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Abstract

Applying the apparatus of triangular matrices, this paper determines general rela-

tions between the terms of the sequences generated by linear homogeneous recurrence

equations. We single out, in particular, the class of normal linear recurrence equations,

for which the corresponding number sequences have some interesting number-theoretic

properties.

1 Introduction

At present, quite a few general theorems have been proved for linear recurrence relations.
In fact, their content is similar to corresponding theorems from the theory of linear homoge-
neous and nonhomogeneous systems of equations with constant coefficients and the theory of
homogenous and nonhomogeneous ordinary differential equations with constant coefficients.
But so far there are no general methods of solution even for linear homogenous recurrence
equations with variable coefficients.
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Linear recurrence sequences with constant coefficients are efficiently used in different
fields of mathematics (see, for example, [7, 25, 28, 30]). It is necessary, however, to find
the exact roots of a corresponding characteristic equation, which can cause considerable
difficulties.

The theoretical research tool for studying linear recurrent equations in this paper is
parapermanents of triangular matrices [34, 35]. The paper aims at applying parapermanents
of triangular matrices to solution of linear recurrence equations, determination of general
relations between the terms of the sequences generated by these equations, and isolation
of the class of normal linear recurrence equations, the number sequences of which have
some general number-theoretic properties. The method makes it possible to investigate
linear recurrence equations without solving corresponding characteristic equations. Here, the
bijection is established between the number sequence defined by linear recurrence relation, its
generating function and its n-th term given as a parapermanent of some n-th order triangular
matrix.

2 Preliminaries and notations

A triangular table of numbers

A =








a11
a21 a22

· · · · · ·
. . .

an1 an2 · · · ann








n

(1)

is called a triangular matrix, and the number n is called its order [34, 35]. Note that a
triangular matrix (1) is not a triangular matrix in the usual sense of this term as it is not a
square matrix.

To every element aij of the triangular matrix (1), we correspond (i− j +1) elements aik,
k = j, j + 1, . . . , i, which are called derived elements, generated by element aij.

The product of all derived elements of the matrix (1) generated by element aij is denote
by {aij} and called the factorial product of the element aij, i.e., {aij} = aij ai,j+1 · · · aii.

To each element aij of a matrix (1) we associate the triangular table of elements of matrix
A that has aij in the bottom left corner. We call this table a corner of the matrix and denote
it by Rij(A). Corner Rij(A) is a triangular matrix of order (i− j + 1), and it contains only
elements ars of matrix (1) whose indices satisfy the inequalities j 6 s 6 r 6 i.

The parapermanent pper(A) of a triangular matrix (1) is the number

pper(A) =








a11
a21 a22

· · · · · ·
. . .

an1 an2 · · · ann








n

=
n∑

r=1

∑

p1+···+pr=n

ap1,1

r∏

s=2

{ap1+···+ps, p1+···+ps−1+1}, (2)
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where p1, p2, . . . , pr are positive integers, {aij} is the factorial product of the element aij of
the matrix A. We shall also denote a parapermanent of the matrix (1) briefly by [aij]1≤j≤i≤n

.
The rectangular table T (i) of elements of the triangular matrix (1) is inscribed in matrix

(1) if one of its vertex coincides with the element an1, and its opposite one coincides with
the element aii, i = 1, 2, . . . , n. [37]

The parapermanent algebraic complement Pij to the factorial product {aij} of the element
aij of the matrix (1) is the number [34]

Pij = pper(Rj−1,1) · pper(Rn,i+1), (3)

where Rj−1,1 and Rn,i+1 are corners of the matrix (1), and pper(R01) ≡ 1, pper(Rn,n+1) ≡ 1.

Theorem 1. [34] (Decomposition of a parapermanent by elements of an inscribed rectan-
gular table). Let A be a triangular matrix (1), and T (i) be some inscribed rectangular table.
Then

pper(A) =
i∑

s=1

n∑

r=i

{ars}Prs, (4)

where Prs is a parapermanent algebraic complement to the factorial product of element ars,
which belongs to T (i).

Corollary 2. For i = n we get decomposition of the parapermanent pper(A) by elements of
the last row:

pper(A) =
n∑

s=1

{ans} · pper(Rs−1,1). (5)

Lemma 3. [35] The system of equations

xi = aiib1xi−1 + aiiai,i−1b2xi−2 + · · ·+ aii · · · ai1bi, i = 1, 2, . . . , n,

has the solution xi =
[

asr
bs−r+1

bs−r

]

16r6s6i
, where b0 ≡ 1.

Lemma 4. [35] The system of equations

[
(
1 + δsr(xs − 1)

)as−r+1

as−r

]

16r6s6i

= bi, i = 1, 2, . . . , n,

where δsr is the Kronecker symbol, a0 = 1, has the solution

xi =
bi

aib0 + ai−1b1 + ai−2b2 + · · ·+ a1bi−1

(b0 ≡ 1).
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3 Parapermanents and k-th order linear recurrence equa-

tions

Let us consider the linear recurrence equation of k-th order

un = a1un−1 + a2un−2 + · · ·+ akun−k, (6)

with initial conditions

u0 = 1, u1 = b1, u2 = b2, . . . , uk−1 = bk−1. (7)

If it is difficult to solve a characteristic equation of the recurrence equation (6) then the
following proposition can be useful, as it significantly complements Stanley’s theorem ([29,
p. 202]):

Theorem 5. [36]. For the sequence (un)n≥0 the following three equations are equivalent:

(1) the linear recurrence equation (6) with initial conditions (7);

(2)

un =


















a1c1
a2
a1

a1c2

· · · · · ·
. . .

ak−1

ak−2

ak−2

ak−3
· · · a1ck−1

ak
ak−1

ak−1

ak−2
· · · a2

a1
a1

0 ak
ak−1

· · · a3
a2

a2
a1

a1

· · · · · · · · · · · · · · · · · ·
. . .

0 0 · · · 0 ak
ak−1

· · · a2
a1

a1


















n

(8)

with u0 = 1, ai 6= 0 for i = 1, 2, . . . , k − 1, where

ci =
bi

aib0 + ai−1b1 + · · ·+ a1bi−1

, i = 1, 2, . . . , k − 1, (9)

with b0 = 1;

(3)

1 +
∞∑

i=1

uiz
i =

1 + b1

(

1− 1
c1

)

z + b2

(

1− 1
c2

)

z2 + · · ·+ bk−1

(

1− 1
ck−1

)

zk−1

1− a1z − a2z2 − · · · − akzk
, (10)

where ci 6= 0 for i = 1, 2, . . . , k − 1.

The theorem is established in [36]; we just give the proof for convenience of the reader.
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Proof. Equivalence of the recurrence equation (6), (7) and the equation (8) follows from
the fact that numbers c1, c2, . . . , ck−1, according to Lemma 4, are solutions of the system of
equations [

(
1 + δsr(cs − 1)

)as−r+1

as−r

]

16r6s6i

= bi, i = 1, 2, . . . , k − 1,

and the decomposition of the parapermanent in (8) for n ≥ k by elements of the last row
(see Corollary 5).

Let us now prove the equivalence of the recurrence equation (6) with initial conditions
(7) and the equation (10). To do this, we use the equality

(

1−
k∑

i=1

aix
i

)(

1 +
∞∑

j=1

ujx
j

)

=

= 1 + (u1 − a1)x+ (u2 − a1u1 − a2)x
2 + (u3 − a1u2 − a2u1 − a3)x

3 + · · ·

· · ·+ (uk−1 − a1uk−2 − a2uk−3 − · · · − ak−2u1 − ak−1)x
k−1 +

+
∞∑

i=k

(ui − a1ui−1 − a2ui−2 − · · · − akui−k).

In the right hand of above equality, we shall replace ui with b1, b2, . . . , bk−1, and factor
out b1 from the first parentheses, b2 from the second parentheses, and so on. If we denote

c1 =
b1

a1
, c2 =

b2

a2 + a1b1
, c3 =

b3

a3 + a2b1 + a1b2
, . . . ,

then

(

1−
k∑

i=1

aix
i

)(

1 +
∞∑

j=1

ujx
j

)

= 1 + b1

(

1− 1
c1

)

x+ b2

(

1− 1
c2

)

x2 + · · ·+ bk−1

(

1− 1
ck−1

)

xk−1 +

+
∞∑

i=k

(ui − a1ui−1 − a2ui−2 − · · · − akui−k) .

Note that Theorem 5 is also true for the recurrence equations of the form (6) with variable
coefficients.

The right hand of the equality (10) is called the generating function of the sequence (6).

Example 6. For the Tribonacci sequence un = un−1 + un−2 + un−3, u0 = u1 = u2 = 1
(A000213) from (9) we shall find the numbers c1 =

b1
a1

= 1, c2 =
b2

a2+a1b1
= 1

2
, from (8) — the
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n-th term of the sequence written with help of the parapermanent of the triangular matrix

un =












1
1 1

2

1 1 1
0 1 1 1

· · · · · · · · · · · ·
. . .

0 · · · 0 1 1 1












n

, (11)

and from (10) — the generating function F (x) = 1−x2

1−x−x2−x3 .

Let us consider the case when in (9) c1 = c2 = · · · = ck−1. Then from (9) we get the
system

bi = a1bi−1 + a2bi−2 + · · ·+ ai−1b1 + ai, i = 1, 2, . . . , k − 1,

which, according to Lemma 3, has the solution

bi =








a1
a2
a1

a1

· · · · · ·
. . .

ai
ai−1

ai−1

ai−2
· · · a1








i

, i = 1, 2, . . . , k, (12)

and the initial conditions (7) for the recurrence equation (6) becomes

u0 = 1, ui =








a1
a2
a1

a1

· · · · · ·
. . .

ai
ai−1

ai−1

ai−2
· · · a1








i

, i = 1, 2, . . . , k − 1. (13)

The initial conditions (13) for the recurrence equation (6) are called normal initial con-
ditions, and the sequence generated by normal initial conditions is called a normal sequence.

Corollary 7. For the sequence (un)n≥0 the following three equations are equivalent:

(1) the linear recurrence equation (6) with the conditions (7), where numbers bi are defined
by (12);

(2)

un =















a1
a2
a1

a1

· · · · · ·
. . .

ak
ak−1

ak−1

ak−2
· · · a1

0 ak
ak−1

· · · a2
a1

a1

· · · · · · · · · · · · · · ·
. . .

0 . . . 0 ak
ak−1

. . . a2
a1

a1















n

(14)
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with u0 = 1, ai 6= 0 for i = 1, 2, . . . , k − 1;

(3)

1 +
∞∑

i=1

uix
i =

1

1− a1x− a2x2 − · · · − akxk
. (15)

Proof. If the initial conditions of the recurrence equation (6) are normal, then it is obvious
that all the numbers c1, c2, . . . , cn in the Theorem 5 are equal to one. So, the normal initial
conditions (13) together with the equation (8) for ci = 1, i = 1, 2, . . . , k − 1, gives (14).

Example 8. For the Jacobsthal sequence (A001045) un = un−1 + 2un−2, u0 = u1 = 1, from
(9) we shall find c1 =

b1
a1

= 1, from (14) — the recurrence equation

un =












1
2 1
0 2 1
0 0 2 1

· · · · · · · · · · · ·
. . .

0 · · · 0 0 2 1












n

,

and from (15) — the generating function F (x) = 1
1−x−2x2 .

Example 9. For Narayana’s cows sequence (A000930) un = un−1+un−3, u0 = u1 = u2 = 1,
from (9) we shall find c1 =

b1
a1

= 1, c2 =
b2

a2+a1b1
= 1, and from (15) — the generating function

F (x) = 1
1−x−x3 .

Example 10. For Chebyshev polynomials of the second kind un(x) = 2xun(x) − un−1(x),
u0(x) = 1, u1(x) = 2x, similarly to the preceding example, we shall find the number c1 = 1,
the recurrence equation

un(x) =












2x
− 1

2x
2x

0 − 1
2x

2x
0 0 − 1

2x
2x

· · · · · · · · · · · ·
. . .

0 · · · 0 0 − 1
2x

2x












n

,

and the generating function
∞∑

i=0

ui(x)z
i = 1

1−2xz+z2
.

The next theorem makes it possible to reestablish an appropriate recurrence equation
with initial conditions by using a known generating function.
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Theorem 11. Suppose we are given the generating function

f(z) =
1 + d1z + d2z

2 + · · ·+ dk−1z
k−1

1− a1z − a2z2 − · · · − akzk
(16)

of the sequence (un)n≥0. Then the sequence (un)n≥0 satisfies the recurrence equation (6) with
initial conditions

u0 = 1, ui =








a1 + d1
a2+d2
a1

a1

· · · · · ·
. . .

ai+di
ai−1

ai−1

ai−2
· · · a1








i

, i = 1, 2, . . . , k − 1, (17)

with a0 6= 0 for i = 1, 2, . . . , k − 1.

Proof. The generating function of the sequence (un)n≥0, which satisfies the recurrence equa-
tion (6), follows from Theorem 5. According to Theorem 5, we also have the system

bi

(

1− 1
ci

)

= di, i = 1, 2, . . . , k − 1, which, after considering (9), we shall reduce to the

system
bi = a1bi−1 + a2bi−2 + · · ·+ ai−1b1 + aib0 + di, i = 1, 2, . . . , k − 1, (18)

with b0 = 1.
The proof of the theorem follows from the system (18) being decomposition of the right

side of (17) by elements of the last row (see (5)).

4 Number-theoretic properties of sequences

Recurrences and sequences of numbers or polynomials generated by them arise in different
fields of mathematics, and many problems in number theory and algebra come down to
studying their properties [7, 25, 30]. But often, the properties of recurrence sequences are
investigated regardless of the relevant equation, which complicates the process of studies.

Let us consider now general properties of sequences using linear recurrence equations
generating them and the apparatus of triangular matrices.

Theorem 12. [35] Let the sequences (u∗
n)n≥1 and (un)n≥1 satisfy the recurrence equations

u∗
n = a1u

∗
n−1 + a2u

∗
n−2 + · · ·+ aku

∗
n−k,

un = a1un−1 + a2un−2 + · · ·+ akun−k,

with general initial conditions u∗
1 = b1, u∗

2 = b2, . . . , u
∗
k = bk and normal initial conditions

u1 = 1, ui =








a1
a2
a1

a1

· · · · · ·
. . .

ai−1

ai−2

ai−2

ai−3
· · · a1








i−1

, i = 2, 3, . . . , k,
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respectively, with ai 6= 0 for i = 1, 2, . . . , k − 1. Then

u∗
r+s =

k∑

i=1

ai

r∑

j=r−i+1

u∗
jur+s−i−j+1, (19)

where r + s > k.

Proof. From Corollary 7 it follows that the parapermanent (14) is the solution of equation
(6) with initial conditions (7). Let us decompose the parapermanent (14) for n = r + s by
elements of the inscribed rectangular table T (r). If bij is some element of the table T (r),
then the first corner Rj−1,1 of its parapermanent algebraic complement

Pij = pper(Rj−1,1) · pper(Rr+s−1,i+1),

besides the coefficients of equation (6), will include the numbers c1, c2, . . . , ck, which are
defined by (9). That is why the parapermanent of the corner Rj−1,1 is the j-th term of
the sequence (u∗

n)n≥1. In the second corner, all the numbers ci = 1, and that is why its
parapermanent is the (r+ s− i)-th term of the sequence (un)n≥1. It is obvious that bij = 0,
if k−1 < i− j and bij = ai−j+1, if 0 ≤ i− j ≤ k. If i− j = k−1, then bij = ak, i = j+k−1,
and the number j gets the value from r − k + 1 to r. Thus, all the summands from the
decomposition of the parapermanent ur+s by elements of the table T (r), which contain the

coefficients ak of the equation (6), will be part of the sum ak ·
r∑

j=r−k+1

u∗
jur+s−j−k+1.

If i− j = k − 2, then bij = ak−1, i = j + k − 2, j = r − k + 2, . . . , r, and the similar sum

is ak−1 ·
r∑

j=r−k+2

u∗
jur+s−j−k+2. Continuing the process of calculating the sums like these, in

(k−1) steps we get the equality i = j, which means we shall come to the sum a1 ·
r∑

j=r

u∗
jur+s−j.

Thus, the index i of coefficients ai will get the value from 1 to k, and the decomposition of
the parapermanent u∗

r+s by elements of the inscribed rectangular table T (r) will be (19).

Let us write the equality (19) for k = 1, k = 2, and k = 3 respectively:

u∗
r+s = a1u

∗
rus,

u∗
r+s = a1u

∗
rus + a2(u

∗
r−1us + u∗

rus−1),

u∗
r+s = a1u

∗
rus + a2(u

∗
r−1us + u∗

rus−1) + a3(u
∗
r−2us + u∗

r−1us−1 + u∗
rus−2). (20)

Replacing in (20) r with r + q, we get the equality

u∗
r+q+s = u∗

r+1uq+1us + a2u
∗
ruqus + a2u

∗
r+1uqus−1 + a22u

∗
ruq−1us−1. (21)

Corollary 13. If the sequence (un)n≥1 satisfies the recurrence equality (6) with normal initial
conditions (13), then for its terms the following relations hold:

ur+s =
k∑

i=1

ai

r∑

j=r−i+1

ujur+s−i−j+1. (22)
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The validity of Corollary 13 is immediate from Theorem 12.
Let us write (22) for k = 1, k = 2, and k = 3 respectively:

ur+s = a1urus,

ur+s = a1urus + a2(ur−1us + urus−1),

ur+s = a1urus + a2(ur−1us + urus−1) + a3(ur−2us + ur−1us−1 + urus−2).

The first ten terms of the normal number sequence, which are generated by linear second-
order recurrence equation

un+2 = a1un+1 + a2un, a1, a2 ∈ Z\{0}, (23)

are as follows:

u1 = 1,

u2 = a1,

u3 = a21 + a2,

u4 = a31 + 2a1a2,

u5 = a41 + 3a21a2 + a22,

u6 = a51 + 4a31a2 + 3a1a
2
2,

u7 = a61 + 5a41a2 + 6a21a
2
2 + a32,

u8 = a71 + 6a51a2 + 10a31a
2
2 + 4a1a

3
2,

u9 = a81 + 7a61a2 + 15a41a
2
2 + 10a21a

3
2 + a42,

u10 = a91 + 8a71a2 + 21a51a
2
2 + 20a31a

3
2 + 5a1a

4
2.

For n ≥ 2 we get

un =












a1
a2
a1

a1
0 a2

a1
a1

0 0 a2
a1

a1

· · · · · · · · · · · ·
. . .

0 · · · 0 0 a2
a1

a1












n−1

=
∑

k1+2k2 =n−1

(k1 + k2)!

k1! k2!
ak11 ak22 .

The first ten terms of the normal number sequence, which are generated by third order
linear recurrence equation

un+3 = a1un+2 + a2un+1 + a3un, a1, a2, a3 ∈ Z\{0},
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are as follows:

u1 = 1,

u2 = a1,

u3 = a21 + a2,

u4 = a31 + 2a1a2 + a3,

u5 = a41 + 3a21a2 + a22 + 2a1a3,

u6 = a51 + 4a31a2 + 3a1a
2
2 + 3a21a3 + 2a2a3,

u7 = a61 + 5a41a2 + 6a21a
2
2 + 4a31a3 + 6a1a2a3 + a32 + a23,

u8 = a71 + 6a51a2 + 5a41a3 + 10a31a
2
2 + 12a21a2a3 + 4a1a

3
2 + 3a1a

2
3 + 3a22a3,

u9 = a81 + 7a61a2 + 6a51a3 + 15a41a
2
2 + 20a31a2a3 + 10a21a

3
2 + 6a21a

2
3 + 12a1a

2
2a3 + a42 + 3a2a

2
3,

and for n ≥ 2 we get

un =














a1
a2
a1

a1
a3
a2

a2
a1

a1
0 a3

a2

a2
a1

a1
... · · · · · · · · ·

. . .

0 0 0 0 · · · a1
0 0 0 0 · · · a2

a1
a1














n−1

=
∑

k1+2k2+3k3 =n−1

(k1 + k2 + k3)!

k1! k2! k3!
ak11 ak22 ak33 .

Theorem 14. [35] Let the sequence (un)n≥1 satisfy the second-order recurrence equation
(23) with normal initial conditions u1 = 1, u2 = a1. Then

(1) the following equalities hold:

ur+s = ur+1us + a2urus−1, (24)

usr ≡ 0 (mod ur); (25)

(2) if in the equation (23) the coefficients are relatively prime, then

gcd(us, ur) = ugcd(s,r). (26)

Proof. Let us first prove (24). To do this, we shall use the method of mathematical induction.
We apply the Corollary 13 to the equation (23) with initial conditions u1 = 1, u2 = a1. For
k = 2 the equality (22) is

ur+s = a2ur−1us + a1urus + a2urus−1. (27)

From (27), considering (23), we get

ur+s = us(a1ur + a2ur−1) + a2urus−1 = ur+1us + a2urus−1.
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Let us prove (25). For s = r the equality (24) is

u2r = ur(ur+1 + a2ur−1), (28)

that is (25) holds for s = 1 and s = 2. Let us assume (25) holds for s = 1, 2, . . . ,m − 1,
and prove its validity for s = m. As umr = u(m−1)r+r = u(m−1)r+1ur + a2u(m−1)rur−1, and
u(m−1)r ≡ 0 (mod ur), then umr = u(m−1)r+1ur, i.e., (25) holds for s = m.

In order to prove the equality (26), let us first prove that

gcd(un, un+1) = 1, (29)

gcd(a2, un) = 1. (30)

For n = 1 the equality (29) is obvious. Let us assume that (29) holds for n = k and prove
it for n = k+1. Let, conversely, gcd(uk+1, uk+2) = d > 1. Then from (23) for n = k it follows
that either uk ≡ 0 (mod d) or a2 ≡ 0 (mod d). In the first case, we come to a contradiction
with the assumption that (29) holds for n = k, and in the second case from (23) for n = k

it follows that a1 ≡ 0 (mod d), and this contradicts the fact that the coefficients of equation
(23) are relatively prime. Thus, the equality (29) holds for an arbitrary n ∈ N.

The validity of the equality (30) follows from the fact that assumption of the contrary
proposition together with (23) for n = s− 1 leads to contradiction with (29).

Now let s < r. Then considering the equality (24), we have

gcd(ur, us) = gcd(ur−s+s, ur) =

= gcd(ur−s+1us + a2ur−sus−1, us) = gcd(a2ur−sus−1, us).

From (29), (30) it follows that gcd(a2us−1, us) = 1. Therefore gcd(ur, us) = gcd(ur−s, us),
and we get the equality (26).

Note that Theorem 14 also holds when the coefficients of linear recurrence equation (23)
are functions of some variables.

Example 15. Let us consider the normal sequence of polynomials wn(x) =
xn−1
x−1

, which is
generated by the recurrence equation wn+2(x) = (x+1)wn+1(x)−xwn(x). Polynomials wn(x)
do not have real roots, and for prime values n > 3, they are connected with the problem
of circle division into n equal parts. Gauss showed that the roots of polynomials wn(x) are
expressed as square radicals only when n is a Fermat prime, that is n = 22

k

+ 1 (A000215).
Only for these values of n, a circle can be divided into n equal parts with the help of a ruler

and compass. According to Theorem 14, gcd
(
wn(x), wm(x)

)
= xgcd(n,m)−1

x−1
.

Corollary 16. If the sequence (uk)k≥1 satisfies the hypotheses of Theorem 14 and uk 6= 1,
k ≥ 2, then the term us is a prime only when s is a prime.

The proof follows from (25).

12
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Corollary 17. Let the sequence (uk)k≥1 satisfy the hypotheses of Theorem 14 and p is a
prime. Then up has no common divisor with any of the preceding terms of sequence (uk)k≥1.

The proof follows from (25).

Corollary 18. Let the sequence (uk)k≥1 satisfy the hypotheses of Theorem 14 and a2 = b2,
where b ∈ Z. Then each term u2m+1, m > 1, can be written as the sum of squares of two
nonnegative integers, namely

u2m+1 = u2
m+1 + (bum)

2.

The validity of Corollary 18 follows from (24) for r = n and s = n+ 1.

Example 19. The recurrence equation un+2 = (k + 1)un+1 − kun with normal initial con-
ditions u1 = 1, u2 = k + 1, k ≥ 1, generates the number sequence

(
kn−1
k−1

)

n≥1
. The condition

k ≥ 1 satisfies the condition us 6= 1, s ≥ 2, of Corollary 16. According to Corollary 16 the
number kn−1

k−1
is a prime, if n is a prime. For k = 2 we get a well known fact that Mersenne

primes (A001348) are among the numbers of the form 2p − 1, where p is some prime. For
k = 10 we get a famous proposition that repunits (primes which are written as 11 · · · 1

︸ ︷︷ ︸

n

in

the decimal system; see A002275), are also sought for prime n.

As the recurrence equation un+2 = un+1 + un with normal initial conditions u1 = u2 = 1
generates the Fibonacci sequence, then Theorem 14 can be seen as generalization of some
relations for Fibonacci numbers.

There are various generalizations of Fibonacci numbers. Some generalizations are con-
nected with preservation of the recurrence relation Fn+1 = Fn + Fn−1 and replacement of
initial conditions [13, 17, 33], others are based on a more general recurrence relation of the
second order without changing the first two terms of the Fibonacci sequence [4, 5, 6, 10, 11,
26, 27, 32]. There are generalizations of the Fibonacci sequence when the recurrence relation
has a more general form generalizing the initial conditions with that [1, 3, 9, 16, 14, 21, 22].
In particular, generalizations of the Fibonacci sequence for recurrence relations of higher
orders were studied in [2, 8, 15, 19, 20, 30, 31].

Among the terms of number sequences, which satisfy one and the same recurrence equa-
tion but with different initial conditions, there are some interesting relations. Therefore
studying the properties of the terms of one sequence, it is possible to draw some conclusions
concerning the properties of the terms of another sequence.

As a consequence of Theorem 12 (when k = 2, r = 1, and s = n− 1), we have:

Theorem 20. If the sequences (un)n≥1, (u
∗
n)n≥1 satisfy the linear second-order recurrence

equation
uk+2 = a1uk+1 + a2uk (31)

with initial conditions
u1 = 1, u2 = a1; u∗

1 = b1, u∗
2 = b2, (32)

respectively, then
u∗
n = b2un−1 + a2b1un−2. (33)
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The next theorem singles out some classes of number sequences, whose odd-numbered
terms can be written as the sum of several squares.

Theorem 21. [34] Let the sequences (un)n≥1, (u
∗
n)n≥1 satisfy the linear second-order recur-

rence equation (31) with initial conditions

u1 = 1, u2 = a1; u∗
1 = k, u∗

2 = a1. (34)

Then

(1) for n ≥ 3 the following relation holds:

u∗
n = un + (k − 1)a2un−2; (35)

(2) if
k = a2 = s2 + 1 (36)

and a1 > 0, then for n ≥ 3 the number u∗
2n−1 is the sum of three squares:

u∗
2n−1 = u2

n +
(
(s2 + 1)un−1

)2
+
(
(s3 + s)un−2

)2
; (37)

(3) if
k = s2 + 1, a2 = b2, (38)

then for n ≥ 2 the number u∗
2n+1 is the sum of four squares:

u∗
2n+1 = u2

n+1 + (bun)
2 + (sbun)

2 + (sb2un−1)
2. (39)

Proof. The equality (35) follows from (33):

u∗
n = b2un−1 + a2b1un−2 = a1un−1 + a2kun−2 =

= a1un−1 + a2un−2 + a2(k − 1)un−2 = un + a2(k − 1)un−2.

Let us prove (37). From (19) for k = 2 we have

u∗
r+s = a1u

∗
rus + a2(u

∗
r−1us + u∗

rus−1) = u∗
r+1us + a2u

∗
rus−1.

In the last equality we substitute r = n− 1 and s = n. Then, using (35), we obtain

u∗
2n−1 = (a1u

∗
n−1 + a2u

∗
n−2)un + a2u

∗
n−1un−1 = u∗

nun + a2u
∗
n−1un−1 =

= (un + (k − 1)a2un−2)un + a2(un−1 + (k − 1)a2un−3)un−1 =

= u2
n + (k − 1)a2un−2un + a2u

2
n−1 + (k − 1)a22un−3un−1 =

= u2
n + (k − 1)a2un−2(a1un−1 + a2un−2) + a2u

2
n−1 + (k − 1)a22un−3un−1 =

= u2
n + a2u

2
n−1 + (k − 1)a22u

2
n−2 + (k − 1)a2u

2
n−1 = u2

n + ka2u
2
n−1 + (k − 1)a22u

2
n−2.

Hence, using (36), we get (37).
To prove (39) we shall write (35) for n = 2m+ 1:

u∗
2m+1 = u2m+1 + (k − 1)a2u2m−1.

Hence, using (24) for r = m and s = m+ 1 and the condition (38), after simple transforma-
tions we obtain (39).
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Example 22. If s = 0 we get k = a2 = 1 and the equality (37) is written as

u2n−1 = u2
n + u2

n−1. (40)

Thus, all the terms of the normal number sequence with odd numbers, not less than 3, which
are generated by the recurrence equation un+2 = aun+1 + un, can be written as the sum of
two squares, e.g.,

u3 = a2 + 1 = a2 + 12,

u5 = a4 + 3a2 + 1 = (a2 + 1)2 + a2,

u7 = a6 + 5a4 + 6a2 + 1 = (a3 + 2a)2 + (a2 + 1)2,

u9 = a8 + 7a6 + 15a4 + 10a2 + 1 = (a4 + 3a2 + 1)2 + (a3 + 2a)2,

u11 = a10 + 9a8 + 28a6 + 35a4 + 15a2 + 1 = (a5 + 4a3 + 3a)2 + (a4 + 3a2 + 1)2.

In general,

u2n−1 =
n+1∑

i=2

(
2n− i

2(n− i+ 1)

)

a2(n−i+1) =

=





⌊n+1
2

⌋
∑

i=1

(
n− i

n− 2i+ 1

)

an−2i+1





2

+





⌊n

2
⌋

∑

i=1

(
n− i− 1

n− 2i

)

an−2i





2

.

Note that for a = 1 the equality (40) is written as F2n−1 = F 2
n + F 2

n−1, where Fn are
Fibonacci numbers, and

Fn =

⌊n+1
2

⌋
∑

i=1

(
n− i

n− 2i+ 1

)

.

Example 23. In item 2 of Theorem 21, let a1 = 4, s = 2. Then u1 = a2 = k = 5,

u∗
n =

3 · 5n−1 + 7 (−1)n−1

2
, un =

5n + (−1)n−1

6
,

and the equality (37) becomes

3 · 52n−2 + 7

2
=

(
5n + (−1)n−1

6

)2

+

(
5(5n−1 + (−1)n)

6

)2

+

(
5(5n + (−1)n−1)

3

)2

.

For example, for n = 16 we have decomposition of the prime 396983861923217773441 into
the sum of three different squares of positive integers, two of which are sequential:

396983861923217773441 = 254313151042 + 254313151052 + 101725260402.
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Example 24. If in item 3 of Theorem 21 a1 = 3, a2 = 4, b = 2, s = 1, then

u∗
n = 4n−1 + (−1)n−1, un =

4n + (−1)n−1

5

and the equality (39) becomes

24m + 1 =

(
4m+1 + (−1)m

5

)2

+

(
22m+1 + 2(−1)m−1

5

)2

+

+

(
22m+1 + 2(−1)m−1

5

)2

+

(
22m + 4(−1)m

5

)2

.

For m = 2n−2 we obtain Fermat numbers Fn = 24m + 1 = 22
n

+ 1 (A000215). The last
equality can now be written as

22
n

+ 1 =

(

22
n−1+2 + 1

5

)2

+

(

22
n−1+1 − 2

5

)2

+

(

22
n−1+1 − 2

5

)2

+

(

22
n−1

+ 4

5

)2

, (41)

where n > 3. For example,

F6 = 264 + 1 = 34359738372 + 17179869182 + 17179869182 + 8589934602.

Using (41), with the help of simple transformations, Fermat numbers can be written
(I. V. Fedak) as the sum of three squares:

Fn = 22
n

+ 1 = a2n + 1 =

(
2an − 2

3

)2

+

(
2an + 1

3

)2

+

(
an + 2

3

)2

.

For example, F6 = 28633115302 + 28633115312 + 14316557662.

5 Generalization of the Cassini formula

Over 300 years have passed since the discovery of the Cassini formula for Fibonacci numbers

Fn−1Fn+1 − F 2
n = (−1)n.

During this time, many studies have appeared presenting new similar formulae for other
number sequences, which have become classical. But the methods proposed in the preceding
sections make it possible to unify researches in this direction. It turns out that normal num-
ber sequences mostly have the same properties as Fibonacci numbers. It can be illustrated
with the results of Theorem 14, Corollary 17, etc. In this section we shall prove some general
theorems, which generalize the Cassini identity.
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Consider normal number sequences of the second order

u0 = 0, u1 = 1, un+2 = a1un−1 + a2un. (42)

For these sequences, the following equality holds [34]:

ur+s = ur+1us + a2urus−1, (43)

where r ≥ 1, s ≥ 2. Let in (43) r = n, s = n− 1. Then

u2n−1 = un+1un−1 + a2unun−2.

For r = n− 1, s = n from (43) we have

u2n−1 = u2
n + a2u

2
n−1.

By subtracting two last equalities, we obtain the relation

un+1un−1 − u2
n = −a2(unun−2 − u2

n−1).

Thus, we get the sequence of equalities

(−a2)
0(un+1un−1 − u2

n) = (−a2)
1(unun−2 − u2

n−1),

(−a2)
1(un+1un−1 − u2

n) = (−a2)
2(unun−2 − u2

n−1),

...

(−a2)
n−3(u4u2 − u2

3) = (−a2)
n−2(u3u1 − u2

2),

by adding which, we get the generalized Cassini formula

un+1un−1 − u2
n = (−1)nan−1

2 .

In the equality (43), let r = n− 1, s = n− 3. Then

u2n−4 = unun−3 + a2un−1un−4.

If r = n− 2, s = n− 2, then from above equality we get

u2n−4 = un−1un−2 + a2un−2un−3.

By subtracting two last equalities, we obtain

unun−3 − un−1un−2 = −a2(un−1un−4 − un−2un−3).
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Thus, we get the equalities

(−a2)
0(unun−3 − un−1un−2) = (−a2)

1(un−1un−4 − un−2un−3),

(−a2)
1(un−1un−4 − un−2un−3) = (−a2)

2(un−2un−5 − un−3un−4),

...

(−a2)
n−5(u5u2 − u4u3) = (−a2)

n−4(u4u1 − u3u2).

Hence, by adding all these equalities, we finally get the equality

unun−3 − un−1un−2 = (−1)na1a
n−3
2 .

In this way, we prove the following proposition.

Theorem 25. For normal number sequences of the second order (42) the following equalities
are true:

un+1un−1 − u2
n = (−1)nan−1

2 , (44)

unun−3 − un−1un−2 = (−1)na1a
n−3
2 . (45)

For the sequences (un)n≥1, (u
∗
n)n≥1, which are generated by the second-order recurrence

relation with initial conditions u1 = 1, u2 = a1 u∗
1 = b1, u

∗
2 = b2 respectively, the following

equality is true
u∗
n = b2un−1 + a2b1un−2. (46)

Let us apply (46) to determine the Cassini formula for the sequence (u∗
n)n≥1:

u∗
n+1u

∗
n−1 − (u∗

n)
2 =

= (b2un + a2b1un−1)(b2un−2 + a2b1un−3)− (b2un−1 + a2b1un−2)
2 =

= b22(unun−2 − u2
n−1) + a22b

2
1(un−1un−3 − u2

n−2) + a2b2b1(unun−3 − un−1un−2).

Using (44), (45), we shall substitute relevant values instead of parentheses in the last
equalities

u∗
n+1u

∗
n−1 − (u∗

n)
2 = (−1)n−1b22a

n−2
2 + (−1)na22b

2
1a

n−3
2 + (−1)na2b1b2a1a

n−3
2 =

= (−1)n−1an−2
2 (b22 − a2b

2
1 − a1b1b2).

Theorem 26. For normal number sequences

u1 = 1, u2 = a1, un = a1un−1 + a2un−2 (47)

the following equalities hold:

unun−k − un−1un−(k−1) = (−1)n+k(mod 2)−1an−k
2 uk−1, (48)

where k ≥ 2, n ≥ k + 1.
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Proof. We shall prove the theorem by induction for k. For k = 2 the proposition of the
theorem is true based on the equality (44). Assume that the proposition of the theorem
is true for n = k and we shall prove that the proposition of the theorem is also true for
n = k + 1. We get

unun−(k+1) − un−1un−k = (a1un−1 + a2un−2)un−(k+1) − (a1un−2 + a2un−3)un−k =

= a1
(
un−1u(n−1)−k − un−2u(n−1)−(k−1)

)
+ a2

(
un−2u(n−2)−(k−1) − un−3u(n−2)−(k−2)

)
=

= a1(−1)(n−1)+(k mod 2)−1a
(n−1)−k

2 uk−1 + a2(−1)(n−2)+(k−1)(mod 2)−1a
(n−2)−(k−1)
2 uk−2 =

= (−1)n+(k mod 2)a
n−(k+1)
2 (a1uk−1 + a2uk−2) = (−1)n+(k mod 2)a

n−(k+1)
2 uk.

Theorem 27. The terms of the normal number sequence (47) satisfy the relation

unun−k − un−sun−(k−s) = (−1)n+(k mod 2)−1an−k
2 usuk−s. (49)

Proof. We shall prove by induction for s. For s = 1 (49) is written as the equality (48) from
Theorem 26. We shall denote U(n, k, s) = unun−k − un−sun−(k−s). Then

U(n, k, s+ 1) = unun−k − un−(s+1)un−(k−(s+1)) =

= (a1un−1 + a2un−2) un−k − un−(s+1)

(
a1u(n−1)−((k−1)−s) + a2u(n−2)−((k−1)−s)

)
=

= a1U(n− 1, k − 1, s) + a2U(n− 2, k − 2, s− 1) =

= (−1)(n−1)+((k−1) mod 2)−1a1a
(n−1)−(k−1)
2 usu(k−1)−s +

+(−1)(n−2)+((k−2) mod 2)−1a2a
(n−2)−(k−2)
2 us−1u(k−2)−(s−1) =

= (−1)n+(k mod 2)−1an−k
2 uk−(s+1)(a1us + a2us−1) = (−1)n+(k mod 2)−1an−k

2 us+1uk−(s+1).

Theorem 28. For the sequences (un)n≥1 and (u∗
n)n≥1, which satisfy the linear recurrence

equation (31) with initial conditions u1 = a1, u2 = a2 and u∗
1 = b1, u

∗
2 = b2 respectively, the

following identity is true:

u∗
nu

∗
n−k − u∗

n−su
∗
n−(k−s) = (−1)n+(k mod 2)an−k−1

2

(
b22 − a2b

2
1 − a1b1b2

)
usuk−s.
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Proof. To prove this we shall use the identity (33):

u∗
nu

∗
n−k − u∗

n−su
∗
n−(k−s) = (b2un−1 + a2b1un−2)(b2un−k−1 + a2b1un−k−2)−

−(b2un−s−1 + a2b1un−s−2)
(
b2un−(k−s)−1 + a2b1un−(k−s)−2

)
=

= b22U(n− 1, k, s) + a22b
2
1U(n− 2, k, s) +

+ a2b2b1U(n− 1, k + 1, s) + a2b2b1U(n− 2, k − 1, s) =

= (−1)n−1+(kbmod2)−1b22a
n−1−k
2 usuk−s + (−1)n−2+(k mod 2)−1a22b

2
1a

n−2−k
2 usuk−s +

+(−1)n−1+((k+1) mod 2)−1a2b2b1a
(n−1)−(k+1)
2 usu(k+1)−s +

+(−1)(n−2)+((k−1) mod 2)−1a2b2b1a
(n−2)−(k−1)
2 usu(k−1)−s =

= (−1)n+(k mod 2)an−k−2
2 us (a2b

2
2uk−s − a22b

2
1uk−s − a2b1b2uk−s+1 + a22b1b2uk−s−1) =

= (−1)n+(k mod 2)an−k−1
2 (b22 − a2b

2
1 − a1b1b2) usuk−s.
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