Two Properties of Catalan-Larcombe-French Numbers

Xiao-Juan Ji
School of Mathematical Sciences
Soochow University
Suzhou
Jiangsu 215006
P. R. China
xiaojuanji2015@yahoo.com
Zhi-Hong Sun
School of Mathematical Sciences
Huaiyin Normal University
Huaian
Jiangsu 223001
P. R. China
zhihongsun@yahoo.com

Abstract

Let $\left(P_{n}\right)$ be the Catalan-Larcombe-French numbers. The numbers P_{n} occur in the theory of elliptic integrals, and are related to the arithmetic-geometric-mean. In this paper we investigate the properties of the related sequence $S_{n}=P_{n} / 2^{n}$ instead, since S_{n} is an Apéry-like sequence. We prove a congruence and an inequality for P_{n}.

1 Introduction

Let $\left(P_{n}\right)$ be the sequence given by

$$
\begin{equation*}
P_{0}=1, P_{1}=8 \quad \text { and } \quad(n+1)^{2} P_{n+1}=8\left(3 n^{2}+3 n+1\right) P_{n}-128 n^{2} P_{n-1}(n \geq 1) \tag{1}
\end{equation*}
$$

The numbers P_{n} are called Catalan-Larcombe-French numbers since Catalan first defined P_{n} in [1], and Larcombe and French [6] proved that

$$
P_{n}=2^{n} \sum_{k=0}^{\lfloor n / 2\rfloor}(-4)^{k}\binom{2 n-2 k}{n-k}^{2}\binom{n-k}{k}=\sum_{k=0}^{n} \frac{\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}}{\binom{n}{k}},
$$

where $\lfloor x\rfloor$ is the greatest integer not exceeding x. The numbers P_{n} are related to the arithmetic-geometric-mean. See [6] and A053175 in Sloane's "On-Line Encyclopedia of Integer Sequences".

Let $\left(S_{n}\right)$ be defined by

$$
\begin{equation*}
S_{0}=1, S_{1}=4 \quad \text { and } \quad(n+1)^{2} S_{n+1}=4\left(3 n^{2}+3 n+1\right) S_{n}-32 n^{2} S_{n-1}(n \geq 1) \tag{2}
\end{equation*}
$$

Comparing (2) with (1), we see that

$$
S_{n}=\frac{P_{n}}{2^{n}}
$$

Zagier noted that

$$
S_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{2 k}{k}^{2}\binom{n}{2 k} 4^{n-2 k} .
$$

As observed by Jovović [7] in 2003,

$$
S_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k} \quad(n=0,1,2, \ldots)
$$

Recently Z. W. Sun stated that

$$
S_{n}=\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{k}{n-k}(-4)^{n-k}=\frac{1}{(-2)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}\binom{2 n-2 k}{n-k}\binom{k}{n-k}(-4)^{k} .
$$

The first few values of S_{n} are shown below:

$$
\begin{aligned}
& S_{0}=1, S_{1}=4, S_{2}=20, S_{3}=112, S_{4}=676, S_{5}=4304, S_{6}=28496 \\
& S_{7}=194240, S_{8}=1353508, S_{9}=9593104, S_{10}=68906320 \\
& S_{11}=500281280, S_{12}=3664176400, S_{13}=27033720640
\end{aligned}
$$

Let p be an odd prime. Jarvis, Larcombe, and French [3] proved that if $n=a_{r} p^{r}+\cdots+$ $a_{1} p+a_{0}$ with $a_{0}, a_{1}, \ldots, a_{r} \in\{0,1, \ldots, p-1\}$, then

$$
P_{n} \equiv P_{a_{r}} \cdots P_{a_{1}} P_{a_{0}} \quad(\bmod p) .
$$

Jarvis and Verrill [5] showed that

$$
P_{n} \equiv(-1)^{\frac{p-1}{2}} 128^{n} P_{p-1-n} \quad(\bmod p) \quad \text { for } \quad n=0,1, \ldots, p-1
$$

and

$$
P_{m p^{r}} \equiv P_{m p^{r-1}} \quad\left(\bmod p^{r}\right) \quad \text { for } \quad m, r \in \mathbb{Z}^{+},
$$

where \mathbb{Z}^{+}is the set of positive integers.
For a prime p let \mathbb{Z}_{p} denote the set of those rational numbers whose denominator is not divisible by p. Let p be an odd prime, $n \in \mathbb{Z}_{p}$ and $n \not \equiv 0,-16(\bmod p)$. The second author [11] proved that

$$
\sum_{k=0}^{p-1}\binom{2 k}{k} \frac{S_{k}}{(n+16)^{k}} \equiv\left(\frac{n(n+16)}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{4 k}{2 k}}{n^{2 k}} \quad(\bmod p)
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol.
In 1894 Franel [2] introduced the following Franel numbers $\left(f_{n}\right)$:

$$
f_{n}=\sum_{k=0}^{n}\binom{n}{k}^{3} \quad(n=0,1,2, \ldots) .
$$

The first few Franel numbers are as below:

$$
f_{0}=1, f_{1}=2, f_{3}=10, f_{4}=56, f_{5}=346, f_{6}=2252, f_{7}=15184
$$

Franel [2] noted that the sequence $\left(f_{n}\right)$ satisfies the recurrence relation:

$$
(n+1)^{2} f_{n+1}=\left(7 n^{2}+7 n+2\right) f_{n}+8 n^{2} f_{n-1}(n \geq 1)
$$

Let $r \in \mathbb{Z}^{+}$and p be a prime with $p \equiv 5,7(\bmod 8)$. The second author [11] conjectured that

$$
\begin{equation*}
S_{\frac{p^{r}-1}{2}} \equiv 0 \quad\left(\bmod p^{r}\right) \quad \text { and } \quad f_{\frac{p^{r}-1}{2}} \equiv 0 \quad\left(\bmod p^{r}\right) . \tag{3}
\end{equation*}
$$

In this paper we prove (3) in the case $r=2$. We also prove the second author's conjecture [11]:

$$
\left(1+\frac{1}{m(m-1)}\right) S_{m}^{2}>S_{m+1} S_{m-1} \quad \text { for } \quad m=2,3, \ldots
$$

2 Basic lemmas

Lemma 1 (Lucas' theorem [8]). Let p be an odd prime. Suppose $a=a_{r} p^{r}+\cdots+a_{1} p+a_{0}$ and $b=b_{r} p^{r}+\cdots+b_{1} p+b_{0}$, where $a_{r}, \ldots, a_{0}, b_{r}, \ldots, b_{0} \in\{0,1, \ldots, p-1\}$. Then

$$
\binom{a}{b} \equiv\binom{a_{r}}{b_{r}} \cdots\binom{a_{0}}{b_{0}} \quad(\bmod p) .
$$

Lucas' theorem is often formulated as follows.

Lemma 2 ([8]). Let p be an odd prime and $a, b \in \mathbb{Z}^{+}$. Suppose $a_{0}, b_{0} \in\{0,1, \ldots, p-1\}$. Then

$$
\binom{a p+a_{0}}{b p+b_{0}} \equiv\binom{a}{b}\binom{a_{0}}{b_{0}} \quad(\bmod p)
$$

Lemma 3 ([4, Lemma 2.7]). For any positive integer n we have

$$
S_{n}=2 \sum_{k=1}^{n}\binom{n-1}{k-1}\binom{2 k}{k}\binom{2 n-2 k}{n-k}
$$

Lemma 4 ([9]). Let p be an odd prime. Suppose $n=n_{1} p+n_{0}$ and $k=k_{1} p+k_{0}$ with $k_{1}, n_{1} \in \mathbb{Z}^{+}$and $k_{0}, n_{0} \in\{0,1, \ldots, p-1\}$. Then

$$
\binom{n}{k} \equiv\binom{n_{1}}{k_{1}}\left(\left(1+n_{1}\right)\binom{n_{0}}{k_{0}}-\left(n_{1}+k_{1}\right)\binom{n_{0}-p}{k_{0}}-k_{1}\binom{n_{0}-p}{k_{0}+p}\right) \quad\left(\bmod p^{2}\right)
$$

Lemma 5. Let p be an odd prime. Then

$$
\sum_{t=0}^{(p-1) / 2}(-1)^{t}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right)\binom{-\frac{1}{2}}{t}^{2} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Proof. For $0 \leq t \leq(p-1) / 2$, from Lemma 2 we have

$$
\begin{aligned}
\binom{\frac{p-1}{2}-p}{p+t} & =(-1)^{t+1}\binom{p+\frac{p+1}{2}+t-1}{p+t} \equiv(-1)^{t+1}\binom{\frac{p+1}{2}+t-1}{t} \\
& =-\binom{\frac{p-1}{2}-p}{t}(\bmod p)
\end{aligned}
$$

and so

$$
\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{p+t}=(-1)^{t}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right) \equiv 0 \quad(\bmod p)
$$

We first assume $p \equiv 1(\bmod 4)$. Applying Lemma 4 we get

$$
\begin{aligned}
& \binom{\frac{3(p-1)}{4}}{\frac{p-1}{4}}-\binom{p+\frac{3(p-1)}{4}}{p+\frac{p-1}{4}} \equiv\binom{\frac{3(p-1)}{4}}{\frac{p-1}{2}}-\left(2\binom{\frac{3(p-1)}{4}}{\frac{p-1}{2}}-\binom{\frac{3(p-1)}{4}-p}{\frac{p-1}{2}}\right) \\
& =-\binom{\frac{3(p-1)}{4}}{\frac{p-1}{2}}+(-1)^{\frac{p-1}{2}}\binom{\frac{3(p-1)}{4}}{\frac{p-1}{2}}=0 \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}+\binom{p-1-t}{\frac{p-1}{2}-t}-\binom{p+p-1-t}{p+\frac{p-1}{2}-t} \\
& \equiv-\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{\frac{p-1}{2}-p+t}{\frac{p-1}{2}}-\binom{p-1-t}{\frac{p-1}{2}}+\binom{-1-t}{\frac{p-1}{2}} \\
& =\left((-1)^{\frac{p-1}{2}}-1\right)\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\left((-1)^{\frac{p-1}{2}}-1\right)\binom{p-1-t}{\frac{p-1}{2}} \\
& =0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Also,

$$
(-1)^{t}\binom{-\frac{1}{2}}{t}^{2}-(-1)^{\frac{p-1}{2}-t}\binom{-\frac{1}{2}}{\frac{p-1}{2}-t}^{2} \equiv(-1)^{t}\left(\binom{\frac{p-1}{2}}{t}^{2}-\binom{\frac{p-1}{2}}{\frac{p-1}{2}-t}^{2}\right)=0 \quad(\bmod p) .
$$

By the above four congruences, we have

$$
\begin{aligned}
& \sum_{t=0}^{(p-1) / 2}(-1)^{t}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right)\binom{-\frac{1}{2}}{t}^{2} \\
&= \sum_{t=0}^{(p-5) / 4}(-1)^{t}\binom{-\frac{1}{2}}{t}^{2}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right) \\
& \quad+(-1)^{\frac{p-1}{4}}\binom{-\frac{1}{2}}{\frac{p-1}{4}}^{2}\left(\binom{\frac{3(p-1)}{4}}{\frac{p-1}{4}}-\binom{p+\frac{3(p-1)}{4}}{p+\frac{p-1}{4}}\right) \\
&+\sum_{t=0}^{(p-5) / 4}(-1)^{\frac{p-1}{2}-t}\binom{-\frac{1}{2}}{\frac{p-1}{2}-t}^{2}\left(\binom{p-1-t}{\frac{p-1}{2}-t}-\binom{p+p-1-t}{p+\frac{p-1}{2}-t}\right) \\
& \equiv\left.\sum_{t=0}^{(p-5) / 4}\left((-1)^{t}\binom{-\frac{1}{2}}{t}^{2}-(-1)^{\frac{p-1}{2}-t}\binom{-\frac{1}{2}}{\frac{p-1}{2}-t}\right)\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right) \\
& \quad+(-1)^{\frac{p-1}{4}}\binom{-\frac{1}{2}}{\frac{p-1}{4}}^{2}\left(\binom{\frac{3(p-1)}{4}}{\frac{p-1}{4}}-\binom{p+\frac{3(p-1)}{4}}{p+\frac{p-1}{4}}\right) \equiv 0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Thus the result is true for $p \equiv 1(\bmod 4)$.
Now we assume $p \equiv 3(\bmod 4)$. By Lemma 4,

$$
\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t} \equiv-\left(\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{p-1-t}{\frac{p-1}{2}}\right) \quad\left(\bmod p^{2}\right)
$$

As

$$
\begin{aligned}
& \binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{p-1-t}{\frac{p-1}{2}} \equiv\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{-1-t}{\frac{p-1}{2}} \\
& =\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+(-1)^{\frac{p-1}{2}}\binom{t+\frac{p-1}{2}}{\frac{p-1}{2}}=0 \quad(\bmod p)
\end{aligned}
$$

and

$$
(-1)^{t}\binom{-\frac{1}{2}}{t}^{2}+(-1)^{\frac{p-1}{2}-t}\binom{-\frac{1}{2}}{\frac{p-1}{2}-t}^{2} \equiv(-1)^{t}\left(\binom{\frac{p-1}{2}}{t}^{2}-\binom{\frac{p-1}{2}}{\frac{p-1}{2}-t}^{2}\right)=0 \quad(\bmod p)
$$

we obtain

$$
\begin{aligned}
& \sum_{t=0}^{(p-1) / 2}(-1)^{t}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{p+t}\right)\binom{-\frac{1}{2}}{t}^{2} \\
& \equiv-\sum_{t=0}^{(p-1) / 2}(-1)^{t}\left(\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{p-1-t}{\frac{p-1}{2}}\right)\binom{-\frac{1}{2}}{t}^{2} \\
& =-\sum_{t=0}^{(p-3) / 4}\left(\binom{\frac{p-1}{2}+t}{\frac{p-1}{2}}+\binom{p-1-t}{\frac{p-1}{2}}\right)\left((-1)^{t}\binom{-\frac{1}{2}}{t}^{2}+(-1)^{\frac{p-1}{2}-t}\binom{-\frac{1}{2}}{\frac{p-1}{2}-t}^{2}\right) \\
& \equiv 0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Hence the result is also true in this case. The proof is now complete.
Lemma 6 ([10, Theorem 3.3]). Let p be a prime with $p \equiv 5,7(\bmod 8)$. Then

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{3}}{(-64)^{k}} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Lemma 7 ([4, Lemma 2.8]). Let $m \in \mathbb{Z}$ and $k, p \in \mathbb{Z}^{+}$. Then

$$
\binom{m p^{r}-1}{k}=(-1)^{k-\left\lfloor\frac{k}{p}\right\rfloor}\binom{m p^{r-1}-1}{\lfloor k / p\rfloor} \prod_{i=1, p \nmid i}^{k}\left(1-\frac{m p^{r}}{i}\right) .
$$

3 Congruences for $S_{\frac{p^{2}-1}{2}}$ and $f_{\frac{p^{2}-1}{2}}\left(\bmod p^{2}\right)$

Theorem 8. Let p be a prime with $p \equiv 5,7(\bmod 8)$. Then

$$
S_{\frac{p^{2}-1}{2}} \equiv f_{\frac{p^{2}-1}{2}} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Moreover,

$$
S_{\frac{p^{2}-1}{2}} \equiv f_{\frac{p^{2}-1}{2}} \quad\left(\bmod p^{3}\right)
$$

Proof. For $\frac{p-1}{2}<t<p$ and $0 \leq s \leq \frac{p-1}{2}$, from Lemma 2 we see that

$$
\begin{gathered}
\binom{p^{2}-1}{\frac{p^{2}-1}{2}} \equiv\binom{p-1}{\frac{p-1}{2}}^{2} \equiv 1 \quad(\bmod p) \\
\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t} \equiv\binom{\frac{p-1}{2}}{s}\binom{\frac{p-1}{2}}{t}=0 \quad(\bmod p) \\
\binom{2 s p+2 t}{s p+t}=\binom{(2 s+1) p+2 t-p}{s p+t} \equiv\binom{2 s+1}{s}\binom{2 t-p}{t}=0 \quad(\bmod p)
\end{gathered}
$$

and

$$
\begin{aligned}
\binom{p^{2}-1-2 s p-2 t}{\frac{p^{2}-1-2 s p-2 t}{2}} & =\binom{(p-2 s-2) p+2 p-2 t-1}{\left(\frac{p-1}{2}-s-1\right) p+p+\frac{p-1}{2}-t} \\
& \equiv\binom{p-2 s-2}{\frac{p-1}{2}-s-1}\binom{2 p-2 t-1}{p+\frac{p-1}{2}-t}=0 \quad(\bmod p)
\end{aligned}
$$

Now we assert that

$$
\begin{equation*}
\sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3} \equiv 0 \quad\left(\bmod p^{2}\right) \quad \text { for } \quad s=0,1,2, \ldots \tag{4}
\end{equation*}
$$

We prove the result by induction on s. For $0 \leq t \leq(p-1) / 2$ we see that

$$
\binom{\frac{p^{2}-1}{2}}{t} \equiv\binom{-\frac{1}{2}}{t}=\frac{\binom{2 t}{t}}{(-4)^{t}} \quad\left(\bmod p^{2}\right) .
$$

From Lemma 6 we know that the result is true for $s=0$. Suppose that (4) holds for $s=k$. For $s=k+1$, applying Lemma 4 we have

$$
\begin{aligned}
& \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{(k+1) p+t}^{3} \\
& \equiv\binom{\frac{p-1}{2}}{k+1}^{3} \sum_{t=0}^{\frac{p-1}{2}}\left(\frac{p+1}{2}\binom{\frac{p-1}{2}}{t}-\left(\frac{p-1}{2}+k\right)\binom{\frac{p-1}{2}-p}{t}\right. \\
&\left.-k\binom{\frac{p-1}{2}-p}{t+p}-\left(\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{t+p}\right)\right)^{3}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Hence $\sum_{t=0}^{(p-1) / 2}\left(\frac{p-1}{2} p+\frac{p-1}{2}(k+1) p+t\right) \equiv 0\left(\bmod p^{2}\right)$ for $k \geq \frac{p-1}{2}$. For $k<\frac{p-1}{2}$, by the inductive hypothesis and Lemma 4 we have

$$
\sum_{t=0}^{(p-1) / 2}\left(\frac{p+1}{2}\binom{\frac{p-1}{2}}{t}-\left(\frac{p-1}{2}+k\right)\binom{\frac{p-1}{2}-p}{t}-k\binom{\frac{p-1}{2}-p}{t+p}\right)^{3} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Also, $\binom{\frac{p-1}{2}}{t} \equiv\binom{\frac{p-1}{2}-p}{t} \equiv\binom{-\frac{1}{2}}{t}(\bmod p)$ and $\left(\frac{p-1}{2}-p\right)+\binom{\frac{p-1}{2}-p}{t+p}=(-1)^{t}\left(\left(\begin{array}{c}\frac{p-1}{2} t+t\end{array}\right)-\binom{p+\frac{p-1}{2}+t}{t+p}\right) \equiv$ $0(\bmod p)$ for $t \in\left\{0,1, \ldots, \frac{p-1}{2}\right\}$. By Lemma 5 ,

$$
\begin{aligned}
& \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{(k+1) p+t}^{3} \\
& \equiv\binom{\frac{p-1}{2}}{k+1}^{3}\left(\sum_{t=0}^{(p-1) / 2}\left(\frac{p+1}{2}\binom{\frac{p-1}{2}}{t}-\left(\frac{p-1}{2}+k\right)\binom{\frac{p-1}{2}-p}{t}-k\binom{\frac{p-1}{2}-p}{t+p}\right)^{3}\right. \\
& +3 \sum_{t=0}^{(p-1) / 2}\left(\frac{p+1}{2}\binom{\frac{p-1}{2}}{t}-\left(\frac{p-1}{2}+k\right)\binom{\frac{p-1}{2}-p}{t}-k\binom{\frac{p-1}{2}-p}{t+p}\right) \\
& \times\left(\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{t+p}\right)^{2} \\
& -3 \sum_{t=0}^{(p-1) / 2}\left(\frac{p+1}{2}\binom{\frac{p-1}{2}}{t}-\left(\frac{p-1}{2}+k\right)\binom{\frac{p-1}{2}-p}{t}-k\binom{\frac{p-1}{2}-p}{t+p}\right)^{2} \\
& \times\left(\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{t+p}\right) \\
& \left.-\sum_{t=0}^{(p-1) / 2}\left(\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{t+p}\right)^{3}\right) \\
& \equiv-3\binom{\frac{p-1}{2}}{k+1}^{3} \sum_{t=0}^{(p-1) / 2}\binom{-\frac{1}{2}}{t}^{2}\left(\binom{\frac{p-1}{2}-p}{t}+\binom{\frac{p-1}{2}-p}{t+p}\right) \\
& =-3\binom{\frac{p-1}{2}}{k+1}^{3} \sum_{t=0}^{(p-1) / 2}(-1)^{t}\binom{-\frac{1}{2}}{t}^{2}\left(\binom{\frac{p-1}{2}+t}{t}-\binom{p+\frac{p-1}{2}+t}{t+p}\right) \\
& \equiv 0 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Hence

$$
f_{\frac{p^{2}-1}{2}} \equiv \sum_{s=0}^{(p-1) / 2} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Set $H_{0}=H_{0}(1,1)=0, H_{k}=\sum_{i=1}^{k} \frac{1}{k}$ and $H_{k}(1,1)=\sum_{1 \leq i<j \leq k} \frac{1}{i j}$ for $k \in \mathbb{Z}^{+}$. For $0 \leq s \leq$ $(p-1) / 2$, it is easily seen that $H_{p-1} \equiv 0(\bmod p),\binom{p-1}{2 s} \equiv 1-p H_{2 s}+p^{2} H_{2 s}(1,1)\left(\bmod p^{3}\right)$ and so $\frac{1}{\binom{p-1}{2 s}} \equiv 1+p H_{2 s}+p^{2}\left(H_{2 s}^{2}-H_{2 s}(1,1)\right)\left(\bmod p^{3}\right)$. By Lemma 7 , for $0 \leq t \leq(p-1) / 2$ we see that

$$
\binom{p^{2}-1}{2 s p+2 t}=\binom{p-1}{2 s} \prod_{i=1, p \nmid i}^{2 s p+2 t}\left(1-\frac{p^{2}}{i}\right) \equiv\binom{p-1}{2 s}\left(1-p^{2} \sum_{i=1, p \nmid i}^{2 s p+2 t} \frac{1}{i}\right) \quad\left(\bmod p^{3}\right) .
$$

Applying (4), Lemma 6 and the identity

$$
\binom{a-b}{c-d}\binom{b}{d}=\binom{a}{c}\binom{c}{d}\binom{a-c}{b-d} /\binom{a}{b}
$$

we derive that

$$
\begin{aligned}
& S_{\frac{p^{2}-1}{2}} \equiv \sum_{s=0}^{(p-1) / 2} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p^{2}-1}{2}}{s p+t}\binom{2 s p+2 t}{s p+t}\binom{p^{2}-1-2 s p-2 t}{\frac{p^{2}-1}{2}-s p-t} \\
& =\binom{p^{2}-1}{\frac{p^{2}-1}{2}} \sum_{s=0}^{(p-1) / 2} \sum_{t=0}^{(p-1) / 2} \frac{\binom{\left(p^{2}-1\right) / 2}{s p+t}^{3}}{\binom{p^{2}-1}{2 s p+2 t}} \\
& \equiv\binom{p^{2}-1}{\frac{p^{2}-1}{2}} \sum_{s=0}^{(p-1) / 2} \frac{1}{\binom{p-1}{2 s}} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3}\left(1+p^{2} \sum_{i=1, p+i}^{2 s p+2 t} \frac{1}{i}\right) \\
& \equiv\binom{p^{2}-1}{\frac{p^{2}-1}{2}} \sum_{s=0}^{(p-1) / 2} \frac{1}{\binom{p-1}{2 s}} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3} \\
& +p^{2}\binom{p^{2}-1}{\frac{p^{2}-1}{2}} \sum_{s=0}^{(p-1) / 2} \frac{\binom{2 s}{s}^{3}}{(-64)^{s}} \sum_{t=0}^{(p-1) / 2} \frac{\binom{2 t}{t}^{3}}{(-64)^{t}} H_{2 t} \\
& \equiv\binom{p^{2}-1}{\frac{p^{2}-1}{2}}\left(\sum_{s=0}^{(p-1) / 2} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3}\right. \\
& \left.+p \sum_{s=0}^{(p-1) / 2}\left(H_{2 s}+p\left(H_{2 s}^{2}-H_{2 s}(1,1)\right)\right) \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3}\right) \\
& \equiv \sum_{s=0}^{(p-1) / 2} \sum_{t=0}^{(p-1) / 2}\binom{\frac{p-1}{2} p+\frac{p-1}{2}}{s p+t}^{3} \\
& \equiv f_{\frac{p^{2}-1}{2}} \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Summarizing the above proves the theorem.

4 An inequality involving (S_{m})

Theorem 9. For $m=2,3,4, \ldots$ we have

$$
\left(1+\frac{1}{m(m-1)}\right) S_{m}^{2}>S_{m+1} S_{m-1}
$$

Proof. It is easily seen that

$$
\left(1+\frac{1}{(m-1)(m-2)}\right) S_{m-1}^{2}>S_{m} S_{m-2} \quad \text { for } \quad m=3,4, \ldots, 13
$$

Now suppose $m \geq 14$ and $\left(1+\frac{1}{(m-1)(m-2)}\right) S_{m-1}^{2}>S_{m} S_{m-2}$. By (2), Lemma 3 and the inductive hypothesis we have

$$
\begin{aligned}
& \left(1+\frac{1}{m(m-1)}\right) S_{m}^{2}-S_{m+1} S_{m-1} \\
& =\left(1+\frac{1}{m(m-1)}\right) S_{m}^{2}-\frac{4\left(3 m^{2}+3 m+1\right)}{(m+1)^{2}} S_{m} S_{m-1}+\frac{32 m^{2}}{(m+1)^{2}} S_{m-1}^{2} \\
& >\left(\frac{m^{2}-m+1}{m(m-1)} S_{m}-\frac{4\left(3 m^{2}+3 m+1\right)}{(m+1)^{2}} S_{m-1}+\frac{32 m^{2}(m-1)(m-2)}{(m+1)^{2}\left(m^{2}-3 m+3\right)} S_{m-2}\right) S_{m} \\
& =\left(\left(20 m^{5}-60 m^{4}+52 m^{3}+28 m^{2}-36 m+12\right) S_{m-1}\right. \\
& \left.\quad+\left(-128 m^{5}+320 m^{4}-256 m^{3}-32 m^{2}+192 m-96\right) S_{m-2}\right) \\
& \quad \times \frac{S_{m}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)} \\
& =\frac{16 S_{m}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)} \sum_{k=0}^{m-2}\binom{m-2}{k}\binom{2 k}{k}\binom{2 m-4-2 k}{m-2-k} F(m, k)
\end{aligned}
$$

where

$$
\begin{aligned}
F(m, k)= & \left(5 m^{5}-15 m^{4}+13 m^{3}+7 m^{2}-9 m+3\right) \frac{2 k+1}{k+1} \\
& -8 m^{5}+20 m^{4}-16 m^{3}-2 m^{2}+12 m-6 .
\end{aligned}
$$

For $m \geq 14$ it is easily seen that $3<\frac{(2 m-7)(2 m-5)}{(m-3)(m-2)}<4,5 m^{5}-15 m^{4}+13 m^{3}+7 m^{2}-9 m+3>0$, $-8 m^{5}+20 m^{4}-16 m^{3}-2 m^{2}+12 m-6<0,6 m^{7}-75 m^{6}+223 m^{5}-283 m^{4}-61 m^{3}+427 m^{2}-87 m-$ $42>0$, and $F(m, k+1)>F(m, k)$ for $k=0,1, \ldots, m-3$. Thus, $F(m, m-3)+F(m, 1)>$ $F(m, 5)+F(m, 1)>0$ and

$$
\begin{aligned}
F(m, k) \geq F(m, 2)= & \frac{5}{3}\left(5 m^{5}-15 m^{4}+13 m^{3}+7 m^{2}-9 m+3\right) \\
& -8 m^{5}+20 m^{4}-16 m^{3}-2 m^{2}+12 m-6>0 \quad \text { for } \quad k \geq 2
\end{aligned}
$$

From the above we derive that

$$
\begin{aligned}
& \left(1+\frac{1}{m(m-1)}\right) S_{m}^{2}-S_{m+1} S_{m-1} \\
& >\frac{16 S_{m}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)}\left(\sum_{k=0}^{2}\binom{m-2}{k}\binom{2 k}{k}\binom{2 m-4-2 k}{m-2-k} F(m, k)\right. \\
& \left.+\sum_{k=m-4}^{m-2}\binom{m-2}{k}\binom{2 k}{k}\binom{2 m-4-2 k}{m-2-k} F(m, k)\right) \\
& =\frac{16 S_{m}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)}\left(\binom{2 m-4}{m-2}(F(m, m-2)+F(m, 0))\right. \\
& +3(m-2)(m-3)\binom{2 m-8}{m-4}(F(m, m-4)+F(m, 2)) \\
& \left.+2(m-2)\binom{2 m-6}{m-3}(F(m, 1)+F(m, m-3))\right) \\
& >\left(3\left(m^{2}-5 m+6\right) F(m, m-4)+\frac{4(2 m-7)(2 m-5)}{(m-3)(m-2)} F(m, 0)\right) \\
& \times \frac{16 S_{m}\binom{2 m-8}{m-4}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)} \\
& =\frac{S_{m}\binom{2 m-8}{m-4}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)}\left(\left(6(m-2)(2 m-7)+\frac{8(2 m-7)(2 m-5)}{(m-3)(m-2)}\right)\right. \\
& \times\left(40 m^{5}-120 m^{4}+104 m^{3}+56 m^{2}-72 m+24\right) \\
& +\left(-128 m^{5}+320 m^{4}-256 m^{3}-32 m^{2}+192 m-96\right) \\
& \left.\times\left(3(m-2)(m-3)+\frac{4(2 m-7)(2 m-5)}{(m-3)(m-2)}\right)\right) \\
& >\left((6(m-2)(2 m-7)+24)\left(40 m^{5}-120 m^{4}+104 m^{3}+56 m^{2}-72 m+24\right)\right. \\
& \left.+(3(m-2)(m-3)+16)\left(-128 m^{5}+320 m^{4}-256 m^{3}-32 m^{2}+192 m-96\right)\right) \\
& \times \frac{S_{m}\binom{2 m-8}{m-4}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)} \\
& =\left(6 m^{7}-75 m^{6}+223 m^{5}-283 m^{4}-61 m^{3}+427 m^{2}-87 m-42\right) \\
& \times \frac{16 S_{m}\binom{2 m-8}{m-4}}{(m+1)^{2}\left(m^{2}-3 m+3\right) m^{3}(m-1)} \\
& >0 \text {. }
\end{aligned}
$$

Hence the inequality is proved by induction.

Corollary 10. For $m=2,3,4, \ldots$ we have

$$
\left(1+\frac{1}{m(m-1)}\right) P_{m}^{2}>P_{m+1} P_{m-1} .
$$

Proof. Since $P_{m}=2^{m} S_{m}$, the result follows from Theorem 9.

References

[1] E. Catalan, Sur les nombres de Segner, Rend. Circ. Mat. Palermo 1 (1887), 190-201.
[2] J. Franel, On a question of Laisant, L'Intermédiaire des Mathématiciens $\mathbf{1}$ (1894), 4547.
[3] A. F. Jarvis, P. J. Larcombe, and D. R. French, On small prime divisibility of the Catalan-Larcombe-French sequence, Indian J. Math. 47 (2005), 159-181.
[4] X. J. Ji and Z. H. Sun, Congruences for Catalan-Larcombe-French numbers, preprint, 2015, http://arxiv.org/abs/1505.00668v2.
[5] F. Jarvis and H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J. 22 (2010), 171-186.
[6] P. Larcombe and D. French, On the "other" Catalan numbers: a historical formulation re-examined, Congr. Numer. 143 (2000), 33-64.
[7] P. J. Larcombe and D. R. French, A new generating function for the Catalan-LarcombeFrench sequence: proof of a result by Jovovic, Congr. Numer. 166 (2004), 161-172.
[8] R. Meštrović, Lucas' theorem: its generalizations, extensions and applications (18782014), preprint, 2014, http://arxiv.org/abs/1409. 3820.
[9] B. Sagan, Congruences via Abelian groups, J. Number Theory. 20 (1985), 210-237.
[10] Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory. 133 (2013), 1950-1976.
[11] Z. H. Sun, Congruences involving Franel and Catalan-Larcombe-French numbers, preprint, 2015, http://arxiv.org/abs/1502.02499.

2010 Mathematics Subject Classification: Primary 11A07; Secondary 05A10, 05A19, 05A20. Keywords: congruence, inequality, Catalan-Larcombe-French number.
(Concerned with sequence A053175.)

Received November 21 2015; revised versions received November 24 2015; February 232016. Published in Journal of Integer Sequences, April 62016.

Return to Journal of Integer Sequences home page.

