∑

i=0

Ji +

n+ρ−1
∑

i=ρ−1

Ji = (x− 1)

ρ−1
∑

i=1

(
i−2∑

j=0

Jj +

n−i+ρ−1
∑

j=i−1

Jj) +
n∑

i=0

Ji + φ (14)

ρ−2
∑

i=0

Ji +

n+ρ−1
∑

i=ρ−1

Ji

︸ ︷︷ ︸

= (x− 1)

ρ−1
∑

i=1

i−2∑

j=0

Jj + (x− 1)

ρ−1
∑

i=1

n−i+ρ−1
∑

j=i−1

Jj

︸ ︷︷ ︸

+
n∑

i=0

Ji

︸ ︷︷ ︸

+φ (15)

The n-dependent underbraced parts of Eq. (15) are eliminated by induction on (4). Since
the n-independent parts of the expression above are constant for the whole sequence, φ also
depends on a constant value and the required proof is provided.

Theorem 8. To obtain a matrix-based Binet representation for the sequence S, we use a
similar approach as for the sequence J . Since the only difference between the definitions of
the two sequences J and S is a constant φ, we can easily modify the key matrix to insert the
φ dependency with notational changes to get a simple formula.

Sn =
n∑

i=1

µn−i+2
i w1,i(

n∑

j=1

w−1
i,j τ

ρ−1
j ) (16)

Assuming L is the key matrix

Lρ×ρ =

















x− 1 x− 1 . . . x− 1 x− 1 x 1
1 0 . . . 0 0 0 0

0 1
. . . 0 0 0 0

...
. . . . . . . . .

...
...

0 0
. . . 1 0 0 0

0 0 . . . 0 1 0 0
0 0 . . . 0 0 0 1
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of Lτn = τn+1 where τ satisfies

τn =










τ1
τ2
...

τp−1

φ










=










Sn

Sn−1
...

Sn−p+2

φ










if L is diagonalizable and L’s eigenvector matrix W is non-singular. Note that the elements
wij belong to W and µ1, µ2, . . . , µn denote the eigenvalues of L.

Proof. Proof is similar to the proof of Theorem 4 and therefore omitted.

4 Concluding remarks

Several sequences in OEIS [1] are identical to some multiple-counting Jacobsthal se-
quences. A007910 is a multiple-counting Jacobsthal sequence when (x = 2, ρ = 5) and
A077947 when (x = 2, ρ = 7), which are also called fourth and sixth order Jacobsthal se-
quences [7]. Additionally, A000302 and A093138 are multiple-counting Jacobsthal sequences
for (x = 4, ρ = 3) and (x = 10, ρ = 3).

Unlike the prime-counting function π(x) (which is A006880 of OEIS [1]), the sequences
Jn and Sn count the composites of a given prime ρ. There is only one exception for both
sequences: their initial terms. If ρ is prime, Jn and Sn count all composites of the prime ρ.

The outcomes of this research can be used in various fields, such as electronics and
computer science. The strong connection between the described sequences and Fermat’s
little theorem might lead to a better understanding of number fields. The distribution of
prime and composite numbers is a significant field in present day number theory. Considering
this, the future of multiple-counting Jacobsthal sequences is promising.
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[10] A. Daşdemir, On the Jacobsthal numbers by matrix method, Fen Derg. 7 (2012), 69–76.

[11] R. Crandall and C. B. Pomerance, Prime Numbers: a Computational Perspective,
Springer Science Business Media, 2006.

[12] A. Makowski, Generalization of Morrow’s D numbers, Bull. Belg. Math. Soc. Simon
Stevin 36 (1962), 71.

[13] D. H. Lehmer, Errata for Poulet’s table, Math. Comp. 25 (1971), 944–945.

2010 Mathematics Subject Classification: Primary 11Bxx; Secondary 11Y55, 11A15.
Keywords: Carmichael number, Fermat’s little theorem, Binet formula, floor function,
multiple-counting sequence, Fermat pseudoprime, Jacobsthal sequence.

(Concerned with sequences A000302, A001045, A006880, A007910, A077947, and A093138.)

Received September 26 2015; revised versions received October 23 2015; December 1 2015;
December 19 2015. Published in Journal of Integer Sequences, January 10 2016.

Return to Journal of Integer Sequences home page.

8

http://oeis.org/A000302
http://oeis.org/A001045
http://oeis.org/A006880
http://oeis.org/A007910
http://oeis.org/A077947
http://oeis.org/A093138
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Generalized multiple-counting Jacobsthal sequences
	Generalized multiple-counting representational Jacobsthal sequences
	Concluding remarks
	Acknowledgement

