On the Binomial Identities of Frisch and Klamkin

H. W. Gould
Department of Mathematics
West Virginia University
Morgantown, WV 26506
USA
henrygou@gmail.com
Jocelyn Quaintance
Department of Computer Science
University of Pennsylvania
Philadelphia, PA 19104
USA
jocelynq@seas.upenn.edu

Abstract

In this paper we investigate two somewhat similar identities for sums of ratios of binomial coefficients. We give several proofs, and note that the identities all follow from a hypergeometric identity of Gauss. Inverse identities are also given.

1 Introduction

Klamkin [3] stated the following identity in a letter to Gould in 1966:

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{n+a}{k+b}}=\frac{a+1+n}{(a+1)\binom{a}{b}} \tag{1}
\end{equation*}
$$

Identity (4.6) in Gould's book [2] is a special case of this, corresponding to $a=2 x$ and $b=x$.
Frisch [1], in his dissertation in 1926, gave the curious formula

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{\binom{b+k}{c}}=\frac{c}{n+c} \frac{1}{\binom{n+b}{b-c}}, \quad b \geq c>0 \tag{2}
\end{equation*}
$$

This was cited and proved by Netto [4, pp. 337-338] and is tabulated as Formula (4.2) in Gould's book [2].
(It is interesting to note that Frisch's research laid the foundations for modern econometrics theory and micro- and macro-economics, work for which he later received the Nobel Prize.)

Klamkin's identity is actually a special case of the identity

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{x}{k+b}}=\frac{x+1}{(x-n+1)\binom{x-n}{b}} \tag{3}
\end{equation*}
$$

Here is how we obtain Eq. (3). Let $t_{k}=\frac{\binom{n}{k}}{\binom{x}{k+b}}$. Then

$$
\frac{t_{k+1}}{t_{k}}=\frac{\binom{n}{k+1}\binom{x}{k+b}}{\binom{x}{k+1+b}\binom{n}{k}}=\frac{(n-k)(k+1+b)}{(k+1)(x-k-b)}
$$

Therefore,

$$
\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{x}{k+b}}=\frac{1}{\binom{x}{b}}{ }_{2} F_{1}\left[\begin{array}{cc}
1+b, & -n \tag{4}\\
-x+b & \mid 1
\end{array}\right] .
$$

Applying Gauss's ${ }_{2} F_{1}$ formula, namely,

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a, & b \\
c & \mid 1
\end{array}\right]=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}
$$

we have

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{x}{k+b}} & =\frac{1}{\binom{x}{b}} \cdot \frac{\Gamma(-x+n-1) \Gamma(-x+b)}{\Gamma(-x-1) \Gamma(-x+b+n)} \\
& =\frac{b!}{x(x-1) \ldots(x-b+1)} \cdot \frac{(x+1) x(x-1) \ldots(x-n+3)(x-n+2)}{(x-b)(x-b-1) \ldots(x-n-b+2)(x-n-b+1)} \\
& =\frac{b!(x+1) \prod_{j=0}^{n-2}(x-j)}{\prod_{j=0}^{n+b-1}(x-j)} \\
& =\frac{b!(x+1)}{\prod_{j=n-1}^{n+b-1}(x-j)} \\
& =\frac{x+1}{x-n+1} \cdot \frac{b!}{(x-n)(x-n-1) \ldots(x-n-b+1)} \\
& =\frac{x+1}{x-n+1} \cdot \frac{1}{\binom{x-n}{b}} .
\end{aligned}
$$

In this proof we assumed that $n \geq 2$. If $n=0$, Eq. (1) is obviously true, while if $n=1$, we obtain easily verified identity

$$
\frac{1}{\binom{x}{b}}+\frac{1}{\binom{x}{b+1}}=\frac{x+1}{x\binom{x-1}{b}} .
$$

2 Proof of Klamkin's and Frisch's formulas

We shall now prove Klamkin's formula directly from Formula (7.1) in Gould [2], namely

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\binom{z}{k}}{\binom{y}{k}}=\frac{\binom{y-z}{n}}{\binom{y}{n}}, \tag{5}
\end{equation*}
$$

and the easy binomial identity

$$
\begin{equation*}
\binom{x}{k+b}\binom{k+b}{k}=\binom{x}{b}\binom{x-b}{k} \tag{6}
\end{equation*}
$$

Indeed, using these we have

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{x}{k+b}} & =\frac{1}{\binom{x}{b}} \sum_{k=0}^{n}\binom{n}{k} \frac{\binom{k+b}{k}}{\binom{x-b}{k}} \\
& =\frac{1}{\binom{x}{b}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\binom{-1-b}{k}}{\binom{x-b}{k}} \\
& =\frac{1}{\binom{x}{b}} \frac{\left(\begin{array}{c}
x+1 \\
n-b \\
n
\end{array}\right)}{(x+1-n)\binom{x-n}{b}}=\frac{x+1}{(x+1}
\end{aligned}
$$

by Formula (7.1), and our proof is complete. We remark that Formula (7.1) is equivalent to using the Gauss ${ }_{2} F_{1}$ formula.

Simple binomial inversion yields the inverse Klamkin identity

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} \frac{x+1}{(x+1-k)\binom{x-k}{b}}=\frac{1}{\binom{x}{n+b}} \tag{7}
\end{equation*}
$$

We now proceed in a similar way to prove Frisch's identity. It is easy to verify the binomial identity

$$
\frac{1}{\binom{k+b}{c}}=\frac{1}{\binom{b}{c}} \frac{\binom{c-b-1}{k}}{\binom{-b-1}{k}},
$$

so that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{\binom{k+b}{c}}=\frac{1}{\binom{b}{c}} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\binom{c-b-1}{k}}{\binom{-b-1}{k}}
$$

Upon applying Eq. (5), we find the sum equals

$$
\frac{1}{\binom{b}{c}} \frac{\binom{-c}{n}}{\binom{-1}{n}}=\frac{c}{n+c} \frac{1}{\binom{n+b}{b-c}},
$$

as desired to show.
This new proof of Frisch's identity should be compared to Gould's original proof [5, Section 7.2], a two-page calculation involving an application of Melzak's formula.

An inverse Frisch identity then follows by simple binomial inversion, and we have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{c}{k+c} \frac{1}{\binom{k+b}{b-c}}=\frac{1}{\binom{n+b}{c}} \tag{8}
\end{equation*}
$$

References

[1] Ragnar Frisch, Sur les semi-invariants et moments employés dans l'étude des distributions statistiques, Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, II, HistoriskFilosofisk Klasse 3 (1926), 1-87. Quoted by Th. Skolem, p. 337, in Netto's Lehrbuch.
[2] H. W. Gould, Combinatorial Identities, published by the author, Morgantown, WV, 1972.
[3] Murray S. Klamkin, Letter to H. W. Gould, May 16, 1966.
[4] Eugen Netto, Lehrbuch der Kombinatorik, 2nd edition, Chelsea Publications, 1927.
[5] Jocelyn Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers, World Scientific Press, 2016.

2010 Mathematics Subject Classification: Primary 05A19; Secondary 11B65, 33C10.
Keywords: binomial identity, hypergeometric series, Gauss' hypergeometric summation formula, binomial inversion.

Received July 4 2016; revised versions received August 31 2016; September 1 2016; September 7 2016. Published in Journal of Integer Sequences, September 72016.

Return to Journal of Integer Sequences home page.

