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Abstract

In this paper we investigate two somewhat similar identities for sums of ratios of

binomial coefficients. We give several proofs, and note that the identities all follow

from a hypergeometric identity of Gauss. Inverse identities are also given.

1 Introduction

Klamkin [3] stated the following identity in a letter to Gould in 1966:

n
∑

k=0

(

n

k

)

(

n+a

k+b

) =
a+ 1 + n

(a+ 1)
(

a

b

) (1)

Identity (4.6) in Gould’s book [2] is a special case of this, corresponding to a = 2x and b = x.
Frisch [1], in his dissertation in 1926, gave the curious formula
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This was cited and proved by Netto [4, pp. 337–338] and is tabulated as Formula (4.2) in
Gould’s book [2].

(It is interesting to note that Frisch’s research laid the foundations for modern econo-
metrics theory and micro- and macro-economics, work for which he later received the Nobel
Prize.)

Klamkin’s identity is actually a special case of the identity
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Here is how we obtain Eq. (3). Let tk =
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Therefore,
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Applying Gauss’s 2F1 formula, namely,
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In this proof we assumed that n ≥ 2. If n = 0, Eq. (1) is obviously true, while if n = 1,
we obtain easily verified identity
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2 Proof of Klamkin’s and Frisch’s formulas

We shall now prove Klamkin’s formula directly from Formula (7.1) in Gould [2], namely
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and the easy binomial identity
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Indeed, using these we have
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by Formula (7.1), and our proof is complete. We remark that Formula (7.1) is equivalent to
using the Gauss 2F1 formula.

Simple binomial inversion yields the inverse Klamkin identity
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We now proceed in a similar way to prove Frisch’s identity. It is easy to verify the
binomial identity
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Upon applying Eq. (5), we find the sum equals
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as desired to show.
This new proof of Frisch’s identity should be compared to Gould’s original proof [5,

Section 7.2], a two-page calculation involving an application of Melzak’s formula.
An inverse Frisch identity then follows by simple binomial inversion, and we have
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