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Abstract

We derive partial solutions for a recently-posed problem of the enumeration of

restricted words. We obtain several explicit formulas in which the number of restricted

words is expressed in terms of the binomial coefficients. These results establish relations

between the partial Bell polynomials and the binomial coefficients.

In particular, we link the r-step Fibonacci numbers, the binomial coefficients and

the partitions of a positive integer into at most r parts. Also, we prove that several

well-known classes of integers can be interpreted in terms of compositions. We finish

the paper with an extension of a recent result about Euler-type identities for integer

compositions.

1 Introduction

We firstly recall the notion of the invert transform, which we express in terms of the formal
power series. For an arithmetic function f0, its invert transform f1 is defined by

(

1 +
∞
∑

i=1

f0(i)x
i

)

·

(

1−
∞
∑

i=1

f1(i)x
i

)

= 1.

In this paper, we consider the case when values of f0 are either 0 or 1. Then f1 takes
non-negative integer values. In a previous work, Janjić [5] defined the sequence f1, f2, . . . of
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arithmetic functions so that fm is the invert transform of fm−1 for m = 1, 2, . . .. The function
fm is called the mth invert transform of f0. The functions f1, f2, . . . generalize the notion of
the composition of a positive integer. Namely, if fm−1 takes only nonnegative integer values,
then fm(n) equals the number of the colored compositions of n in which the part i may
appear in fm−1(i) different colors. For an arithmetic function f , and a positive integer k, we
define the formal power series g(x, k; f) as

g(x, k; f) =

(

∞
∑

i=1

f(i)xi

)k

.

We consider the expansion

g(x, k; f) =
∞
∑

n=k

G(n, k; f)xn. (1)

It follows that g(x, k; f) is a generating function for the sequence G(n, k; f), (n = k, k+1, . . .).
The functions g(x, k; f) and the partial Bell polynomials Bn,k(x1, x2, . . .) are related by

G(n, k; f) =
k!

n!
Bn,k(1!f(1), 2!f(2), . . .). (2)

Also, the following equation is well-known:

G(n, k; f) =
∑

i1+i2+···+ik=n

f(i1) · · · f(ik), (3)

where the sum is over positive it, (t = 1, . . . , k). Similar expansions have recently been
considered by several authors. For instance, Eger [2] called the numbers G(n, k; f) the
weighted integer compositions. A number of results of the weighted integer compositions
and the partial Bell polynomials may be found in Eger [2, 3, 4]. The equation (3) slightly
differs from Eger [2, Equation (1)], where the sum is over non-negative it, (t = 1, 2, . . . , k).
D. Birmajer et al. [1] proved the following formula:

fm(n) =
n
∑

k=1

mk−1 k!

n!
Bn,k(1!f0(1), 2!f0(2), . . .). (4)

In this paper, we investigate the problem of the enumeration of some restricted words,
counted by the functions f1, f2, . . ., when f0 is a binary function (Janjić [5, Problem 21]).
We derive several explicit formulas for G(n, k; f0). Consequently, we obtain a combinatorial
interpretation of fm in terms of the restricted words over the alphabet {0, 1, . . . ,m}. The
obtained results yield a number identities for the partial Bell polynomials. Furthermore,
each G(n, k; f0) is expressed in terms of the binomial coefficients. In this way, we obtain the
identities connecting the partial Bell polynomials and the binomial coefficients.

In particular, we derive a result linking the r-step Fibonacci numbers, the binomial
coefficients, and the partitions of positive integers into at most r parts. We also prove that
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several well-known classes of integers, such as positive integers, squares, cubes, triangular
numbers, and so on, can be interpreted in terms of compositions. As a consequence, we
generalize a recent result about Euler-type identities for integer compositions.

For a set X ⊆ P, where P is the set of positive integers, we will use the following notation:

1. G(n, k;X) will be the number of compositions of n with k parts in X. Also, f1(n;X)
will be the number of all compositions of n with parts in X.

2. G(n, k;Xc) will be the number of compositions of n into k parts, none of which is from
X. Also, f1(n;X

c) will be the number of all compositions of n into parts which are
not from X.

For a binary function f0, we denote

A = {i : f0(i) = 1}, B = {i : f0(i) = 0}.

There is a natural bijection between compositions of n and the binary words of length n−1,
which is given by the correspondence

1 → 1, 2 → 10, 3 → 100, . . . ,

and then omitting the leading 1. Hence, for X ⊆ P, f1(n;X), and f1(n;X
c) also count the

appropriate binary words of length n− 1.
As an illustration, we present a well-known example.

Example 1. If A = {1, 2}, then G(n, k;A) equals the number of compositions of n into k

parts in {1, 2}. It is well known that

G(n, k;A) =

(

k

n− k

)

, f1(n;A) = Fn+1,

where Fn+1 is a Fibonacci number. By the preceding bijection, we obtain that Fn+1 equals the
number of binary words of length n− 1 having all zeros isolated, which is also a well-known
property of the Fibonacci numbers.

As a consequence of Birmajer at al. [1, Corollary 2.2], we obtain

Corollary 2. The number fm(n;A) equals the number of words of length n − 1 over the
alphabet {0, 1, . . . ,m}, in which 0 appears only in a run of length i− 1, for i ∈ A.

Also, the equation

fm(n;A) =
n
∑

k=1

mk−1G(n, k;A)

holds.
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Thus, whenever the values of G(n, k;A) are known, we can obtain the corresponding
number fm(n;A) of restricted words over the alphabet {0, 1, . . . ,m}.

We consider the following cases:

1. A is finite.

2. B is finite.

3. f0 is periodic.

We start with a simple example.

Example 3. Let A = P. A well-known property of compositions implies

G(n, k;A) =

(

n− 1

k − 1

)

for k = 1, . . . , n.

As a consequence of Corollary 2 and the binomial formula, we get

fm(n;A) = (m+ 1)n−1.

Equation (2) implies the following well-known identity:

Identity 4.

Bn,k(1!, 2!, . . .) =
n!

k!

(

n− 1

k − 1

)

.

The Lah numbers are on the right-hand side of the equation.

2 The case when A is finite

Assume that A = {a1, a2, . . . , ar}, where 1 ≤ a1 < a2 < · · · < ar, (r ≥ 1). A formula for
G(n, k;A) may be derived from the multinomial formula. We derive a formula in a different
way, as a generalization of the formula from Example 1.

Proposition 5. We have

G(n, k;A) =
∑

(j1,...,jr−1)

(

k

j1

)(

j1

j2

)

· · ·

(

jr−2

jr−1

)

, (5)

where the sum is over all non-increasing sequences of non-negative integers (j1, . . . , jr−1),
such that

n = ka1 + j1(a2 − a1) + · · ·+ jr−2(ar−1 − ar−2) + jr−1(ar − ar−1). (6)

If Equation (6) does not hold, then G(n, k;A) = 0.
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Proof. We write G(n, k;A) in the form G(n, k; a1, a2, . . . , ar). According to (3), we have to
solve the Diophantine equation

i1 + i2 + · · ·+ ik = n, (7)

where it are in A. Take s ∈ {0, 1, . . . , k}. If there is a solution of (7) in which a1 appears
s times, then there are

(

k

s

)

such solutions. In particular, when k = s, there is only one
solution. We now subtract a1 from each it, (t = 1, 2, . . . , k) in (7). For s < k, we obtain

j1 + · · ·+ jk−s = n− ka1, (8)

where jt ∈ {a2 − a1, . . . , ar − ar−1}. In the case s = k, Equation (7) has only one solution
when n = ka1. This is the case when in (5) we take j1 = · · · = jr−1 = 0. If n 6= ka1, then
Equation (7) has no solution. It follows that

G(n, k; a1, . . . , ar) =
k
∑

j1=0

(

k

j1

)

G(n− ka1, k − j1; a2 − a1, . . . , ar − ar−1),

where G(n− ka1, 0; a2− a1, . . . , ar − ar−1) = 1 if n = ka1, and G(n− ka1, 0; a2− p1, . . . , ar −
ar−1) = 0 otherwise. Repeating the same argument, we obtain

G(n, k; a1, . . . , ar) =
∑

k≥j1≥···≥jr−1≥0

(

k

j1

)(

j1

j2

)

· · ·

(

jr−2

jr−1

)

·X,

where

X = G(n− ka1 − j1(a2 − a1)− · · · − jr−2(ar−1 − ar−2), jr−1; ar − ar−1).

The number X equals the number of compositions of n − k(a1 − 1) − j1(a2 − a1) − · · · −
jr−2(ar−1 − ar−2) into jr−1 parts, each part equals to ar − ar−1. As in the case k = s, we
conclude that X = 1, if n = ka1 + j1(a2 − a1) + · · ·+ jr−2(ar−1 − ar−2) + jr−1(ar − ar−1). If
n 6= ka1, then X = 0.

Proposition 5 yields the following:

Identity 6. We have

Bn,k(0, . . . , 0, a1!, 0 . . . , 0, a2!, 0, . . .) =
n!

k!

∑

(

k

j1

)(

j1

j2

)

· · ·

(

jr−2

jr−1

)

,

where the sum is over all j1 ≥ j2 ≥ · · · ≥ jr−1 ≥ 0 such that

n = ka1 + j1(a2 − a1) + · · ·+ jr−2(ar−1 − ar−2) + jr−1(ar − ar−1).

Note 7. We point out that Identity 6, as well as the remaining identities of the partial Bell
polynomials, may be proved directly from the properties of the partial Bell polynomials.
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From Equation (4), we obtain the following:

Corollary 8. Let N be the number of words of length n− 1 over the alphabet {0, 1, . . . ,m}
such that 0 appears only in a run whose length belongs to the set {a1 − 1, a2 − 1, . . . , ar − 1}.
Then

N =
n
∑

k=1

mk−1G(n, k; a1, . . . , ar).

We now consider some special cases.

Corollary 9. Let A = {1, p} for (p > 1). Then

G(n, n− ip+ i;A) =

(

n− ip+ i

i

)

for i = 0, . . .

⌊

n

p

⌋

, (9)

and

f1(n;A) =

⌊n
p⌋
∑

i=0

(

n− ip+ i

i

)

.

Corollary 10. If A = {1, 2, . . . , r}, then

G(n, k;A) =
∑

(

k

j1

)(

j1

j2

)

· · ·

(

jr−2

jr−1

)

, (10)

where the sum is over all partitions (j1, j2, · · · , jr−1) of n− k into at most r − 1 parts, each
part having the size at most k.

Proof. Using Proposition 5, we have a1 = 1 and ai − ai−1 = 1 for i = 2, 3, . . . , r. It follows
that the sum is over all j1, j2, . . . , jr−1 such that

n = k + j1 + · · ·+ jr−1.

Since k ≥ j1 ≥ · · · ≥ jr−1, the sequences (j1, j2, . . . , jr−1) are partitions of n− k.

We know that f1(n;A) equals the number of all compositions of n with parts in {1, 2, . . . , r}.
These compositions are counted by the r-step Fibonacci numbers F r

n . Denoting k = j0 ≥ 1,
we obtain a result connecting the partitions and the binomial coefficients with the r-step
Fibonacci numbers.

Corollary 11. We have

F r
n+r−1 =

∑

(

j0

j1

)(

j1

j2

)

· · ·

(

jr−2

jr−1

)

,

where the sum is over all partitions (j0, j1, j2, . . . , jr−1) of n into at most r parts.
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Note that the terms of the partitions are written in a non-increasing order. We finish
this section with the following particular case.

Corollary 12. Consider the set A = {1, 3, 5}. If n− k ≡ 0 (mod 2), then

G(n, k;A) =

min {k,n−k
2

}
∑

i=0

(

k

i

)(

i
n−k
2

− i

)

.

Otherwise, G(n, k; 1, 3, 5) = 0.

Proof. From Proposition 5, we conclude that

G(n, k;A) =
∑

j1,j2

(

k

j1

)(

j1

j2

)

,

where n− k = 2j1 + 2j2, and k ≥ j1 ≥ j2 ≥ 0. It follows that

n− k ≡ 0 (mod 2), j1 ≤ min

{

k,
n− k

2

}

, j2 =
n− k

2
− j1.

Some related sequences in Sloane [7] are A000930, A000931, A017817, A052920, A071675,
A079960, A079976, A117760, A124304, A191238, A198295, A253189.

3 The case when B is finite

This section opens with a particular case.

Proposition 13. Let p > 1 be an integer, and B = {1, 2, . . . p− 1}. Then

G(n+ p, i+ 1;Bc) =

(

n− pi+ i

i

)

, for i = 0, . . . ,

⌊

n

p

⌋

. (11)

Proof. We write the formula (1) in the form

(xp + xp+1 + . . .)k =
∞
∑

n=0

G(n+ k, k;Bc)xn+k.

Since

(xp + xp+1 + . . .)k =
∞
∑

t=0

(

t+ k − 1

k − 1

)

xt+kp, (12)
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we have
∞
∑

n=0

G(n+ k, k;Bc)xn =
∞
∑

t=0

(

t+ k − 1

k − 1

)

xt+kp.

It follows that

G(n+ k, k;Bc) =

(

t+ k − 1

k − 1

)

,

for n + k = t + kp, that is, for t = n − k(p − 1) ≥ 0. When n < k(p − 1), we have
G(n + k, k;Bc) = 0. If n ≥ k(p − 1), then G(n + k, k;Bc) =

(

n−kp+2k−1
k−1

)

. Taking n − k

instead of n gives

G(n, k;Bc) =

(

n− kp+ k − 1

k − 1

)

. (13)

By denoting k = i+ 1, and by replacing n by n+ p, we obtain Equation (11).

Summing over all i in (11) yields

Corollary 14. The formula

f1(n+ p;Bc) =

⌊n
p⌋
∑

i=0

(

n− pi+ i

i

)

for n ≥ p

holds. Also, the number fm(n + p;Bc) equals the number of words of length n + p over the
alphabet {0, 1, . . . ,m}, in which 0 appears only in a run of length ≤ p− 1.

Note 15. Using a different method, the same result is obtained in [1, Example 9].

Identity 16. We have

Bn+p,i+1(0, 0, . . . , p!, (p+ 1)!, . . .) =
(n+ p)!

(i+ 1)!

(

n− pi+ i

i

)

,

(

0 ≤ i ≤

⌊

n

p

⌋)

.

For p = 2, we obtain the well-known formula

Fn+1 =

⌊n
2 ⌋
∑

i=0

(

n− i

i

)

for n ≥ 1, (14)

where Fn+1 is a Fibonacci number.
Assume that B 6= ∅ is finite, and let p− 1 be the greatest element of B. If f0(i) = 0 for

each i ≤ p − 1, then we find g(n, k, Bc), as in Proposition 13. This also includes the case
p = 2. So, we may assume that p > 2. Take A1 = {a1, . . . , ar} ⊂ {1, 2, . . . , p − 2}, which
consists of all i ∈ {1, 2, . . . , p − 2}, such that f0(i) = 1. We may assume that A1 6= ∅. It
follows that Bc = A1 ∪ {p, p+ 1, . . .}.
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Proposition 17. The following equation holds:

G(n, k;Bc) =

min{k,⌊n−k
p−1 ⌋}

∑

i=0

n−k+i−ip
∑

t=0

(

k

i

)(

t+ i− 1

i− 1

)

G(n− ip− t, k − i;A1).

Proof. We have

g(x, k;Bc) =
[

(xa1 + · · ·+ xar) + (xp + xp+1 + · · · )
]k

.

The binomial theorem implies

g(x, k;Bc) =
k
∑

i=0

(

k

i

)

(xa1 + · · ·+ xar)k−i(xp + xp+1 + · · · )i.

Let X = (xa1 + · · ·+ xar)k−i(xp + xp+1 + · · · )i. Proposition 5 yields

[(xa1 + · · ·+ xar)k−i =
∞
∑

s=0

G(s+ k − i, k − i;A1) · x
s+k−i.

Note that this equation is also true for i = k, since G(s, 0;A1) = 1 if and only if s = 0.
Otherwise, G(s, 0;A1) = 0, by the definition of G(s, k;A1).

We also have

(xp + xp+1 + · · · )i =
∞
∑

s=0

(

s+ i− 1

i− 1

)

xs+ip.

This equation also holds for i = 0, since
(

s+i−1
i−1

)

=
(

s−1
s

)

, which equals 0 if s 6= 0. If s = 0,

from
(

−1
0

)

= 1, we see that the right-hand side equals 1. We thus obtain

X =
∞
∑

s=0

G(s+ k − i, k − i;A1)x
s+k−i ·

∞
∑

s=0

(

s+ i− 1

i− 1

)

xs+ip.

Multiplying the series on the right-hand side yields

X =
∞
∑

s=0

[

s
∑

t=0

(

t+ i− 1

i− 1

)

G(s− t+ k − i, k − i;A1)

]

xs+k−i+ip.

Hence,

g(x, k;Bc) =
∞
∑

s=0

s
∑

t=0

k
∑

i=0

(

k

i

)(

t+ i− 1

i− 1

)

G(s− t+ k − i, k − i;A1) · x
s+k−i+ip. (15)

If we write (1) in the form

g(x, k;Bc) =
∞
∑

n=0

G(n+ k, k;Bc)xn+k,
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then, by comparing the coefficients of the same powers of x, we conclude that n = s− i+ ip.
Hence, in Equation (15), the sum over s has only one term, obtained for s = n − ip + i. If

s ≥ 0, then i ≤
⌊

n
p−1

⌋

, which implies that

0 ≤ i ≤ min

{

k,

⌊

n

p− 1

⌋}

.

We conclude that

G(n+ k, k;Bc) =

min{k,⌊ n
p−1⌋}

∑

i=0

n+i−ip
∑

t=0

(

k

i

)(

t+ i− 1

t

)

G(n− ip− t+ k, k − i;A1).

Replacing n by n− k proves our statement.

In particular, if A1 = {1}, then G(n− ip− t, k− i;A1) = 1 if n− ip− t = k− i. Otherwise,
G(n− ip− t, k − i;A1) = 0. We thus obtain

Corollary 18. If B = {2, 3, . . . , p− 1}, then

G(n, k;Bc) =

min{k,⌊n−k
p−1 ⌋}

∑

i=0

(

k

i

)(

n− k − (p− 2)i− 1

i− 1

)

.

An immediate consequence is

Identity 19. The following identity is true

Bn,k(1, 0, . . . , 0, p!, (p+ 1)!, . . .) =
k!

n!

min{⌊n−k
p−1

⌋,k}
∑

i=1

(

k

i

)(

n− k − (p− 2)i− 1

i− 1

)

.

As a consequence of Corollary 18, we prove that the following well-known classes of
integers count some restricted compositions.

Corollary 20.

1. The positive integer k gives the number of compositions of k+ 2 into k parts, none
of which is equal to 2. A000027

2. The triangular number
k(k+1)

2
gives the number of compositions of k+4 into k parts,

none of which is equal to 2. A000217

3. The square k2 gives the number of compositions of k + 5 into k parts, none of which
is equal to 2. A000290
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4. The number of k-dimensional partitions of 4 k(k2+6k−1)
6

gives the number of com-
positions of k + 6 into k parts, none of which is equal to 2. A008778

5. The pentagonal pyramidal number
k2(k+1)

2
gives the number of compositions of

k + 7 into k parts, none of which is equal to 2. A002411

6. Number of k-dimensional partition of 5 k(k3+18k2−k+6)
24

gives the number of com-
positions of k + 8 into k parts, none of which is equal to 2. A008779

7. The pentagonal number
k(3k−1)

2
gives the number of compositions of k + 8 into k

parts, none of which is equal either 2 or 3.A000326

8. The cube k3 gives the number of compositions of k + 11 into k parts, none of which
is equal either 2 or 3. A000578

9. The hexagonal number k(2k − 1) gives the number of compositions of k + 11 into
k parts, none of which belongs to {2, 3, 4}. A000384

10. The octagonal pyramidal number
k(k+1)(2k−1)

2
gives the number of compositions of

k + 14 into k parts, none of which belongs to {2, 3, 4}. A002414

11. The Cupolar number
k(5k2−3k+1)

3
gives the number of compositions of k + 15 into k

parts, none of which belongs to {2, 3, 4}. A096000

12. Heptagonal number
k(5k−3)

2
give the number of compositions of k + 14 into k parts,

none of which belongs to {2, 3, 4, 5}. A000566 (This example is suggested by the ref-
eree).

Proof. The above statements are an immediate consequence of Proposition 18. As an illus-
tration, we prove items 3, 8 and 11.

3. We have p = 3, n = 5, so that Proposition 18 reduces to the identity

k2 =
2
∑

i=1

(

k

i

)(

5− i− 1

i− 1

)

, (k ≥ 2),

which is easy to prove.
8. In this case, we have p = 4, n = 11. Denoting ak = G(11 + k, k; f), we obtain

a1 = 1, a2 =
2
∑

i=1

(

2

i

)(

11− 2i− 1

i− 1

)

= 8.

If k ≥ 3, then

ak =
3
∑

i=1

(

k

i

)(

11− 2i− 1

i− 1

)

=

(

k

1

)

+ 6

(

k

2

)

+ 6

(

k

3

)

= k3.

11

http://oeis.org/A008778
http://oeis.org/A002411
http://oeis.org/A008779
http://oeis.org/A000326
http://oeis.org/A000578
http://oeis.org/A000384
http://oeis.org/A002414
http://oeis.org/A096000
http://oeis.org/A000566


11. This case reduces to the identity

k(5k2 − 3k + 1)

3
=

4
∑

i=1

(

k

i

)(

15− 3i− 1

i− 1

)

,

which is easy to prove.

In some cases, we can obtain a simpler formula for G(n, k;B). We illustrate this by

Proposition 21. If B = {p} for p > 1, then

1.

G(pk, k;Bc) = (−1)k +
k
∑

i=1

(−1)k−i

(

k

i

)(

pi− 1

i− 1

)

.

2. If n > pk, then

G(n, k;Bc) =
k
∑

i=1

(−1)k−i

(

k

i

)(

n− pk + pi− 1

i− 1

)

.

3. If n < pk, then

G(n, k;Bc) =
k
∑

i=⌈ pk−n

p−1
⌉

(−1)k−i

(

k

i

)(

n− pk + pi− 1

i− 1

)

.

Proof. In this case, (1) has the form

g(x, k;Bc) = [(x+ x2 + · · · )− xp]k.

Using the binomial theorem yields

g(x, k;Bc) =
k
∑

i=0

(

k

i

)

(−xp)k−i(x+ x2 + · · · )i

= (−1)kxpk +
k
∑

i=1

(

k

i

)

(−xp)k−i(x+ x2 + · · · )i.

For i ≥ 1, applying equation (x+ x2 + · · · )k =
∑∞

j=0

(

j+i−1
j

)

xi+j, we obtain

g(x, k;Bc) = (−1)kxpk +
k
∑

i=1

∞
∑

j=0

(−1)k−i

(

k

i

)(

j + i− 1

j

)

xj+i+p(k−i).

It follows that
∞
∑

n=0

G(n, k;Bc)xn = (−1)kxpk +
k
∑

i=1

∞
∑

j=0

(−1)k−i

(

k

i

)(

j + i− 1

j

)

xj+i+p(k−i).

We consider three cases:

12



1. n = pk. In this case, pk = j + i+ p(k − i), which yields j = pi− i, and the statement
holds.

2. n > pk. In this case, j = n− pk + pi− i > 0, and the statement holds.

3. n < pk. The equation j = n − pk + pi − i > 0 yields pk − n + j = (p − 1)i, that is,
pk − n ≤ (p− 1)i. It follows that i ≥ pk−n

p−1
, which proves the statement.

Note 22. These formulas are simpler than the formula derived from Example 11 in [1], but
are essentially the same.

The referee suggested the following direct proof of 1.

Proof. If n = pk and l = p− 1, then [1, Identity 3] implies

G(pk, k;Bc) =
k!

(pk)!
Bpk,k(1!, . . . , (p− 1)!, 0, (p+ 1)!, . . .)

= (−1)k +
k−1
∑

l=0

(−1)l
(

k

l

)(

p(k − l)− 1

k − l − 1

)

= (−1)k +
k
∑

i=1

(−1)k−i

(

k

i

)(

pi− 1

i− 1

)

,

with the simple change of variables i = k − l.

The remaining two cases can be verified similarly.

Note 23. It is easy to obtain the appropriate formulas for fm(n;B
c), and their interpretations

in terms of restricted words.

Some related sequences in Sloane [7] are A005251, A005252, A005253, A049856, A051937,
A108758, A180177, and A205553.

4 The case when f0 is periodic

We first consider the case when 1 appears periodically in the sequence f0(1), f0(2), . . ..

Proposition 24. Let p be a positive integer, and let q be a nonnegative integer. If A = {i :
i ≡ q (mod p)}, then

G(n, k;A) =

(n−qk

p
+ k − 1

k − 1

)

,

for n− kq ≡ 0 (mod p). Otherwise, G(n, k;A) = 0.
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Proof. In this case, we use formula (3). Each term of the sum in (3) is either 0 or 1. For
the terms equal 1, each it must be of the form it = (jt − 1)p + q, (jt > 0). It follows that
p(j1 + j2 + · · ·+ jk) = n+ (p− q)k. We conclude that G(n, k;A) = 0, if n− kq 6≡ 0 (mod p).

Otherwise, we have

G(n, k;A) =
∑

j1+j2+···+jk=
n+(p−q)k

p

1,

which implies that

G(n, k;A) =

(n−qk

p
+ k − 1

k − 1

)

.

Applying (2) in the case n = kq + rp, we obtain

Identity 25.

Bkq+rp,k(. . . , 0, q!, 0, . . . , 0, (q + p)!, 0 . . .) =
(kq + rp)!

k!

(

r + k − 1

k − 1

)

.

In particular, for q = 1, we replace n by n − k to obtain G(n, k;A) =
(n−k

p
+k−1

k−1

)

, if

n− k ≡ 0 (mod p). Denoting n−k
p

by i implies G(n, n− ip;A) =
(

i+n−ip−1
i

)

. Replacing n by
n+ 1 yields

Corollary 26.

G(n+ 1, n+ 1− ip;A) =

(

n− ip+ i

i

)

, for i = 0, . . . ,

⌊

n

p

⌋

. (16)

Summing over all i we obtain

f1(n+ 1;A) =

⌊n
p
⌋

∑

i=0

(

n− ip+ i

i

)

.

Remark 27. Note that f1(n + 1;A) equals the number of compositions of n + 1 into parts
congruent 1 mod p.

We state two particular cases.

Remark 28. In the case p = 2, we obtain Equation (14) once again. For p = 3, the sequence
{f1(n+ 1, A) : n = 0, 1, . . .} is Narayana’s cows sequence A000930.

Let q > 1 be a positive integer, and let P = {p1, p2, . . . , pr} be a set of positive integers.
Define f0 in the following way:

f0(n) =

{

1, if n ≡ p (mod q), for some p ∈ P ;

0, otherwise.
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Proposition 29. The following formula holds

G(n, k;A) =

⌊n−k
q

⌋
∑

i=0

G(n− qi, k;P ) ·

(

i+ k − 1

k − 1

)

,

where G(n− qi, k;P ) can be calculated as in Proposition 5.

Proof. The function g(x, k;A) has the form

g(x, k;A) = (xp1 + · · ·+ xpr)k(1 + xq + x2q + · · · )k.

It follows that

g(x, k;A) =
∞
∑

i=0

G(i+ k, k;P )xi+k ·
∞
∑

i=0

(

i+ k − 1

k − 1

)

xiq.

We conclude that

g(x, k;A) =
∞
∑

u=0

u
∑

v=0

G(u− v + k, k;P ) ·

(

v + k − 1

k − 1

)

xu−v+k+vq. (17)

Comparing this equation with the expansion (1), we obtain that

n = u+ (q − 1)v.

This implies that 0 ≤ u ≤ n so that (17) yields

G(n+ k, k;A) =
n
∑

u=0

u
∑

v=0

G(u− v + k, k;P ) ·

(

v + k − 1

k − 1

)

.

Changing the order of summation implies

G(n+ k, k;A) =
n
∑

v=0

n
∑

u=v

G(u− v + k, k;P ) ·

(

v + k − 1

k − 1

)

.

Since n = u+ (q − 1)v, we obtain u− v = n− (q − 1)v − v = n− qv. The condition u ≥ v

yields v ≤ n
q
. Denoting v = i and taking n− k instead of n proves our statements.

Note 30. It is easy to obtain the appropriate formula for fm(n;A) and its interpretation in
terms of restricted words.

We finish this section with a particular case.

Corollary 31. Assume that f0 consists of the repeating string 110. Then

G(n, k;A) =

⌊n−k
3

⌋
∑

i=0

(

k

n− k − 3i

)(

i+ k − 1

k − 1

)

.
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Proof. In this case q = 3, P = {1, 2} so that we have G(n− 3i, k;P ) =
(

k

n−k−3i

)

, and the the
statement is true.

Corollary 32.

1. The array {G(n, k;A) : n = 1, 2, . . . ; k = 1, 2, . . . , n} is the Riordan array of the pair
(

1, x(1+x)
1−x3

)

, without the first column. A198295

2. In particular, the cake number
(

k

3

)

+ k gives the number of compositions of k + 3
into k parts, none of which is divided by 3. A000125

Some other related sequences in Sloane [7] are A001590, A003269, A008998, A008999,
A017898, A052541, A052917, A052927, A099524, A126030, and A159284.

5 Some Euler-type identities

In this section, we derive some identities connecting different kinds of compositions. As a
particular case, we obtain an Euler-type identity proved in Munagi [6].

By comparing equations (9), (11), and (16), we obtain

G(n, n− ip+ i; 1, p) = G(n+ p, i+ 1; p, p+ 1, . . .)

= G(n+ 1, n+ 1− ip; 1, 1 + p, 1 + 2p, . . .) =

(

n− ip+ i

i

)

,

(

i = 0, . . . ,

⌊

n

p

⌋)

.

In other words, we have

Corollary 33. Let n, p be positive integers, and 0 ≤ i ≤ ⌊n
p
⌋. The following sets have

(

n−ip+i

i

)

elements:

1. The set of compositions of n into n− ip+ i parts in {1, p}.

2. The set of compositions of n+ p into i+ 1 parts in {p, p+ 1, . . .}.

3. The set of compositions of n+ 1 into n+ 1− ip parts in {1, 1 + p, 1 + 2p, . . .}.

Since the numbers of all composition of n equals the sum of the numbers of compositions
into 1, 2, . . . , n parts, we obtain

Corollary 34. The following sets have the same number of elements:

1. The set of compositions of n+ 1 into parts ≡ 1 (mod p).

2. The set of compositions of n into parts in {1, p}.

3. The set of compositions of n+ p into parts greater than p− 1.
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Note 35. Note that this corollary is the assertion of Theorem 1.2 in Munagi [6], where the
bijections are obtained by using properties of zig-zag graphs. We also note that if N is the
number of elements in the above sets, then

N =

⌊n
p⌋
∑

i=0

(

n− ip+ i

i

)

.

We finish the paper with the following Euler-type identities for the partial Bell polyno-
mials.

Identity 36.

(n− ip+ i)!

n!
Bn,n−ip+i(1, 0, . . . , 0, p, 0, . . .) =

(i+ 1)!

(n+ p)!
Bn+p,i+1(0, . . . 0, p, p+ 1, . . .)

=
(n+ 1− ip)!

(n+ 1)!
Bn+1,n+1−ip(1, 0, . . . , 0, 1 + p, 0 . . . , 0, 1 + 2p, 0, . . .).
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