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Abstract

We investigate generalized binomial coefficients of multiplicative functions. We pro-
vide a formula for these coefficients and use this formula to prove that the coefficients
are always integral if the function is also a divisible function. Furthermore, we prove
that multiplicative and divisible functions have integral generalized Fuss-Catalan num-
bers. Along the way, we include some results about specific multiplicative functions
such as gcdk and φ. We finish by connecting these results to a classical result due to
Ward.
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1 Introduction

Let N be the set of positive integers. Then, given a function f : N → N, define for nonnegative
integers n and m the generalized binomial coefficient

(

n+m
n

)

f
via

(

n+m

n

)

f

=

∏n+m
i=1 f(i)

(
∏n

i=1 f(i)) (
∏m

i=1 f(i))
,

where an empty product is defined to be 1.
What conditions on f result in the generalized binomial coefficient

(

n+m
n

)

f
taking on

only integer values? Obviously the usual binomial coefficients, where f(n) = n, are in-
tegers. Several authors have investigated this question for other functions f . Knuth and
Wilf [5] have proved that the generalized binomial coefficients are integers when the func-
tion f is strongly divisible; i.e., when gcd(f(m), f(n)) = f(gcd(m,n)) for all m,n. This
includes the Fibonacci sequence, as it is strongly divisible. Other authors (see, for example,
Carmichael [2]) have proved that the generalized binomial coefficients are integers for gen-
eralized Fibonacci sequences defined by f(n+2) = af(n+1)+ bf(n), with a, b integers and
f(1) = f(2) = 1. Edgar [4] has also proved that Euler’s φ-function, Jordan’s generalization
of it, and Dedekind’s ψ-function as choices for f give rise to integer generalized binomial
coefficients. In fact, it turns out that these three examples can be shown to have integer
generalized binomial coefficients as a consequence of a result by Ward [7].

A related result for the usual binomial coefficients is Kummer’s theorem, which describes
their prime factorization. More specifically, Kummer’s theorem states that the exponent of
the largest power of a prime p that divides

(

n+m
n

)

is the number of carries when n and m are
added in base p. Knuth and Wilf [5] generalize Kummer’s theorem and give an analog of it
for a certain class of strongly divisible functions.

In this paper we investigate generalized binomial coefficients formed from multiplicative

functions; i.e., functions f in which f(1) = 1 and f(mn) = f(m)f(n) when m and n are
relatively prime.

Our main theorem (Theorem 3) gives a formula for
(

n+m
n

)

f
when f is multiplicative. This

result has the following consequences.

1. The formula is in terms of i) the values of f at prime powers and ii) the carries when
n and m are added in prime bases. The formula thus generalizes Kummer’s theorem
in a different way than that of Knuth and Wilf.

2. While multiplicative functions in general do not give rise to integral generalized bino-
mial coefficients, our formula allows us to prove that

(

n+m
n

)

f
is an integer when f is

both multiplicative and divisible, i.e., when m|n implies f(m)|f(n), but not necessar-
ily strongly divisible. This category includes completely multiplicative functions. In
Section 5, we prove that this result is a special case of a result of Ward’s. However,
this is not obvious: Ward’s result does not apply to multiplicative functions alone, nor
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to divisible functions alone, but it does turn out to apply to functions that are both
multiplicative and divisible.

3. Let gcdk(n) denote the function that, for fixed k, yields the greatest common divisor
of n and k. We obtain a Kummer-like result that the highest power of a prime p that
divides

(

n+m
n

)

gcdk
is the number of carries in the base p sum of n and m that occur

before the νp(k) position, where νp(k) is the exponent of the highest power of p that
divides k.

4. The formula gives a necessary and sufficient criterion for determining the values of n
andm yielding integral generalized binomial coefficients for all multiplicative functions.

5. We obtain an explicit formula for the generalized Fuss-Catalan number, given by
Af (n, q, r) = f(r)

f(nq+r)

(

nq+r
n

)

f
, in terms of the values of f at prime powers and cer-

tain carries in prime bases, for f multiplicative. If f is also divisible, this implies that
the generalized Fuss-Catalan number is an integer for all values of n, q, and r. Thus
the generalized Catalan number, 1

f(n+1)

(

2n
n

)

f
, is also always an integer when f is mul-

tiplicative and divisible. In addition, as Euler’s φ-function is both multiplicative and
divisible, we obtain a positive answer to Edgar’s question [4] as to whether 1

φ(n+1)

(

2n
n

)

φ

is always an integer.

In the final section, we investigate the slightly more general formulation due to Ward
and provide formulas for the associated Fuss-Catalan numbers as discussed in (5) above.
We obtain alternate formulas for generalized binomial coefficients that can be shown to be
equivalent to the others we present here. However, the general results require all base-b
representations of natural numbers whereas the multiplicative and divisible functions only
require prime base representations.

We now define notation that will be used throughout. Let n,m and b be nonnegative
integers. Then n has a unique base-b representation of the form n = n0 + n1b + · · · +
nkb

k. We express this more compactly as (n0, n1, . . . , nk)b. Similarly, m has a unique base-b
representation m = m0 +m1b+ · · ·+mlb

l that we express as (m0,m1, . . . ,ml)b.
Define the (b, n,m)-carry sequence, ǫb,n,m, recursively via

ǫb,n,mi =

⌊

ni +mi + ǫi−1

b

⌋

,

where we take ǫb,n,m−1 = 0. (When the context is understood, we omit the superscripts.) The
base-b representation of n+m is then given by

(n+m)i = ni +mi + ǫi−1 − bǫi. (1)

Since ni < b and mi < b, the definition of ǫb,n,mi implies that ǫb,n,mi is either 0 or 1 for
each i. We say there is a carry in the ith position of the base-b sum of m and n if ǫb,n,mi = 1.
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Let κb(n,m) =
∑

i ǫ
p,n,m
i , the sum of the carries in the base-b sum of n and m.

When p is prime, we let νp(n) denote the exponent of the highest power of p that divides
n.

Finally, let [P ] denote the Iverson bracket for the statement P :

[P ] =

{

1, if P is true;

0, otherwise.

2 A formula for
(

n+m
n

)

f
when f is multiplicative

Before we prove our main result, an expression for
(

n+m
n

)

f
when f is multiplicative, we prove

a couple of lemmas we will need. The first gives two equivalent expressions for the existence
of a carry in the ith position when m and n are added in base p with p prime.

Lemma 1. Let p be prime and n and m be two nonnegative integers.

ǫp,n,mr = [(n+m) mod pr+1 < n mod pr+1]

=

⌊

n+m

pr+1

⌋

−

⌊

n

pr+1

⌋

−

⌊

m

pr+1

⌋

.

Proof. For the first equality, we have, by (1),

(n+m) mod pr+1 − n mod pr+1 =
r
∑

i=0

(

(n+m)ip
i − nip

i
)

=
r
∑

i=0

(

mip
i + piǫi−1 − pi+1ǫi

)

=
r
∑

i=0

mip
i − pr+1ǫr

= m mod pr+1 − pr+1ǫr.

This last expression is negative precisely when ǫr = 1.
For the second equality, the proof is similar. Let ((n+m)0, (n+m)1, . . . , (n+m)tp)p be

the base-p representation of n+m. We have, again by (1),

⌊

n+m

pr+1

⌋

−

⌊

n

pr+1

⌋

−

⌊

m

pr+1

⌋

=

tp
∑

i=r+1

(

(n+m)ip
i−(r+1) − nip

i−(r+1) −mip
i−(r+1)

)

=

tp
∑

i=r+1

(

pi−(r+1)ǫi−1 − pi−(r+1)+1ǫi
)

= ǫr − ptp−rǫtp
= ǫr,
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as ǫtp = 0 (otherwise, n +m would have, in its base-p representation, a digit in the tp + 1
position).

The second lemma we need is the following.

Lemma 2. There are ⌊n/pr⌋−⌊n/pr+1⌋ elements of {1, 2, . . . , n} for which pr is the highest

power of p occurring in that element’s prime factorization.

Proof. The number of elements of {1, 2, . . . , n} for which pr is the highest power of p occurring
in that element’s prime factorization is the number of integers in {1, 2, . . . n} that are divisible
by pr but not by pr+1. This is exactly ⌊n/pr⌋ − ⌊n/pr+1⌋.

With Lemmas 1 and 2 in hand we are ready to prove our main result.

Theorem 3. Let f : N → N be a multiplicative function. Then

(

n+m

n

)

f

=
∏

p

(

∏

i≥1

f(pi)ǫ
p
i−1−ǫpi

)

=
∏

p

(

∏

i≥0

(

f(pi+1)

f(pi)

)ǫpi
)

.

Proof. First, we have, since f is multiplicative,

n
∏

k=1

f(k) =
n
∏

k=1

f





∏

p|k

pνp(k)



 =
n
∏

k=1





∏

p|k

f(pνp(k))



 .

Swapping the order of the products and using Lemma 2 to count the number of times pi

occurs as the highest power, we obtain

n
∏

k=1

f(k) =
n
∏

k=1





∏

p|k

f(pνp(k))



 =
∏

p

(

∏

i≥1

f(pi)⌊n/p
i⌋−⌊n/pi+1⌋

)

.

Therefore,

(

n+m

n

)

f

=
∏

p

(

∏

i≥1

f(pi)⌊(n+m)/pi⌋−⌊n/pi⌋−⌊m/pi⌋−(⌊(n+m)/pi+1⌋−⌊n/pi+1⌋−⌊(m/pi+1⌋)

)

=
∏

p

(

∏

i≥1

f(pi)ǫ
p
i−1−ǫpi

)

,

where the second equality follows from Lemma 1.
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In addition, ǫpi occurs twice in the inner product of this expression: once as the power on
f(pi+1) and once as the negative power on f(pi). Thus we also have

(

n+m

n

)

f

=
∏

p

(

∏

i≥0

(

f(pi+1)

f(pi)

)ǫpi
)

.

3 Some integrality conditions for
(

n+m
n

)

f
when f is mul-

tiplicative

In this section we discuss some conditions on a multiplicative function f that imply
(

n+m
n

)

f

is an integer for all values of n and m. We also give a condition on n and m under which
(

n+m
n

)

f
is an integer for all multiplicative functions f .

Our first condition is a straightforward consequence of Theorem 3.

Corollary 4. If f : N → N is multiplicative and f(pr)|f(pr+1) for all primes p and nonneg-

ative integers r then
(

n+m
n

)

f
is an integer for all m,n. In this case we have

(

n+m

n

)

f

=
∏

p≤n+m

(

∏

i≥0

gp(i)
ǫpi

)

,

where gp(r) = f(pr+1)/f(pr).

Our second result shows that, for a multiplicative function, f , the condition on f in
Corollary 4 is equivalent to f being divisible.

Theorem 5. Let f : N → N be a multiplicative function. Then f satisfies f(pr)|f(pr+1) for
all primes p and nonnegative integers r iff f is divisible.

Proof. First, suppose f satisfies f(pr)|f(pr+1) for all p and r. This implies that if s < r then
f(ps)|f(pr). Suppose m|n. We have that f(m) =

∏

p|m f(p
νp(m)) and f(n) =

∏

p|n f(p
νp(n)).

For any prime p, the fact that m|n implies that pνp(m)|pνp(n), and so νp(m) ≤ νp(n). Thus
f(pνp(m))|f(pνp(n)), and so f(m)|f(n). Therefore, f is a divisible function.

Next, suppose f(m)|f(n) for all m and n such that m|n. Let m = pr and n = pr+1. Then
f(pr)|f(pr+1).

Theorem 5 allows us to express Corollary 4 in a more compact form.

Corollary 6. If f : N → N is multiplicative and divisible, then
(

n+m
n

)

f
is an integer for all

m,n.
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In Appendix A, we provide a list of functions (sequences) that are both multiplicative
and divisible.

We look at two particularly important functions from this list: Euler’s totient function
and the gcdk(n) function. The fact that the totienomial coefficient

(

n+m
n

)

φ
is an integer was

proved by Edgar [4]; this also follows from the main theorem in Ward [7]. With Corollary 4,
we obtain this result plus the following formula.

Corollary 7. The totienomial coefficient
(

n+m
n

)

φ
is an integer for all n,m. Moreover,

(

n+m

n

)

φ

=
∏

p≤n+m

(p− 1)ǫ
p
0pκp(n,m)−ǫp0 .

Proof. It is well-known that φ is multiplicative with φ(pr) = pr−1(p− 1). Thus

φ(pr+1)

φ(pr)
=

{

p− 1, r = 0;

p, r ≥ 1.

The result then follows from Corollary 4.

Using Corollary 4, we get a Kummer-like theorem for the gcdk function, where gcdk(n)
is, for fixed k, the greatest common divisor of k and n.

Corollary 8. We have that
(

n+m
n

)

gcdk
is an integer for all n,m. Moreover, the exponent of

the largest power of a prime p that divides
(

n+m
n

)

gcdk
is the number of carries in the base p

sum of n and m that occur before the νp(k) position; i.e.,

(

n+m

n

)

gcdk

=
∏

p





νp(k)−1
∏

i=0

pǫ
p
i



 .

Proof. We have that gcdk(p
rqs) = pmin{r,νp(k)}qmin{s,νq(k)} = gcdk(p

r) gcdk(q
s). It follows that

gcdk(n) is multiplicative.
In addition,

gcdk(p
r+1)

gcdk(p
r)

=
pmin{r+1,νp(k)}

pmin{r,νp(k)}
=

{

p, r < νp(k);

1, r ≥ νp(k).

The result then follows from Corollary 4.

An important class of multiplicative functions that are divisible is the class of completely

multiplicative functions, which are functions satisfying f(mn) = f(m)f(n) for all m and n.

Corollary 9. If f : N → N is completely multiplicative, then
(

n+m
n

)

f
is an integer for all

n,m.
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Proof. If f is completely multiplicative, then f(pr+1)/f(pr) = (f(p))r+1/(f(p))r = f(p). By
Corollary 4, then,

(

n+m
n

)

f
is an integer for all m,n, with

(

n+m

n

)

f

=
∏

p≤n+m

f(p)κp(n,m).

Some functions that are completely multiplicative include the identity function and se-
quence A003958 in the On-Line Encyclopedia of Integer Sequences (OEIS) [6]. In particular,
if we let f(n) = n in Corollary 9, then we quickly obtain Kummer’s theorem.

Corollary 10 (Kummer). For any n,m ∈ N, the exponent of the largest power of p dividing
(

n+m
n

)

is the number of carries occurring in the base-p sum of n and m; i.e.,

νp

((

n+m

n

))

= κp(n,m).

Proof. This statement is exactly the statement given in Corollary 9 since f(p) = p for all
p.

Corollary 11. The totienomial coefficients and classical binomial coefficients are related by

the following equation:
(

n+m

n

)

φ

=

(

n+m

n

)

·
∏

p≤n+m

(

p− 1

p

)ǫp,n,m
0

.

Proof. Combining Corollary 10 with Corollary 7 gives this result.

The results thus far in this section provide conditions such that, given f ,
(

n+m
n

)

f
is

an integer for all values of n and m. Our next result describes a necessary and sufficient
condition such that, given n and m,

(

n+m
n

)

f
is an integer for all multiplicative functions f .

Corollary 12. Let n and m be nonnegative integers. Then
(

n+m
n

)

f
is an integer for all

multiplicative functions f : N → N if and only if for all p ≤ n +m there exists an sp ≥ 0
such that ǫpi = 1 for all i < sp and ǫpi = 0 for all i ≥ sp.

Proof. We prove the contrapositive of the statement. If
(

n+m
n

)

f
is not an integer, then

Theorem 3 implies that there must be some prime p and some i ≥ 1 such that ǫpi−1 = 0 but
ǫpi = 1. This is precisely the situation ruled out by the condition in the corollary.

Now, suppose there exists some prime p and some i such that ǫpi−1 = 0 and ǫpi = 1.
Since multiplicative functions are determined by their values at prime powers, let f be the
multiplicative function defined, for primes q, by

f(qj) =

{

2, q = p, j = i;

1, q 6= p or j 6= i.

By Theorem 3,
(

n+m
n

)

f
= 1/2.

8
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Figure 1 contains a graph of the first 90 rows (starting at row 0) of a triangular array.
The row n +m, column n entries that are shaded are those such that

(

n+m
n

)

f
is an integer

for all multiplicative functions f (using the condition from Corollary 12). These entries are
more concentrated on the sides of the triangle, which is not surprising, but there are some
entries close to the middle of the triangle even fairly far down.

Figure 1: Triangle of values of n and m such that
(

n+m
n

)

f
is always an integer when f is

multiplicative.

Looking carefully at this triangle, the following are apparent.

Corollary 13. Let f be a multiplicative function and n be a nonnegative integer. Then

1.
(

n
0

)

f
and

(

n
1

)

f
are always integers.

2.
(

n
2

)

f
is an integer if and only if n ≡ 2 (mod 4) or n ≡ 3 (mod 4).
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Proof. Part 1 is immediate from the definition and the facts that the empty product is 1
and f(1) = 1 for multiplicative functions. For part 2, we note that if n is equivalent to 2
or 3 mod 4 then n = (0, 1, . . . nk)2 or n = (1, 1, . . . , nk)2 and so n − 2 = (0, 0, . . . , nk)2 or
n− 2 = (1, 0, . . . nk)2. In either case, ǫ2,n−2,2

i = 0 for all i. Now, for any prime p > 2 we have
2 = (2)p; consequently, for i > 0, we see that ǫp,n−2,2

i = 1 only if ǫp,n−2,2
i−1 = 1. Conversely, if

n is equivalent to 0 or 1 mod 4, then (n− 2)2 = (0, 1, . . . , nk)2 or (n− 2)2 = (1, 1, . . . , nk)2.
As such, ǫ2,n−2,2

0 = 0 and ǫ2,n−2,2
1 = 1. The result follows by Corollary 12.

4 Generalized Catalan and Fuss-Catalan numbers when

f is multiplicative

The Fuss-Catalan number A(n, q, r) is given by A(n, q, r) = r
nq+r

(

nq+r
n

)

. When q = 2 and

r = 1, we have A(n, 2, 1) = 1
2n+1

(

2n+1
n

)

= 1
n+1

(

2n
n

)

= C(n), the usual nth Catalan number.
(Here we use the absorption identity for the binomial coefficients.)

For a function f : N → N and n, q, r ≥ 0, we define the f -Fuss-Catalan number Af (n, q, r)
via

Af (n, q, r) =
f(r)

f(nq + r)

(

nq + r

n

)

f

.

In this section we find a formula for Af (n, q, r), when f is multiplicative, analogous to
Theorem 3. We then use this formula to obtain a Kummer-like theorem for Fuss-Catalan
numbers. We also prove that when f is multiplicative and divisible, Af (n, q, r) is an integer
for all n ≥ 0. In addition, we give the versions of all of these results for the usual Catalan
numbers. Since Euler’s φ-function is both multiplicative and divisible, we also answer in the
affirmative a question of Edgar [4] as to whether Cφ(n) is an integer for all n ≥ 0.

Theorem 14. If f : N → N is multiplicative, then the f -Fuss-Catalan number given by

Af (n, q, r) =
f(r)

f(nq + r)

(

nq + r

n

)

f

satisifies

Af (n, q, r) = A(n)B(n)D(n),
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where

A(n) =
∏

p|n,νp(nq)≥νp(r)





∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i



 ,

B(n) =
∏

p|n,νp(nq)<νp(r)





f(pνp(r))

f(pνp(nq))

∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i



 ,

D(n) =
∏

p∤n



f(pνp(r))
∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n−1,n(q−1)+r

i



 .

Proof. By Theorem 3, and the fact that f is multiplicative, we have

f(r)

f(nq + r)

(

nq + r

n

)

f

=
∏

p

f(pνp(r))

f(pνp(nq+r))





∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i



 .

We now break the primes into three cases, corresponding to the three factors A(n), B(n),
and D(n) in the theorem statement.

1. Suppose p is a prime that divides n such that that νp(nq) ≥ νp(r). Since p divides n,
p divides nq. Since νp(nq) ≥ νp(r), νp(nq + r) = νp(r). The contribution to the value
of Af (n, q, r) for a prime p in this case, then, is

∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i

.

2. Suppose p is a prime that divides n such that νp(nq) < νp(r). Since p divides n, we
know p divides nq. The fact that νp(nq) < νp(r) implies that p also divides r and
nq + r, and consequently that νp(nq + r) = νp(nq). The contribution to the value of
Af (n, q, r) for a prime p in this case is

f(pνp(r))

f(pνp(nq))

∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i

.

3. Suppose p is a prime that does not divide n. In this case it helps to express Af (n, q, r)
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as

f(r)

f(nq + r)

(

nq + r

n

)

f

=
f(r)

f(nq + r)

f(nq + r) · · · f(n(q − 1) + r + 1)

f(n) · · · f(1)

=
f(r)

f(n)

f(nq + r − 1) · · · f(n(q − 1) + r + 1)

f(n− 1) · · · f(1)

=
f(r)

f(n)

(

nq + r − 1

n− 1

)

f

=
∏

p

f(pνp(r))

f(pνp(n))





∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n−1,n(q−1)+r

i



 .

Since p does not divide n, νp(n) = 0. Thus the contribution to Af (n, q, r) for a prime
in this case is

f(pνp(r))





∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n−1,n(q−1)+r

i



 .

If we let f(n) = n in Theorem 14, then we obtain a Kummer-like theorem for the Fuss-
Catalan numbers.

Corollary 15. The exponent of the largest power of a prime p dividing A(n, q, r) is given

by the following:

νp (A(n, q, r)) =











κp(n, n(q − 1) + r), p|n, νp(nq) ≥ νp(r);

νp(r)− νp(nq) + κp(n, n(q − 1) + r), p|n, νp(nq) < νp(r);

νp(r) + κp(n− 1, n(q − 1) + r), p ∤ n.

Proof. Let f be the identity function; i.e., f(n) = n. Again, the identity function is clearly
multiplicative. Applying Theorem 14 to the case of a prime p that divides n and satisfies
νp(nq) ≥ νp(r), we obtain the following contribution to A(n, q, r) from p:

∏

i≥0

(

f(pi+1)

f(pi)

)ǫ
p,n,n(q−1)+r

i

=
∏

i≥0

pǫ
p,n,n(q−1)+r

i = p
∑

i≥0 ǫ
p,n,n(q−1)+r

i = pκp(n,n(q−1)+r).

The proofs of the other two cases are similar.

Theorem 14 also implies that Af (n, q, r) is an integer when f is multiplicative and divis-
ible.
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Corollary 16. If f : N → N is both multiplicative and divisible, then Af (n, q, r) is an integer

for all n. In this case we have

Af (n, q, r) = A(n)B(n)D(n),

where

A(n) =
∏

p|n,νp(nq)≥νp(r)

(

∏

i≥0

gp(i)
ǫ
p,n,n(q−1)+r

i

)

,

B(n) =
∏

p|n,νp(nq)<νp(r)

(

f(pνp(r))

f(pνp(nq))

∏

i≥0

gp(i)
ǫ
p,n,n(q−1)+r

i

)

,

D(n) =
∏

p∤n

(

f(pνp(r))
∏

i≥0

gp(i)
ǫ
p,n−1,n(q−1)+r

i

)

,

gp(i) = f(pi+1)/f(pi).

Proof. Since f is divisible, f(pi) divides f(pi+1). In addition, since νp(nq) < νp(r) then
f(pνp(nq)) divides f(pνp(r)). The result then follows from Theorem 14.

The next few corollaries are the versions of Theorem 14 and Corollaries 15 and 16 for the
usual Catalan numbers.

Corollary 17. If f : N → N is multiplicative, then the f -Catalan number, given by Cf (n) =
1

f(n+ 1)

(

2n

n

)

f

, satisfies

Cf (n) = A(n)D(n),

where

A(n) =
∏

p|n

(

∏

i≥0

(

f(pi+1)

f(pi)

)ǫp,n,n
i

)

and D(n) =
∏

p∤n

(

∏

i≥0

(

f(pi+1)

f(pi)

)ǫp,n−1,n+1
i

)

.

Proof. The usual Catalan number is the case q = 2, r = 1, of the more general Fuss-Catalan
number. In this case, νp(r) = 0 for all primes p. Thus in Theorem 14 we have B(n) = 1. In
addition, if p divides n, then the base-p representation of n has a 0 in the ones place. Thus
ǫp,n,n+1
i = ǫp,n,ni in this case. The rest of the result follows directly from Theorem 14.

We also have a Kummer-like theorem for the Catalan numbers.

Corollary 18. If a prime p divides n, the exponent of the largest power of p dividing C(n)
is the number of carries occurring in the base-p sum of n with itself. Otherwise, the exponent

of the largest power of p dividing C(n) is the number of carries occurring in the base-p sum

of n− 1 and n+ 1. In other words,

νp (C(n)) =

{

κp(n, n), p|n;

κp(n− 1, n+ 1), p ∤ n.
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Proof. This follows from Corollary 15, with q = 2, r = 1. As in the proof of Corollary 17,
νp(r) = 0 for all primes p, and so the case νp(nq) < νp(r) does not occur. Also as in the
proof of Corollary 17, if p|n then ǫp,n,n+1

i = ǫp,n,ni for all i. Thus κp(n, n+ 1) = κp(n, n).

Finally, Corollary 16 implies that Cf (n) is an integer when f is multiplicative and divis-
ible.

Corollary 19. If f : N → N is both multiplicative and divisible, then Cf (n) is an integer

for all n. In this case we have

Cf (n) = A(n)D(n),

where

A(n) =
∏

p|n

(

∏

i≥0

gp(i)
ǫp,n,n
i

)

and D(n) =
∏

p∤n

(

∏

i≥0

gp(i)
ǫp,n−1,n+1
i

)

with gp(i) = f(pi+1)/f(pi).

Since Euler’s φ-function is both multiplicative and divisible, Corollary 19 answers in the
affirmative a question of Edgar [4] as to whether Cφ(n) is an integer for all n ≥ 0.

5 Ward’s divisor functions

As mentioned in the introduction, Ward [7] proves that a larger class of functions have
integer generalized binomial coefficients. We introduce that class of sequences here and
obtain formulas for the associated Fuss-Catalan numbers, which also turn out to be integers.
This class of sequences includes the multiplicative and divisible functions, but the formulas
in this section require knowledge of carries in every base less than or equal to n+m instead
of only those arising in prime base arithmetic. Consequently, the formulas here are not as
precise as the ones previously established.

For any sequence of integers s = (s1, s2, s3, . . .) define the function fs : N → N by

fs(n) =
∏

d|n

sd, (2)

where the product is over all divisors of n.

Theorem 20 (Ward). Let s be a sequence of nonzero integers with associated function fs.
For any nonnegative integers n and m we have

(

n+m

n

)

fs

=
∏

b>1

s
ǫb0
b , (3)

where ǫb0 = ǫb,n,m0 is the carry in the ones position.
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Proof. Fix b > 1. Then, the number of times that sb appears in
∏k

i=1 f(k) is equal to the
number of integers in {1, . . . , k} divisible by b, which is given by

⌊

k
b

⌋

. Hence, the number of
times sb appears in the quotient

(

n+m

n

)

f

=

∏n+m
i=1 f(i)

(
∏n

i=1 f(i)) (
∏m

i=1 f(i))

is given by
⌊

n+m
b

⌋

−
⌊

n
b

⌋

−
⌊

m
b

⌋

. Finally, a proof identical to the one given in Lemma 1 shows

that ǫb,n,m0 =
⌊

n+m
b

⌋

−
⌊

n
b

⌋

−
⌊

m
b

⌋

.

In particular, since carries are always 0 or 1, this theorem implies that such functions
fs always have integral generalized binomial coefficients. As previously mentioned, this
characterization requires arithmetic in all bases whereas our results in previous sections only
require arithmetic in prime bases.

Remark 21. Dyer [3] suggests using equation (3) as a definition of generalized binomial
coefficients. Doing so would allow one to define such coefficients for sequences in an arbitrary
ring, as well as allow for f(k) = 0 for some values of k.

Theorem 22. Let f be a multiplicative and divisible function. Then there exists an integer

sequence s such that f(n) =
∏

d|n sd for all n.

Proof. Since f is multiplicative, we must have f(1) = 1, so we let s1 = 1. Then for i > 1,
we define s as follows:

si =

{

f(pr)
f(pr−1)

, if i = pr (r > 0) for p prime;

1, otherwise.

Since f is divisible, si is an integer for all i. Next, by definition we get f(pr) = f(pr)
f(pr−1)

·
f(pr−1)
f(pr−2)

· · · f(p)
1

=
∏r

i=1 spi =
∏

d|pr sd. Then, since f is multiplicative and si = 1 when i is not

a prime power, we get that f(n) =
∏

d|n sd as required.

We note that there are multiplicative sequences for which no integer sequence exists
satisfying Condition (2). In addition, there are divisible sequences for which no integer
sequence exists satisfying Condition (2). Moreover, there are sequences satisfying Condition
(2) that are not multiplicative and divisible; Ball, et al. [1] describe a few examples of such
sequences, and some are listed in the appendix.

Similar to previous sections, we use Theorem 20 to demonstrate that the associated
Fuss-Catalan numbers are integers. Before doing this, we have the following lemma.

Lemma 23. Let n, r, q, b be integers with n ≥ 0, r ≥ 0, q > 0, and b > 1. If b divides

(nq + r) and b does not divide r, then ǫ
b,n(q−1)+r,n
0 = 1.
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Proof. We have that n = (n0, n1, . . . , nk)b, nq + r = (m0,m1, . . . ,ml)b, and n(q − 1) + r =
(l0, l1, . . . , lt)b. Since b divides nq + r, we have m0 = 0, and we know that n0 + l0 = m0

(mod b). Suppose, for the sake of contradiction, that ǫ
b,n(q−1)+r,n
0 = 0; this implies that

n0 = 0 and l0 = 0. Thus, b divides n and b divides n(q − 1) + r. In turn, we conclude that
b divides n(q − 1). The previous two statements imply that b divides r, contradicting our

main assumptions. Therefore, ǫ
b,n(q−1)+r,n
0 = 1 as required.

The integrality of fs-Fuss-Catalan numbers is now immediate from Theorem 20.

Theorem 24. Let s be a sequence of nonzero integers with associated function fs. Then

Afs(n, q, r) is an integer for all n. In particular we have

Afs(n, q, r) = G(n)H(n)J(n),

with

G(n) =
∏

b>1
b|r

b ∤ nq+r

s
1+ǫb0
b , H(n) =

∏

b>1
b ∤ r

b ∤ nq+r

s
ǫb0
b , J(n) =

∏

b>1
b|r

b|nq+r

s
ǫb0
b ,

where ǫb0 = ǫ
b,n(q−1)+r,n
0 .

Proof. When q = 0, the result is true by Theorem 20. Now by definition of fs and Theorem
20 we get

Afs(n, q, r) =
fs(r)

fs(nq + r)

(

nq + r

n

)

fs

=

∏

d|r sd
∏

d|nq+r sd
·
∏

b>1

s
ǫ
b,n(q−1)+r,n

0
b .

If either d|r and d|nq + r or d ∤ r and d ∤ nq + r then there is no contribution of sd from the

first fraction. On the other hand, if d|r and d ∤ nq+r, then we have a total of 1+ ǫ
d,n(q−1)+r,n
0

occurrences of sd in the product (not in the denominator). Finally, if d ∤ r and d|nq + r,

then by Lemma 23, we have ǫ
d,n(q−1)+r,n
0 = 1 and so there is an occurrence of sd in both the

numerator and the denominator, which cancel out.

In a similar fashion to Remark 21, we could take the characterization in Theorem 24 as
the definition of the fs-Fuss-Catalan numbers.

A Sequences with integer generalized binomial coeffi-

cients

The Online Encyclopedia of Integer sequences (OEIS) contains a wealth of examples of
multiplicative and divisible sequences that we consider in this paper as well as many examples
of sequences satisfying the property of Ward described in Section 5. In this appendix, we
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include a list of relevant examples of sequences. Moreover, every collection of generalized
binomial coefficients can be interpreted as a triangle, read by rows, where entry k in row n
is given by

(

n
k

)

f
. After the tables, we also describe a method for efficiently generating the

triangle of generalized binomial coefficients efficiently.
The following table lists interesting examples of multiplicative and divisible sequences

along with the OEIS number. Additionally, we have provided the listing of the associated
generalized binomial coefficients (typically read as a triangle by rows).

Name, Description, or
Formula

OEIS
Entry

Generalized
binomial
coefficients

Euler totient function (φ) A000010 A238453

Identity function A000027 A007318

Squares A000290 A008459

Cubes A000578 A181543

Dedekind psi function A001615 A238498

f(n) = nφ(n) A002618 A255914

Completely multiplicative, with f(p) = p− 1 A003958

Completely multiplicative with f(pk) = pk ·(k+1) A003961

If n =
∏

pekk then a(n) =
∏

(pk − 1)ek , a(1) = 1 A003958

If n =
∏

pekk then a(n) =
∏

(pk + 1)ek , a(1) = 1 A003959

Radical (largest squarefree number dividing n) A007947 A048804

n divided by the radical A003557 A246465

Largest square dividing n A008833

Number of solutions to x2 = 0 (mod n) A000188

Number of solutions to x2 = 1 (mod n) A060594

f(n) = n if n is odd, f(n) = 2n if n is even A022998

f(n) = n if n odd, n/2 if n even A026741 A214281

Unitary divisor function A034444

Number of squares dividing n A046951

Unitary totient function A047994
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Name, Description, or
Formula

OEIS
Entry

Generalized
binomial
coefficients

Unitary Jordan function J∗
2 (n) A191414

f(n) = n
∏

p|n p A064549

Multiplicative, with f(pk) = p− 1 A173557 A239702

Jordan function (J2) A007434 A238688

Jordan function (J3) A059376 A238743

Jordan function (J4) A059377 A238754

Jordan function (J5) A059378 A239633

Jordan function (J6) A069091 A255915

Jordan function (J7) A069092

Jordan function (J8) A069093

Jordan function (J9) A069094

Jordan function (J10) A069095

gcd2(n) A000034

gcd3(n) A109007

gcd4(n) A109008

gcd5(n) A109009

gcd6(n) A089128

gcd7(n) A109010

gcd8(n) A109011

Highest power of 2 dividing n A006519 A082907

Highest power of 3 dividing n A038500 A242849

Highest power of 5 dividing n A060904 A254609

Highest power of 7 dividing n

Highest power of 11 dividing n

Odd part of n A000265

Remove 3’s from n A038502

Largest divisor of n not divisible by 5 A132739

Largest divisor of n not divisible by 7 A242603

Replace primes factor of n by 2: a(n) = 2Ω(n) A061142

Completely multiplicative with f(p) = p# A108951

The following table lists sequences that have integral generalized binomial coefficients by
Theorem 20 but that are not multiplicative and divisible. Again we include their OEIS entry
and triangle of associated coefficients.
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Name, Description, or
Formula

OEIS
Entry

Generalized
binomial
coefficients

Fibonacci numbers A000045 A010048

Pell numbers A000129 A099927

Highest power of 4 dividing n A234957 A243756

Highest power of 6 dividing n A234959 A254730

Highest power of 8 dividing n

Highest power of 9 dividing n

Remove factors of 2 and 3 not contributing to 6 A214681

Remove factors of 2 not contributing to 4 A214682

Remove factors of 2, 3, 5 not contributing to 30 A214685

Denominators of even Bernoulli numbers A002445

Denominators of Bernoulli numbers (variant) A141056

We note that generating the triangle of generalized binomial coefficients using the defini-
tion is inefficient. However, it turns out that there is a relatively simple recurrence relation
that all generalized binomial coefficients satisfy (similar to Pascal’s identity for classical
binomial coefficients).

Theorem 25. Let f : N → N be a nonzero integer sequence, and let m,n ∈ N with n ≤ m.

Then
(

m

n

)

f

=
nf(m)

mf(n)

(

m− 1

n− 1

)

f

+
(m− n)f(m)

mf(m− n)

(

m− 1

n

)

f

.

Proof. This follows by definition since the right hand side is given by

nf(m)
∏m−1

i=1 f(i)

mf(n)
(
∏n−1

i=1 f(i)
) (
∏m−n

i=1 f(i)
) +

(m− n)f(m)
∏m−1

i=1 f(i)

mf(m− n) (
∏n

i=1 f(i))
(
∏m−n−1

i=1 f(i)
)

which simplifies to

n
∏m

i=1 f(i)

m (
∏n

i=1 f(i))
(
∏m−n

i=1 f(i)
) +

(m− n)
∏m

i=1 f(i)

m (
∏n

i=1 f(i))
(
∏m−n

i=1 f(i)
) .

The result now follows since n
m
+ m−n

m
= 1.

We note that the previous theorem is true for all integer sequences (not only those
considered in this paper). However, the results are typically not integral. Moreover, this

theorem cannot be used to prove integrality of the coefficients because the expressions nf(m)
mf(n)

and (m−n)f(m)
mf(m−n)

are rarely integral. Using this theorem does allow for efficient computation of
the triangle of generalized binomial coefficients, though.

19

http://oeis.org/A000045
http://oeis.org/A010048
http://oeis.org/A000129
http://oeis.org/A099927
http://oeis.org/A234957
http://oeis.org/A243756
http://oeis.org/A234959
http://oeis.org/A254730
http://oeis.org/A214681
http://oeis.org/A214682
http://oeis.org/A214685
http://oeis.org/A002445
http://oeis.org/A141056


Finally, the result in the previous theorem may be concisely given by the relation

m

f(m)

(

m

n

)

f

=
n

f(n)

(

m− 1

n− 1

)

f

+
m− n

f(m− n)

(

m− 1

n

)

f

.
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