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Abstract

We present a method for the enumeration of restricted words over a finite alphabet.

Restrictions are described through the inclusion or exclusion of suitable building blocks

used to construct the words by concatenation. Our approach, which relies on the

invert transform and its representation in terms of partial Bell polynomials, allows us

to generalize and address in a systematic manner previous results in the subject.

1 Introduction

Motivated by a recent paper of Janjić [7], we examine the problem of enumerating words over
a finite alphabet using the invert transform, partial Bell polynomials, and building blocks
that allow us to effectively manage a wide variety of restrictions.
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Recall that, given a sequence x = (xn), its invert transform Y (x) = (yn) is defined by

1 +
∞
∑

n=1

ynt
n =

1

1−
∞
∑

n=1

xntn
,

see, e.g., the paper by Cameron [5], and the work by Bernstein and Sloane [2]. In short, if
X(t) =

∑∞
n=1 xnt

n and Y (t) =
∑∞

n=1 ynt
n, then

1 + Y (t) =
1

1−X(t)
, and so Y (t) =

X(t)

1−X(t)
.

This map is clearly invertible on the space of linear recurrence sequences with constant
coefficients, and we have Y m(x) = 1

m
Y (mx) for every m ∈ N. Indeed, inductively, if Ym(t)

denotes the generating function of Y m(x), then

Ym(t) =
Ym−1(t)

1− Ym−1(t)
=

X(t)
1−(m−1)X(t)

1− X(t)
1−(m−1)X(t)

=
X(t)

1−mX(t)
.

The following statement is straightforward.

Lemma 1. For b ∈ N, the invert transform of xn = bn−1 is given by yn = (b+ 1)n−1. Thus
for n > 1, yn counts the number of words of length n − 1 over the alphabet {0, 1, . . . , b}.
Moreover, by applying the invert transform m times, we get that Y m(x) counts the words
over the alphabet {0, 1, . . . , b+m− 1}.

Corollary 2. Let x = (xn) be a sequence of nonnegative integers. If xn ≤ bn−1 for all n ∈ N,
then the elements of Y m(x) count some restricted words over the alphabet {0, 1, . . . , b+m−1}.

This is clear since, if xn ≤ wn for every n, then
(

1−
∞
∑

n=1

xnt
n
)−1

≤
(

1−
∞
∑

n=1

wnt
n
)−1

.

For b = 1, several families of restricted words were considered by Janjić in [7, Prop. 20].
Consistent with op. cit., we let fm denote the m-th invert transform of a given sequence
f0, i.e., fm = Y m(f0). In [7, Corollary 24, 28, and 33], Janjić discussed three examples in
which f0 is a binary sequence. He posted the problem of finding, for an arbitrary sequence
f0, either a recurrence or an explicit formula for fm(n) in terms of m and n, together with a
description of the set of restricted words over the alphabet {0, 1, . . . ,m} counted by fm(n).
He also discussed two instances in which the sequence f0 is not binary but satisfies a second
order linear recurrence relation. For all these examples, Janjić gives recurrence relations for
fm obtained from the recurrence relation satisfied by f0.

In this paper, we present a somewhat different method for the enumeration of restricted
words that may be applied to a wide class of restrictions, see Section 2. Our approach relies
on a family of building blocks that we utilize to construct words by concatenation, and on
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a representation of the invert transform in terms of partial Bell polynomials. We discuss
several binary and nonbinary examples (Sections 3 and 4, respectively) and shed some light
on the examples considered by Janjić [7]. For all of the examples discussed here, we give
closed combinatorial expressions.

We finish the introduction by recalling that, by means of Faà di Bruno’s formula, the
invert transform can be written in terms of partial Bell polynomials, see e.g. [4]. Indeed, if
(yn) is the invert transform of x = (xn), then

yn =
n
∑

k=1

k!

n!
Bn,k(1!x1, 2!x2, . . . ) for n ≥ 1, (1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(z1, . . . , zn−k+1) =
∑

α∈π(n,k)

n!

α1!α2! · · ·αn−k+1!

(z1

1!

)α1

· · ·

(

zn−k+1

(n− k + 1)!

)αn−k+1

with π(n, k) denoting the set of multi-indices α ∈ N
n−k+1
0 such that α1 + α2 + · · · = k

and α1 + 2α2 + 3α3 + · · · = n. For the basic properties of these polynomials, we refer to
Comtet’s book [6, Section 3.3]. A large collection of Bell identities and convolution formulas
is available throughout the literature, see e.g. [1, 3, 9].

From its definition, it is clear that Bn,k is homogeneous of degree k:

Bn,k(az1, . . . , azn−k+1) = akBn,k(z1, . . . , zn−k+1).

Thus, since Y m(x) = 1
m

Y (mx) for every m ∈ N, we get from (1) that the terms ym,n of the
m-th invert transform of x = (xn) can be written as

ym,n =
n
∑

k=1

k!

n!
mk−1Bn,k(1!x1, 2!x2, . . . ) for n ≥ 1.

As we will illustrate in the next sections, this representation of Y m provides an effective
tool to enumerate restricted words and leads to interesting combinatorial formulas.

2 Restricted words

For a fixed b ∈ N we consider the following family of building blocks:

Let Wb(j) be the set of words of length j, starting with b, followed by j−1 letters
from the alphabet {0, 1, . . . , b− 1}.

Observe that |Wb(j)| = bj−1. Moreover, any word of length n over the alphabet {0, 1, . . . , b},
starting with b, can be made by unique concatenation of blocks in Wb(j) for j = 1, . . . , n.

Given b ∈ N and a sequence f0 of nonnegative integers, let {Uj} be a fixed sequence of
subsets Uj ⊆ Wb(j) such that |Uj| = f0(j) for j = 1, 2, . . . , and let
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Ub,n(f0) be the set of words of length n over the alphabet {0, 1, . . . , b}, starting
with b, made by concatenation of blocks from Uj for j = 1, . . . , n. If f0(j) = 0,
no block from Uj is used.

Theorem 3. Let f0 be a sequence of nonnegative integers such that f0(j) ≤ bj−1 for every
j ∈ N and some b ∈ N. Then the sequence

f1(1) = 1, f1(n) =
n
∑

k=1

k!

n!
Bn,k(1!f0(1), 2!f0(2), . . . ),

counts the number of words in Ub,n(f0). Moreover, each term k!
n!
Bn,k(1!f0(1), 2!f0(2), . . . )

counts the number of such words made with exactly k blocks.

Proof. By definition, every word in Ub,n(f0) can be written as a unique concatenation of
blocks from a subset of Wb(j) with f0(j) elements for j = 1, . . . , n. Any of these words must
start with a block from Wb(j) for some j, followed by a word in Ub,n−j(f0). Thus we have
the recurrence relation

f1(n) =
n
∑

j=1

f0(j)f1(n− j) with f1(0) = 1,

which at the level of generating functions implies

1 +
∞
∑

n=1

f1(n)t
n =

1

1−
∞
∑

n=1

f0(n)tn
.

In other words, the sequence f1 is the invert transform of f0, which as discussed in the
introduction, can be written in terms of partial Bell polynomials, as claimed. Finally, the
statement about the number of words made with exactly k blocks is a direct consequence of
the definition of the partial Bell polynomials.

The case of binary building blocks (b = 1) will be discussed with more details in the next
section, and the importance of greater values of b will be illustrated in Section 4.

Remark 4. We will choose b based on the type of restricted words we are interested in
counting, not on the size of the alphabet. Once b is fixed, we can enlarge the alphabet by
repeatedly applying the invert transform.

Given b ∈ N and a sequence f0 of nonnegative integers, let {Uj} be a fixed sequence of
subsets Uj ⊆ Wb(j) such that |Uj| = f0(j) for j = 1, 2, . . . . Every word in Uj has length j

and starts with b followed by j − 1 letters from the alphabet {0, 1, . . . , b − 1}. If we allow
the character b to be replaced by any element of the set {b, . . . , b+m− 1} for m ∈ N, then
every word in Uj generates m words over the alphabet {0, 1, . . . , b +m − 1}. Thus each Uj

gives rise to a set of words of length j, call it Um
j , such that |Um

j | = m · |Uj|. We let
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U m
b,n(f0) be the set of words of length n over the alphabet {0, 1, . . . , b +m− 1},

starting with b, made by concatenation of blocks from Um
j for j = 1, . . . , n. If

f0(j) = 0, no block from Um
j is used.

Corollary 5. Let f0 be a sequence of nonnegative integers such that f0(j) ≤ bj−1 for every
j ∈ N and some b ∈ N. For m ∈ N, the sequence

fm(1) = 1, fm(n) =
n
∑

k=1

k!

n!
mk−1Bn,k(1!f0(1), 2!f0(2), . . . ),

counts the number of words in U m
b,n(f0). Note that fm is the m-th invert transform of f0.

Proof. By Theorem 3, the expression k!
n!
Bn,k(1!f0(1), 2!f0(2), . . . ) counts the number of words

in Ub,n(f0) of the form wj1 · · ·wjk , where each wji is a subword in Uji for i = 1, . . . , k. If each
of the subwords wj2 , . . . , wjk is allowed to be replaced by any of the corresponding m blocks
in Um

j2
, . . . , Um

jk
, respectively, we obtain k!

n!
mk−1Bn,k(1!f0(1), 2!f0(2), . . . ) words in U m

b,n(f0).
Note that every word in U m

b,n(f0) can be constructed in this manner.
Adding over k from 1 to n, we obtain the total number of elements of U m

b,n(f0).

3 Restricted words of binary type

For b = 1, the building blocks in Wb(j) are words of the form 10 · · · 0 with j−1 zeros. Then,
for m ∈ N and a given binary sequence f0, the set

U m
1,n(f0) consists of words of length n over the alphabet {0, 1, . . . ,m}, starting

with 1, made by concatenating blocks of the form k 0 · · · 0 with j − 1 zeros,
k ∈ {1, . . . ,m}, where blocks of length j are used only if f0(j) = 1.

For example, if f0 is the sequence 1, 0, 1, 1, 0, 0, . . . , then the elements of U 2
1,5(f0) are words of

length 5 over the alphabet {0, 1, 2}, starting with 1, made by using only the building blocks
of length 1, 3, and 4:

1, 2 ∈ U2
1 , 100, 200 ∈ U2

3 , and 1000, 2000 ∈ U2
4 .

Moreover, the set U 2
1,5(f0) consists of 32 such words:

11111, 11112, 11121, 11211, 12111,
11122, 11212, 11221, 12112, 12121, 12211,
11222, 12122, 12212, 12221, 12222,
10011, 10012, 10021, 10022, 11001, 11002, 12001, 12002,
11100, 11200, 12100, 12200, 10001, 10002, 11000, 12000.
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Observe that the block restrictions given through the sequence f0 carry over to the words
in U m

1,n(f0). For instance, in the above example, the sequence f0 induces the restrictions that
U 2

1,5(f0) contains no words with an isolated zero (f0(2) = 0) and no words with more than
three consecutive zeros (f0(j) = 0 for j ≥ 5).

Remark 6. By treating the first 1 as a dummy character, we get a natural bijection between
U m

1,n+1(f0) and the set of all words of length n with the restrictions determined by f0.

We proceed to illustrate the results from Section 2 with a few examples. In the remaining
part of this section, we will freely use some basic properties of partial Bell polynomials found
in Comtet’s book [6, Section 3.3]. More intricate identities will be proved in the Appendix.

Example 7 (cf. [7, Cor. 33]). Suppose we wish to count the number of words of length n over
the alphabet {0, 1, . . . ,m} avoiding runs of ℓ zeros, ℓ ≥ 1. This can be done by computing
fm(n+ 1) =

∣

∣U m
1,n+1(f0)

∣

∣ with

f0(j) =

{

1, if 1 ≤ j ≤ ℓ;

0, otherwise.

By Corollary 5, we have

fm(n+ 1) =
n+1
∑

k=1

k!

(n+ 1)!
mk−1Bn+1,k(1!, 2!, . . . , ℓ!, 0, . . . ).

By Identity 1 in the Appendix, we have

Bn+1,k(1!, 2!, . . . , ℓ!, 0, . . . ) =
(n+ 1)!

k!

⌊n+1−k

ℓ
⌋

∑

j=0

(−1)j
(

k

j

)(

n− ℓj

k − 1

)

,

and therefore,

fm(n+ 1) =
n+1
∑

k=1

⌊n+1−k

ℓ
⌋

∑

j=0

(−1)j
(

k

j

)(

n− ℓj

k − 1

)

mk−1.

For various values of ℓ and m, this gives the sequences A000045, A028859, A125145,
A086347, A180033, A000073, A119826, A000078, A209239, A000322 in Sloane [8].

Example 8 (cf. [7, Cor. 28]). Consider words of length n over the alphabet {0, 1, . . . ,m}
avoiding runs of zeros of odd length. By adding a 1 to the left of each of these words, we
obtain the set U m

1,n+1(f0) with

f0(j) =

{

1, if j is odd;

0, if j is even.
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In this case, fm(n+ 1) =
∣

∣U m
1,n+1(f0)

∣

∣ is given by

fm(n+ 1) =
n+1
∑

k=1

k!

(n+ 1)!
mk−1Bn+1,k(1!, 0, 3!, 0, 5!, . . . ).

It is easy to see that Bn+1,k(1!, 0, 3!, 0, 5!, . . . ) = 0 unless n+ 1 + k is even. Moreover,

Bn+1,k(1!, 0, 3!, 0, 5!, 0, . . . ) =
(n+ 1)!

(n+ 1− k)!
Bn+1−k,k(0, 2!, 0, 4!, 0, . . . )

=
(n+ 1)!

(n+k+1
2

)!
Bn+k+1

2
,k(1!, 2!, 3!, . . . ) =

(n+ 1)!

k!

(

n+k−1
2

k − 1

)

.

Hence the number of elements in U m
1,n+1(f0) is given by

fm(n+ 1) =
∑

1≤k≤n+1
n+k+1≡ 0 (mod 2)

(

n+k−1
2

k − 1

)

mk−1 =

⌊n

2
⌋

∑

k=0

(

n− k

k

)

mn−2k.

For m = 1, . . . , 10, this gives the sequences A000045, A000129, A006190, A001076,
A052918, A005668, A054413, A041025, A099371, A041041 in Sloane [8].

Example 9. For ℓ ∈ N let

f0(j) =

{

0, if j ≤ ℓ;

1, otherwise.

Then the sequence

fm(n) =
n
∑

k=1

k!

n!
mk−1 Bn,k(0, . . . , 0, (ℓ+ 1)!, (ℓ+ 2)!, . . . )

counts the number of words of length n over the alphabet {0, 1, . . . ,m}, starting with 1, such
that every nonzero element is followed by at least ℓ zeros.

Since

Bn,k(0, . . . , 0, (ℓ+ 1)!, (ℓ+ 2)!, . . . ) =
n!

(n− ℓk)!
Bn−ℓk,k(1!, 2! . . . ) for ℓk < n,

and since Bn−ℓk,k(1!, 2!, . . . ) =
(n−ℓk)!

k!

(

n−ℓk−1
k−1

)

, we get

k!

n!
Bn,k(0, . . . , 0, (ℓ+ 1)!, (ℓ+ 2)!, . . . ) =

(

n− ℓk − 1

k − 1

)

for ℓk < n.

Note that Bn,k(0, . . . , 0, (ℓ+ 1)!, (ℓ+ 2)!, . . . ) = 0 for ℓk ≥ n. Thus we arrive at

fm(n) =

⌊n−1

ℓ
⌋

∑

k=1

(

n− ℓk − 1

k − 1

)

mk−1.
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In this case, all words in U m
1,n(f0) for n ≥ 2ℓ + 1 start with a 1 followed by at least ℓ

zeros, and end with ℓ zeros. By removing these 2ℓ + 1 common characters, we get words of
length n− 2ℓ− 1 such that every nonzero element not in the last position is followed by at
least ℓ zeros. In conclusion, the number

fm(n+ 2ℓ+ 1) =

⌊n+2ℓ

ℓ
⌋

∑

k=1

(

n− ℓ(k − 2)

k − 1

)

mk−1

counts the number of words of length n over the alphabet {0, 1, . . . ,m} having at least ℓ

zeros between any two nonzero elements.
For ℓ = 1 this example was discussed by Janjić [7, Cor. 24], and for ℓ = 2 and m = 1,

the sequence f1(n+ 3) gives the Narayana cows sequence, A000930 in Sloane [8]. For ℓ = 2
and m = 2, . . . , 4, we get the sequences A003229, A084386, A089977. Other values of ℓ and
m lead to: A003269, A052942, A143454, A003520, A143447, A143455, A005708.

We finish the section with a couple of more elaborate examples.

Example 10. Let

f0(j) =

{

1, if j = 1 or j = ℓ+ 1;

0, otherwise.

The sequence fm(n + 1) =
∣

∣U m
1,n+1(f0)

∣

∣ counts the number of words of length n over the
alphabet {0, 1, . . . ,m} containing zeros only in substrings of length ℓ. By Corollary 5,

fm(n+ 1) =
n+1
∑

k=1

k!

(n+ 1)!
mk−1Bn+1,k(1!, 0, . . . , (ℓ+ 1)!, 0 . . . ).

By Identity 2 in the Appendix, we have

Bn,k(1!, 0, . . . , (ℓ+ 1)!, 0 . . . ) =

(

n

n− k + n−k
ℓ

)

(n− k)!

(n−k
ℓ
)!

for n− k ≡ 0 (mod ℓ),

and therefore,

fm(n+ 1) =
∑

1≤k≤n+1
n+1−k≡ 0 (mod ℓ)

k!

(n+ 1)!
mk−1

(

n+ 1

n+ 1− k + n+1−k
ℓ

)

(n+ 1− k)!

(n+1−k
ℓ

)!
.

Writing n+ 1 = qℓ+ r with 0 ≤ r < ℓ, we obtain

fm(n+ 1) =
∑

1≤k≤n+1
n+1−k≡ 0 (mod ℓ)

k!

(qℓ+ r)!
mk−1

(

qℓ+ r

qℓ+ r − k + qℓ+r−k

ℓ

)

(qℓ+ r − k)!

( qℓ+r−k

ℓ
)!

=

q
∑

i=0

(ℓi+ r)!

(qℓ+ r)!
mℓi+r−1

(

qℓ+ r

(ℓ+ 1)(q − i)

)

((ℓ+ 1)(q − i))!

(q − i)!
=

q
∑

i=0

(

ℓi+ r

q − i

)

mℓi+r−1.
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In conclusion, the number of words of length n over the alphabet {0, 1, . . . ,m} containing
zeros only in substrings of length ℓ, is given by

fm(n+ 1) =

⌊n+1

ℓ
⌋

∑

i=0

(

n+ 1− ℓi

i

)

mn−ℓi.

For ℓ = 2 and m = 1, . . . , 6, this gives the sequences A068921, A255115, A255116,
A255117, A255118, A255119 in Sloane [8]. And for m = 1 and ℓ = 3, . . . , 7, we get A003269,
A003520, A005708, A005709, A005710.

Example 11. For ℓ ∈ N let

f0(j) =

{

0, if j = ℓ+ 1;

1, otherwise.

Then the sequence

fm(n+ 1) =
n+1
∑

k=1

k!

(n+ 1)!
mk−1Bn+1,k(1!, . . . , ℓ!, 0, (ℓ+ 2)!, (ℓ+ 3)!, . . . )

counts the number of words of length n over the alphabet {0, 1, . . . ,m} avoiding runs of
exactly ℓ zeros. By means of Identity 3 in the Appendix, the partial Bell polynomials can
be written as

Bn+1,k(1!, . . . , ℓ!, 0, (ℓ+ 2)!, (ℓ+ 3)!, . . . )

=
(n+ 1)!

k!

(

∑

κ<k

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ

k − κ− 1

)

+ (−1)kδn+1,(ℓ+1)k

)

,

where δn+1,(ℓ+1)k is the Kronecker delta function. Thus

fm(n+ 1) =
n+1
∑

k=1

(

∑

κ<k

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ

k − κ− 1

)

+ (−1)kδn+1,(ℓ+1)k

)

mk−1.

If n+ 1 = (ℓ+ 1)q, then

fm(n+ 1) = (−1)qmq−1 +

q−1
∑

κ=0

n+1−ℓκ
∑

k=κ+1

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ

k − κ− 1

)

mk−1,

and if n+ 1 6≡ 0 modulo (ℓ+ 1), then

fm(n+ 1) =

⌊n+1

ℓ+1
⌋

∑

κ=0

n+1−ℓκ
∑

k=κ+1

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ

k − κ− 1

)

mk−1.

For various values of ℓ and m, this gives the sequences A005251, A120925, A255813,
A255814, A255815, A049856, A108758 in Sloane [8].
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4 Further (nonbinary) examples

In [7, Corollary 37], Janjić discusses 01-avoiding words over a finite alphabet by considering
the m-th invert transform of the sequence f0(j) = j for j ∈ N. He verifies that fm satisfies
the same recurrence relation as the sequence counting such words, but there is no other
indication of how this f0 is combinatorially related to the given restriction.

In this section, we will use our results from Section 2 to shed some light on the counting of
01-avoiding words and will discuss examples that lead to the invert transform of the triangle
numbers and other more general figurate numbers.

Example 12 (cf. [7, Cor. 37]). We start by considering words of length n over the alphabet
{0, 1, 2}, starting with 2, that avoid the pattern 01. With the terminology from Section 2,
this can be done with blocks in Wb(j) with b = 2 and j = 1, . . . , n. For example, for
j = 1, . . . , 4, we have the building blocks

W2(1) W2(2) W2(3) W2(4)

2 20 200 2000
21 201 2001

210 2010
211 2011

2100
2101
2110
2111

and the colored blocks are the ones we wish to avoid. Observe that, once these building
blocks are removed, every word made by concatenation of the remaining blocks will be a
word that starts with 2 and avoids the subword 01. Also note that the building blocks
avoiding 01 are precisely those where the digits are in nonincreasing order.

Let Uj be the subset of W2(j) consisting of the j building blocks whose digits are in
nonincreasing order. With this choice, the number of 01-avoiding words of length n, starting
with 2, is equal to the number of elements in U2,n(f0) with f0 given by f0(j) = j for
j = 1, 2, . . . , recall the definition before Theorem 3. By removing the starting digit 2 from
each word in U2,n(f0), we get a natural bijection to the set of 01-avoiding words of length
n− 1 over the alphabet {0, 1, 2}.

The number of such words is then counted by the invert transform of f0, see Theorem 3.
Moreover, the set U m

2,n(f0) for m ≥ 1 contains all 01-avoiding words of length n, starting
with 2, over the larger alphabet {0, 1, . . . ,m+1}. If fm(n) = |U m

2,n(f0)|, Corollary 5 together
with Identity 4 with r = 0 (see Appendix) give

fm(n) =
n
∑

k=1

k!

n!
mk−1Bn,k(1! · 1, 2! · 2, 3! · 3, . . . ) =

n
∑

k=1

(

n+ k − 1

n− k

)

mk−1 for n > 1.
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In conclusion, if f0(j) = j for j ∈ N, then for n > 1 the number of 01-avoiding words of
length n− 1 over the alphabet {0, 1, . . . ,m+ 1} is given by

fm(n) =
n
∑

k=1

(

n+ k − 1

n− k

)

mk−1.

For m = 1, . . . , 10, this gives the sequences A001906, A001353, A004254, A001109,
A004187, A001090, A018913, A004189, A004190, A004191 in Sloane [8].

Corollary 13. It was noted in [7, Corollary 37] that the above sequence fm(n) coincides with
Un−1(

m+2
2

), where Un is the n-th Chebyshev polynomial of the second kind. As a consequence,
we obtain the identity:

Un(
x+2
2
) =

n
∑

k=0

(

n+ k + 1

n− k

)

xk.

Example 14. Following the idea of the last example, we now let b = 3 and let Uj be the
building blocks in W3(j) whose digits are in nonincreasing order. For instance, out of the 9
blocks in W3(3):

300 301 302 310 311 312 320 321 322

there are 3 blocks that do not satisfy the restriction, so U3 has only 6 elements. In general,
for every j ∈ N there are

(

j+1
2

)

such blocks, and they are precisely the building blocks

that avoid the patterns 01, 02, and 12. Thus with f0(j) =
(

j+1
2

)

and Uj as above, the
set U3,n(f0) consists of words of length n over the alphabet {0, 1, 2, 3}, starting with 3, and
avoiding the patterns 01, 02, and 12. Moreover, as discussed in Section 2, the set U m

3,n(f0) for
m ≥ 1 consists of words over the alphabet {0, 1, . . . ,m+ 2}, starting with 3, with the same
restrictions as the words in U3,n(f0). Note that U m

3,n(f0) has the same number of elements
as the set of words of length n− 1 over {0, 1, . . . ,m+ 2}, avoiding 01, 02, and 12.

Finally, by means of Corollary 5 and Identity 4 with r = 1 (see Appendix), we conclude
that for n > 1 the sequence

fm(n) =
n
∑

k=1

k!

n!
mk−1Bn,k(1!

(

2
2

)

, 2!
(

3
2

)

, 3!
(

4
2

)

, . . . ) =
n
∑

k=1

(

n+ 2k − 1

n− k

)

mk−1

gives the number of words of length n− 1 over the alphabet {0, 1, . . . ,m+ 2}, avoiding the
patterns 01, 02, and 12.

For m = 1, 2, we get the sequences A052529 and A200676 in Sloane [8].

Remark 15. In each of the previous two examples, f0 is of the form f0(j) =
(

j+r

r+1

)

for r ≥ 0.
Example 12 corresponds to r = 0 and Example 14 is the case when r = 1. Choosing b = r+1
for the construction of U m

b,n(f0), and choosing building blocks with a nonincreasing restriction
on its digits, one gets words that avoid certain patterns.
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Example 16. Let r ∈ N and f0(j) =
(

j+r

r+1

)

for j ≥ 1. Then for n > 1, fm(n) = |U m
r+1,n(f0)|

counts the number of words of length n− 1 over the alphabet {0, 1, . . . ,m+ r+1}, avoiding
all patterns of the form a1a2 with a1, a2 ∈ {0, . . . , r + 1} and a1 < a2. Applying Corollary 5
together with Identity 4 from the Appendix, we then get

fm(n) =
n
∑

k=1

(

n+ (r + 1)k − 1

n− k

)

mk−1.

For m = 1 and r = 2, . . . , 5, this gives the sequences A055991, A079675, A099242,
A099253 in Sloane [8].

We finish this section by revisiting another example considered by Janjić [7, Cor. 41].
While our final formula does not seem to give information that could have not been obtained
from the recurrence relation given in [7], the goal here is to provide more combinatorial insight
and to illustrate the versatility of the building block approach introduced in Section 2.

Example 17 (cf. [7, Cor. 41]). For q ∈ N consider the set of ii-avoiding words of length n

over the alphabet {0, 1, . . . , q} for i ∈ {0, 1, . . . , q − 1}. This set of words can be completely
described with building blocks inWq(j) for j = 1, . . . , n+1. The elements ofWq(j) are strings
of length j, starting with q, followed by j − 1 letters from the alphabet {0, 1, . . . , q − 1}.
Clearly, there is only one word in Wq(1), and there are q words in Wq(2), q0, q1, . . . , q(q−1),
none of which is of the form ii. Moreover, for j > 2 there are exactly q · (q−1)j−2 ii-avoiding
words in Wq(j). Thus, if f0 is defined by

f0(j) =

{

1, if j = 1;

q(q − 1)j−2, if j ≥ 2;

then, by Theorem 3, the sequence f1(n + 1) =
∑n+1

k=1
k!

(n+1)!
Bn+1,k(1!f0(1), 2!f0(2), . . . ) gives

the number of ii-avoiding words of length n over {0, 1, . . . , q} for 0 ≤ i < q.
As before, Corollary 5 gives a corresponding formula for the m-th invert transform, but

before we work it out, let us simplify the partial Bell polynomial:

Bn+1,k(1!f0(1), 2!f0(2), . . . ) = Bn+1,k(1!, 2!q, 3!q(q − 1), 4!q(q − 1)2, . . . )

=
k
∑

ℓ=0

(n+ 1)!

(n+ 1− k)!ℓ!
Bn+1−k,k−ℓ(q, 2!q(q − 1), 3!q(q − 1)2, . . . )

=
k
∑

ℓ=0

(n+ 1)!

(n+ 1− k)!ℓ!
qk−ℓ(q − 1)n+1+ℓ−2kBn+1−k,k−ℓ(1!, 2!, . . . ),

which for k ≤ n implies

k!

(n+ 1)!
Bn+1,k(1!f0(1), 2!f0(2), . . . ) =

k−1
∑

ℓ=0

(

k

ℓ

)(

n− k

k − ℓ− 1

)

qk−ℓ(q − 1)n+1+ℓ−2k.
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Finally, by Corollary 5, we conclude that the number of ii-avoiding words of length n over
the alphabet {0, 1, . . . , q +m− 1} for i ∈ {0, 1, . . . , q − 1}, is given by

fm(n+ 1) = mn +
n
∑

k=1

k−1
∑

ℓ=0

(

k

ℓ

)(

n− k

k − ℓ− 1

)

qk−ℓ(q − 1)n+1+ℓ−2kmk−1.

For various values of m and q, this formula leads to the sequences A000045, A001333,
A055099, A123347, A180035 in Sloane [8].

5 Appendix: Bell polynomial identities

Identity 1. For ℓ ∈ N we have

Bn,k(1!, 2!, . . . , ℓ!, 0, . . . ) =
n!

k!

⌊n−k

ℓ
⌋

∑

j=0

(−1)j
(

k

j

)(

n− ℓj − 1

k − 1

)

.

A proof of this identity can be found in [1, Theorem 4.1 combined with Theorem 2.1].

Identity 2. For ℓ ∈ N with ℓ > 1, we have

Bn,k(1!, 0, . . . , (ℓ+ 1)!, 0 . . . ) =

(

n

n− k + n−k
ℓ

)

(n− k)!

(n−k
ℓ
)!

whenever n− k ≡ 0 (mod ℓ).

Proof. Using [6, Eqs. (3n) and (3n’), Section 3.3], we have

Bn,k(1!, 0, . . . , (ℓ+ 1)!, 0 . . . ) =
k
∑

κ=0

n
∑

ν=κ

(

n

ν

)

Bν,κ(0 . . . , (ℓ+ 1)!, 0 . . . )Bn−ν,k−κ(1, 0, 0, . . . )

=
k
∑

κ=0

(

n

n− k + κ

)

Bn−k+κ,κ(0 . . . , (ℓ+ 1)!, 0 . . . )

=

(

n

n− k + n−k
ℓ

)

(n− k)!

(n−k
ℓ
)!

for n− k ≡ 0 (mod ℓ).

Identity 3. For ℓ ∈ N,

Bn,k(1!, . . . , ℓ!, 0, (ℓ+ 2)!, (ℓ+ 3)!, . . . )

=
n!

k!

(

k−1
∑

κ=0

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ− 1

k − κ− 1

)

+ (−1)kδn,(ℓ+1)k

)

,

where δn,(ℓ+1)k is the Kronecker delta function.
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Proof. Let x̄ℓ, ēℓ, and x̄ be defined as

x̄ℓ = (1!, . . . , ℓ!, 0, (ℓ+ 2)!, . . . ), ēℓ = (0, . . . , 0, (ℓ+ 1)!, 0, . . . ), and x̄ = ēℓ + x̄ℓ.

By means of [6, Eqs. (3n) and (3n’), Section 3.3], we then have

Bn,k(x̄ℓ) =
∑

κ≤k, ν≤n

(

n

ν

)

Bν,κ(−ēℓ)Bn−ν,k−κ(x̄)

=
∑

κ≤k

(

n

(ℓ+ 1)κ

)

((ℓ+ 1)κ)!

κ!
(−1)κBn−(ℓ+1)κ,k−κ(x̄)

=
n!

k!

k−1
∑

κ=0

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ− 1

k − κ− 1

)

+ (−1)k
n!

k!(n− (ℓ+ 1)k)!
Bn−(ℓ+1)κ,0(x̄)

=
n!

k!

(

k−1
∑

κ=0

(−1)κ
(

k

κ

)(

n− (ℓ+ 1)κ− 1

k − κ− 1

)

+ (−1)kδn,(ℓ+1)k

)

.

Identity 4. For r ≥ 0 let tj(r) =
(

j+r

r+1

)

. Then

Bn,k(1!t1(r), 2!t2(r), · · · ) =
n!

k!

(

n+ (r + 1)k − 1

n− k

)

.

Proof. For k = 1 and all n we have

Bn,1(1!t1(r), 2!t2(r), · · · ) =
n!

1!

(

n+ r

r + 1

)

=
n!

1!

(

n+ r

n− 1

)

.

Now we proceed by induction on k. For k > 1,

Bn,k(1!t1(r), 2!t2(r), · · · ) =
1

k

n
∑

j=0

(

n

j

)

j!

(

j + r

r + 1

)

Bn−j,k−1(1!t1(r), 2!t2(r), 3!t3(r), · · · )

=
1

k

n
∑

j=1

(

n

j

)

j!

(

j + r

r + 1

)

(n− j)!

(k − 1)!

(

n− j + (r + 1)(k − 1)− 1

n− j − k + 1

)

=
n!

k!

n−k+1
∑

j=1

(

j + r

j − 1

)(

n− j + (r + 1)(k − 1)− 1

n− j − k + 1

)

=
n!

k!

n−k
∑

j=0

(

j + r + 1

j

)(

n− j + (r + 1)(k − 1)− 2

n− k − j

)

=
n!

k!

n−k
∑

j=0

(−1)n−k

(

−r − 2

j

)(

−(r + 1)(k − 1)− k + 1

n− k − j

)

.
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Using Chu-Vandermonde’s identity, we arrive at

Bn,k(1!t1(r), 2!t2(r), · · · ) = (−1)n−kn!

k!

(

−(r + 1)k − k

n− k

)

=
n!

k!

(

n+ (r + 1)k − 1

n− k

)

.
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