Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.8

Mode and Edgeworth Expansion for the Ewens Distribution and the Stirling Numbers

Zakhar Kabluchko
Institut für Mathematische Statistik
Universität Münster
Orléans-Ring 10
48149 Münster Germany
zakhar.kabluchko@uni-muenster.de

Alexander Marynych
Faculty of Cybernetics
Taras Shevchenko National University of Kyiv
01601 Kyiv
Ukraine
marynych@unicyb.kiev.ua
Henning Sulzbach
School of Computer Science
McGill University
3480 University Street
Montréal, QC H3A 0E9
Canada
henning.sulzbach@gmail.com

Abstract

We provide asymptotic expansions for the Stirling numbers of the first kind and, more generally, the Ewens (or Karamata-Stirling) distribution. Based on these expansions, we obtain some new results on the asymptotic properties of the mode and the maximum of the Stirling numbers and the Ewens distribution. For arbitrary $\theta>0$ and for all sufficiently large $n \in \mathbb{N}$, the unique maximum of the Ewens probability mass function $$
\mathbb{L}_{n}(k)=\frac{\theta^{k}}{\theta(\theta+1) \cdots(\theta+n-1)}\left[\begin{array}{l} n \\ k \end{array}\right], \quad k=1, \ldots, n,
$$ is attained at $k=\left\lfloor a_{n}\right\rfloor$ or $\left\lceil a_{n}\right\rceil$, where $a_{n}=\theta \log n-\theta \Gamma^{\prime}(\theta) / \Gamma(\theta)-1 / 2$. We prove that the mode is the nearest integer to a_{n} for a set of n 's of asymptotic density 1 , yet this formula is not true for infinitely many n 's.

1 Introduction and statement of results

1.1 Introduction

The (unsigned) Stirling numbers of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$ are defined, for $n \in \mathbb{N}$ and $1 \leq k \leq n$, by the formula

$$
x^{(n)}:=x(x+1) \cdots(x+n-1)=\sum_{k=1}^{n}\left[\begin{array}{l}
n \tag{1}\\
k
\end{array}\right] x^{k}, \quad x \in \mathbb{R} .
$$

For $n \in \mathbb{N}$, a random variable $K_{n}(\theta)$ is said to have the Ewens distribution with parameter $\theta>0$ if its probability mass function is given by the formula

$$
\mathbb{P}\left(K_{n}(\theta)=k\right)=\frac{\theta^{k}}{\theta^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right], \quad k=1, \ldots, n
$$

Bingham [2] called this distribution the Karamata-Stirling law. One can interpret $K_{n}(\theta)$ as the number of blocks in a random partition of $\{1, \ldots, n\}$ distributed according to the Ewens sampling formula, or, equivalently, the number of different alleles in the infinite alleles model, the number of tables in a Chinese restaurant process, or the number of colors in the Hoppe urn. The Ewens sampling formula plays an important role in population genetics [6], [4, Section 1.3]. There is a distributional representation of $K_{n}(\theta)$ as a sum of independent random variables

$$
K_{n}(\theta) \stackrel{d}{=} \xi_{1}+\cdots+\xi_{n}, \text { where } \xi_{i} \sim \operatorname{Bern}(\theta /(\theta+i-1))
$$

and $\operatorname{Bern}(p)$ denotes the Bernoulli distribution with parameter p. In the special case $\theta=1$, classical results going back at least to Feller [7] and Rényi [21] state that the random variable $K_{n}(1)$ has the same distribution as the number of cycles in a uniformly chosen random permutation of n objects, or the number of records in a sample of n i.i.d. variables from a
continuous distribution. It follows easily from Lindeberg's theorem that $K_{n}(\theta)$ satisfies a central limit theorem of the form

$$
\frac{K_{n}(\theta)-\theta \log n}{\sqrt{\theta \log n}} \xrightarrow[n \rightarrow \infty]{d} \mathrm{~N}(0,1)
$$

known as Goncharov's CLT in the case $\theta=1$.
Asymptotic expansions, as $n \rightarrow \infty$, of the Stirling numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$ in various regions of k were provided in numerous works [12, 13, 18, 20, 23, 24]. Most notably, Hwang [13, Theorem 2] (and Theorem 14 on page 108 of his dissertation [12] for a more general result) gave an asymptotic expansion valid uniformly in the domain $2 \leq k \leq \eta \log n$, for any fixed $\eta>0$. Louchard [18, Theorem 2.1] computed three non-trivial terms of the asymptotic expansion in the central regime $k=\log n+O(\sqrt{\log n})$ which is similar to the classical Edgeworth expansion in the central limit theorem.

In this short note we start by deriving a full Edgeworth expansion, as $n \rightarrow \infty$, for the sequence of probability mass functions $k \mapsto \mathbb{P}\left(K_{n}(\theta)=k\right)$ which is uniform both in $\theta \in[1 / \eta, \eta]$ (where $\eta>1$) and in $k \in\{1, \ldots, n\}$; see Theorem 1. Our result is an application of the general Edgeworth expansion for deterministic or random profiles which the authors [16] recently obtained. Using this asymptotic expansion we derive some new results on the mode and the maximum of the Ewens distribution. In the case $\theta=1$ the mode can be interpreted as the most probable number of cycles in a random permutation of n objects. It was investigated in the works of Hammersley [10, 11] and Erdős [5]. Our results on the mode and the maximum will be stated in Theorems 5 and 7 below.

1.2 Asymptotic expansion of the Ewens distribution

Before stating our main result we need to recall some notions. The (complete) Bell polynomials $B_{j}\left(z_{1}, \ldots, z_{j}\right)$ are defined by the formal identity

$$
\exp \left(\sum_{j=1}^{\infty} \frac{x^{j}}{j!} z_{j}\right)=\sum_{j=0}^{\infty} \frac{x^{j}}{j!} B_{j}\left(z_{1}, \ldots, z_{j}\right)
$$

Therefore $B_{0}=1$ and, for $j \in \mathbb{N}$,

$$
\begin{equation*}
B_{j}\left(z_{1}, \ldots, z_{j}\right)=\sum^{\prime} \frac{j!}{i_{1}!\cdots i_{j}!}\left(\frac{z_{1}}{1!}\right)^{i_{1}} \cdots\left(\frac{z_{j}}{j!}\right)^{i_{j}} \tag{2}
\end{equation*}
$$

where the sum \sum^{\prime} is taken over all $i_{1}, \ldots, i_{j} \in \mathbb{N}_{0}$ satisfying $1 i_{1}+2 i_{2}+\cdots+j i_{j}=j$. For example, the first three Bell polynomials are given by

$$
\begin{equation*}
B_{1}\left(z_{1}\right)=z_{1}, \quad B_{2}\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}, \quad B_{3}\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{3}+3 z_{1} z_{2}+z_{3} . \tag{3}
\end{equation*}
$$

Further, we will use the "probabilist" Hermite polynomials $\mathrm{He}_{n}(x)$ defined by

$$
\begin{equation*}
\operatorname{He}_{n}(x)=e^{\frac{1}{2} x^{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{n} e^{-\frac{1}{2} x^{2}}, \quad n \in \mathbb{N}_{0} . \tag{4}
\end{equation*}
$$

The first few Hermite polynomials needed for the first three terms of the expansion are

$$
\begin{aligned}
& \mathrm{He}_{0}(x)=1, \quad \mathrm{He}_{1}(x)=x, \quad \operatorname{He}_{2}(x)=x^{2}-1, \quad \mathrm{He}_{3}(x)=x^{3}-3 x, \\
& \operatorname{He}_{4}(x)=x^{4}-6 x^{2}+3, \quad \operatorname{He}_{6}(x)=x^{6}-15 x^{4}+45 x^{2}-15
\end{aligned}
$$

Theorem 1. Fix $r \in \mathbb{N}_{0}$ and a compact subset $L \subset(0, \infty)$. Uniformly over $\theta \in L$ we have

$$
\lim _{n \rightarrow \infty}(\log n)^{\frac{r+1}{2}} \sup _{k=1, \ldots, n}\left|\mathbb{P}\left(K_{n}(\theta)=k\right)-\frac{e^{-\frac{1}{2} x_{n}^{2}(k, \theta)}}{\sqrt{2 \pi \theta \log n}} \sum_{j=0}^{r} \frac{H_{j}\left(x_{n}(k, \theta)\right)}{(\theta \log n)^{j / 2}}\right|=0 .
$$

Here, $x_{n}(k, \theta)=\frac{k-\theta \log n}{\sqrt{\theta \log n}}$ and $H_{j}(x)$ is a polynomial of degree $3 j$ given by

$$
\begin{equation*}
H_{j}(x):=H_{j}(x, \theta)=\frac{(-1)^{j}}{j!} e^{\frac{1}{2} x^{2}} B_{j}\left(\widetilde{D_{1}}, \ldots, \widetilde{D_{j}}\right) e^{-\frac{1}{2} x^{2}} \tag{5}
\end{equation*}
$$

where B_{j} is the j-th Bell polynomial and $\widetilde{D_{1}}, \widetilde{D_{2}}, \ldots$ are differential operators given by

$$
\begin{equation*}
\widetilde{D_{j}}:=\widetilde{D_{j}}(\theta)=\frac{1}{(j+1)(j+2)}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{j+2}+\widetilde{\chi}_{j}(0)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{j} \tag{6}
\end{equation*}
$$

with $\widetilde{\chi}_{j}(\beta)=-\left(\frac{\mathrm{d}}{\mathrm{d} \beta}\right)^{j} \log \Gamma\left(\theta e^{\beta}\right)$ and Γ denoting the Euler gamma function.
Remark 2. It follows from (3), (5) and (6) that the first three coefficients of the expansion are

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =-\frac{\Gamma^{\prime}(\theta)}{\Gamma(\theta)} \theta x+\frac{1}{6} \operatorname{He}_{3}(x) \\
H_{2}(x) & =\left(\theta^{2} \frac{\Gamma^{\prime 2}(\theta)}{\Gamma^{2}(\theta)}-\frac{\theta^{2} \Gamma^{\prime \prime}(\theta)+\theta \Gamma^{\prime}(\theta)}{2 \Gamma(\theta)}\right) \mathrm{He}_{2}(x)+\left(\frac{1}{24}-\frac{\Gamma^{\prime}(\theta)}{6 \Gamma(\theta)} \theta\right) \operatorname{He}_{4}(x) \\
& +\frac{1}{72} \operatorname{He}_{6}(x) .
\end{aligned}
$$

An expression for $\widetilde{\chi}_{j}(0)$ involving polygamma functions and Stirling numbers of the second kind will be given below in (13). The tilde in $\widetilde{D_{j}}$ and $\widetilde{\chi}_{j}$ is needed to keep the notation consistent with our more general work [16]. It is easy to check that $H_{j}(-x)=(-1)^{j} H_{j}(x)$ [16, Remark 2.4].

To compute $H_{j}(x)$ one can proceed as follows. First, express $\frac{1}{j!} B_{j}\left(\widetilde{D_{1}}, \ldots, \widetilde{D_{j}}\right)$ as a polynomial in $D:=\frac{\mathrm{d}}{\mathrm{d} x}$ (and note that only even/odd powers of D are present if j is even/odd). Then replace each occurrence of D^{l} by $\mathrm{He}_{l}(x)$; see (4) for justification.

Remark 3. It is possible to choose the value of θ as a function of k. One natural choice is $\theta=1$ which provides a full version of Louchard's expansion [18, Theorem 2.1] (although he used a slightly different normalization in his analogue of $x_{n}(k, 1)$ and his term $-355 x^{3} / 144$ should be replaced by $-47 x^{3} / 144$). Another possible choice is $\theta=k / \log n$ (so that $x_{n}(k, \theta)=0$), which gives a large-deviation-type expansion valid uniformly in the region $\eta^{-1} \log n<k<\eta \log n$, for fixed $\eta>1$ and $q \in \mathbb{N}_{0}$:

$$
\frac{(k / \log n)^{k}}{(k / \log n)^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{1}{\sqrt{2 \pi k}} \sum_{s=0}^{q} \frac{H_{2 s}(0, k / \log n)}{k^{s}}+o\left(\frac{1}{(\log n)^{q+1}}\right)
$$

Observe that the terms with half-integer powers of k are not present in the sum because $H_{2 j+1}(0)=0$. Using the formula

$$
\frac{\Gamma(n+\theta)}{n!}=n^{\theta-1}\left(1+O\left(\frac{1}{n}\right)\right)
$$

yields the expansion

$$
\frac{1}{n!}\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]=\frac{1}{\Gamma(\theta)} n^{\theta-\theta \log \theta-1}\left(\frac{1}{\sqrt{2 \pi k}} \sum_{s=0}^{q} \frac{H_{2 s}(0, \theta)}{k^{s}}+o\left(\frac{1}{(\log n)^{q+1}}\right)\right)
$$

valid as $n \rightarrow \infty$ uniformly over k in the region $\theta=k / \log n \in\left(\eta^{-1}, \eta\right)$. In this region, this expansion must be equivalent to Hwang's result [13, Theorem 2]. It is not easy to rigorously verify this equivalence by a direct comparison, but we checked using Mathematica 9 that the first three non-trivial terms coincide. Note a misprint in the formula for the remainder term $Z_{\mu}(m, n)$ in Hwang [13, Theorem 2]: $(\log n)^{m} /(m!n)$ should be replaced by $(\log n) /(m n)$. Expansion (7) could be also deduced from the work of Féray et al. [8, Theorem 3.4].

Taking sums over k in Theorem 1 and using the Euler-Maclaurin formula to approximate Riemann sums by integrals, one obtains that

$$
\begin{array}{ll}
\mathbb{P}\left(\frac{K_{n}(\theta)-\theta \log n}{\sqrt{\theta \log n}} \leq x\right)=\Phi(x) & \\
& +\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi \theta \log n}}\left(\frac{1}{2}-\frac{x^{2}-1}{6}+\theta \frac{\Gamma^{\prime}(\theta)}{\Gamma(\theta)}\right)+O\left(\frac{1}{\log n}\right),
\end{array}
$$

uniformly in $x \in(\theta \log n)^{-1 / 2}(\mathbb{Z}-\theta \log n)$, where $\Phi(x)$ is the standard normal distribution function. The proof follows Grübel and Kabluchko [9, Proposition 2.5] and is therefore omitted. Yamato [25] recently stated a slightly incorrect version of this expansion missing the term $1 / 2$ which comes from the Euler-Maclaurin formula. Similarly, one can obtain further terms in the expansion of the distribution function of $\left(K_{n}(\theta)-\theta \log n\right) / \sqrt{\theta \log n}$.
Remark 4. Since the set $L \subseteq(0, \infty)$ in Theorem 1 has to be chosen compact, our results do not yield asymptotic expansions for $\mathbb{P}\left(K_{n}(\theta)=k\right)$ in the regime $k=o(\log n)$ of the same precision as Hwang's [13, Theorems 1 and 2]. Also, they do not extend straightforwardly to the case $k=n-O\left(n^{\alpha}\right)$ for $0<\alpha<1$ treated by Louchard [18, Section 3]. A generalization of our approach to cover these regions will be content of future work.

1.3 Mode and maximum of the Ewens distribution

Theorem 1 allows us to deduce various results on the mode and the maximum of the Ewens distribution. A mode is any value $k \in\{1, \ldots, n\}$ maximizing $\mathbb{P}\left(K_{n}(\theta)=k\right)$, while the maximum $M_{n}(\theta)$ is defined by

$$
M_{n}(\theta)=\max _{1 \leq k \leq n} \mathbb{P}\left(K_{n}(\theta)=k\right)
$$

Let $u_{n}(\theta)$ denote the least mode. In this context, it is important to note that, for all $\theta>0$, the function $k \mapsto \mathbb{P}\left(K_{n}(\theta)=k\right)$ is log-concave by a theorem attributed to Newton [11, 22], and

$$
\begin{align*}
\mathbb{P}\left(K_{n}(\theta)=1\right)<\ldots<\mathbb{P}\left(K_{n}(\theta)=u_{n}(\theta)\right) & \\
& \geq \mathbb{P}\left(K_{n}(\theta)=u_{n}(\theta)+1\right)>\ldots>\mathbb{P}\left(K_{n}(\theta)=n\right) . \tag{8}
\end{align*}
$$

In particular, there are at most two modes. For $\theta=1$, Erdős [5], proving a conjecture of Hammersley [11], showed that the mode is unique for all $n \geq 3$. By (8), uniqueness also holds for irrational θ; however, for rational θ, the mode need not be unique since, for example,

$$
\frac{2}{3}\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left(\frac{2}{3}\right)^{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]>\left(\frac{2}{3}\right)^{3}\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

Theorem 5. Fix $\theta>0$. There exists $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}, u_{n}(\theta)$ is the unique mode of the Ewens distribution with parameter θ. The mode $u_{n}(\theta)$ equals one of the numbers $\left\lfloor u_{n}^{*}(\theta)\right\rfloor$ or $\left\lceil u_{n}^{*}(\theta)\right\rceil$, where

$$
u_{n}^{*}(\theta)=\theta \log n-\frac{\theta \Gamma^{\prime}(\theta)}{\Gamma(\theta)}-\frac{1}{2}
$$

and $\lfloor\cdot\rfloor,\lceil\cdot\rceil$ denote the floor and the ceiling functions, respectively. Write $\delta_{n}(\theta):=\min _{k \in \mathbb{Z}} \mid u_{n}^{*}(\theta)-$ $k \mid$. For the maximum $M_{n}(\theta)$, we have

$$
\sqrt{2 \pi \theta \log n} M_{n}(\theta)=1+\frac{\theta(\log \Gamma)^{\prime}(\theta)+\theta^{2}(\log \Gamma)^{\prime \prime}(\theta)+1 / 12-\delta_{n}^{2}(\theta)}{2 \theta \log n}+o\left(\frac{1}{\log n}\right) .
$$

In the case $\theta=1$, Hammersley [11] and Erdős [5] derived related results for the mode. Cramer [3] discusses statistical applications and Mező [19] provides an overview and generalizations. Theorem 5 states that the mode is one of the numbers $\left\lfloor\log n+\gamma-\frac{1}{2}\right\rfloor$ or $\left\lceil\log n+\gamma-\frac{1}{2}\right\rceil$, for sufficiently large n. In fact, this holds for all $n \in \mathbb{N}$.
Proposition 6. $u_{n}(1) \in\left\{\left\lfloor\log n+\gamma-\frac{1}{2}\right\rfloor,\left\lceil\log n+\gamma-\frac{1}{2}\right\rceil\right\}$ for all $n \in \mathbb{N}$.
The proof uses the following formula of Hammersley [11]:

$$
\begin{equation*}
u_{n}(1)=\left\lfloor\log n+\gamma+\frac{\zeta(2)-\zeta(3)}{\log n+\gamma-\frac{3}{2}}+\frac{h(n)}{\left(\log n+\gamma-\frac{3}{2}\right)^{2}}\right\rfloor, \tag{9}
\end{equation*}
$$

for some $-1.098011<h(n)<1.430089$. Hwang [12, Section 5.7.9] gives a more precise expansion. Erdős [5] observed that, for $n>189$, Hammersley's formula implies that the mode is one of the numbers $\left\lfloor\log (n-1)+\frac{1}{2}\right\rfloor$ or $\lfloor\log (n-1)+1\rfloor$. Note that his $\Sigma_{n, s}$ equals $\left[\begin{array}{c}n+1 \\ n+1-s\end{array}\right]$ and his $n-f(n)$ is $u_{n+1}(1)-1$ in our notation.

The next theorem provides more precise information about the behavior of the mode. Recall that a set $A \subset \mathbb{N}$ has asymptotic density $\alpha \in[0,1]$ if

$$
\lim _{n \rightarrow \infty} \frac{\#(A \cap\{1, \ldots, n\})}{n}=\alpha
$$

For $x \in \mathbb{R}$, let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of x. Let nint (x) be the integer closest to x (if $\{x\}=1 / 2$, we agree to take $\operatorname{nint}(x)=\lceil x\rceil$). That is,

$$
\operatorname{nint}(x):=\underset{k \in \mathbb{Z}}{\arg \min }|x-k|=\left\lfloor x+\frac{1}{2}\right\rfloor .
$$

Theorem 7. Fix $\theta>0$. The mode $u_{n}(\theta)$ of the Ewens distribution with parameter θ has the following properties:
(i) there exists a constant $C_{0}>0$ such that, for all $n \in \mathbb{N}$ satisfying

$$
\left|\left\{u_{n}^{*}(\theta)\right\}-\frac{1}{2}\right|>\frac{C_{0}}{\log n},
$$

the mode $u_{n}(\theta)$ equals

$$
\operatorname{nint}\left(u_{n}^{*}(\theta)\right)=\left\lfloor\theta \log n-\frac{\theta \Gamma^{\prime}(\theta)}{\Gamma(\theta)}\right\rfloor ;
$$

(ii) there are arbitrarily long intervals of consecutive n's for which $u_{n}(\theta)=\left\lceil u_{n}^{*}(\theta)\right\rceil$; similarly, there are arbitrarily long intervals of consecutive n's for which $u_{n}(\theta)=\left\lfloor u_{n}^{*}(\theta)\right\rfloor$;
(iii) the set of $n \in \mathbb{N}$ such that $u_{n}(\theta)=\operatorname{nint}\left(u_{n}^{*}(\theta)\right)$ has asymptotic density one;
(iv) there are infinitely many $n \in \mathbb{N}$ such that $u_{n}(\theta) \neq \operatorname{nint}\left(u_{n}^{*}(\theta)\right)$.

The proof of part (iv) uses five terms in the Edgeworth expansion, where the first two terms influence the form of $u_{n}^{*}(\theta)$, while the remaining terms are needed for technical reasons. The idea is that the formula $u_{n}(\theta)=\operatorname{nint}\left(u_{n}^{*}(\theta)\right)$ becomes wrong if the fractional part of $u_{n}^{*}(\theta)$ is slightly below $\frac{1}{2}$, so that higher order terms in the Edgeworth expansion decide which of the values $\left\lfloor u_{n}^{*}(\theta)\right\rfloor$ and $\left\lceil u_{n}^{*}(\theta)\right\rceil$ is the mode. Using even more terms in the expansion, it is possible to replace $u_{n}^{*}(\theta)$ by some more complicated expressions involving higher-order corrections in inverse powers of $\theta \log n$ [12, Section 5.7.9]. However, it seems that there is no formula of the form

$$
u_{n}(1)=\operatorname{nint}\left(\log n+a_{0}+\frac{a_{1}}{\log n}+\cdots+\frac{a_{r}}{(\log n)^{r}}\right)
$$

which is valid for all sufficiently large n.
Finally, we would like to mention that one can easily obtain counterparts of the above results for the B - and D-analogues of Stirling numbers of the first kind. These are defined as the coefficients of $(x+1)(x+3) \cdots(x+2 n-1)$ and $((x+1)(x+3) \cdots(x+2 n-3))(x+$ $n-1$), respectively. They appear, for example, in the study of intrinsic volumes of Weyl chambers [14].

2 Proofs

Proof of Theorem 1. The proof follows from the general Edgeworth expansion for random or deterministic profiles [16, Theorem 2.1]. We consider the sequence of "profiles"

$$
\mathbb{L}_{n}(k):=\mathbb{P}\left(K_{n}(\theta)=k\right)=\frac{\theta^{k}}{\theta^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right] \mathbb{1}_{\{k \in\{1, \ldots, n\}\}},
$$

and define

$$
w_{n}:=\theta \log n, \quad \varphi(\beta):=e^{\beta}-1, \quad\left(\beta_{-}, \beta_{+}\right)=\mathbb{R}, \quad \mathscr{D}=\{z \in \mathbb{C}:|\operatorname{Im} z|<\pi\} .
$$

In order to apply [16, Theorem 2.1], we need to check Conditions A1-A4 given in the beginning of Section 2 of the cited paper. Note that

$$
\begin{aligned}
W_{n}(\beta) & :=e^{-\varphi(\beta) w_{n}} \sum_{k \in \mathbb{Z}} e^{\beta k} \mathbb{L}_{n}(k)=n^{-\theta\left(e^{\beta}-1\right)} \sum_{k=1}^{n} e^{\beta k} \frac{\theta^{k}}{\theta^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right] \\
& =n^{-\theta\left(e^{\beta}-1\right)} \frac{\left(\theta e^{\beta}\right)^{(n)}}{\theta^{(n)}}=n^{-\theta\left(e^{\beta}-1\right)} \frac{\Gamma\left(\theta e^{\beta}+n\right) \Gamma(\theta)}{\Gamma\left(\theta e^{\beta}\right) \Gamma(\theta+n)} \underset{n \rightarrow \infty}{\longrightarrow} \frac{\Gamma(\theta)}{\Gamma\left(\theta e^{\beta}\right)}=: W_{\infty}(\beta)
\end{aligned}
$$

locally uniformly in $\beta \in \mathscr{D}$ with a rate of convergence which is polynomial in n^{-1}. Hence Conditions A1-A3 are satisfied. In order to check A4 it is enough to show that for every $a>0, r \in \mathbb{N}$ and every compact subset K_{1} of \mathbb{R}

$$
\sup _{\beta \in K_{1}} \sup _{a \leq u \leq \pi}\left(n^{-\theta\left(e^{\beta}-1\right)}\left|\frac{\Gamma\left(\theta e^{\beta+i u}+n\right) \Gamma(\theta)}{\Gamma(\theta+n) \Gamma\left(\theta e^{\beta+i u}\right)}\right|\right)=o\left(\log ^{-r} n\right), \quad n \rightarrow \infty .
$$

But this easily follows from

$$
\begin{aligned}
& \sup _{\beta \in K_{1}}\left(n^{-\theta\left(e^{\beta}-1\right)} \sup _{a \leq u \leq \pi}\left|\frac{\Gamma\left(\theta e^{\beta+i u}+n\right) \Gamma(\theta)}{\Gamma(\theta+n) \Gamma\left(\theta e^{\beta+i u}\right)}\right|\right) \\
& \leq C \sup _{\beta \in K_{1}}\left(n^{-\theta\left(e^{\beta}-1\right)} \sup _{a \leq u \leq \pi}\left|\frac{\Gamma\left(\theta e^{\beta+i u}+n\right)}{\Gamma(\theta+n)}\right|\right) \leq C_{1} \sup _{\beta \in K_{1}} n^{\theta e^{\beta}(\cos a-1)},
\end{aligned}
$$

with constants C, C_{1} depending on K_{1}, θ and a. Therefore, Theorem 2.1 of [16] is applicable for the Ewens distribution with arbitrary fixed $\theta>0$. In particular, for $\theta=1$, we obtain

$$
(\log n)^{\frac{r+1}{2}} \sup _{\beta \in K} \sup _{1 \leq k \leq n}\left|\frac{\Gamma\left(e^{\beta}\right) e^{\beta k}}{n^{e^{\beta}-1} n!}\left[\begin{array}{l}
n \tag{10}\\
k
\end{array}\right]-\frac{e^{-\frac{1}{2} x_{n}^{2}\left(k, e^{\beta}\right)}}{\sqrt{2 \pi e^{\beta} \log n}} \sum_{j=0}^{r} \frac{G_{j}\left(x_{n}\left(k, e^{\beta}\right) ; \beta\right)}{(\log n)^{j / 2}}\right| \underset{n \rightarrow \infty}{\longrightarrow} 0,
$$

where K is a compact subset of \mathbb{R}, and the polynomials G_{0}, G_{1}, \ldots are defined as in Theorem 2.1 of [16]: for $j \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
G_{j}(x ; \beta)=\frac{(-1)^{j}}{j!} e^{\frac{1}{2} x^{2}} B_{j}\left(D_{1}, \ldots, D_{j}\right) e^{-\frac{1}{2} x^{2}} \tag{11}
\end{equation*}
$$

with the differential operators

$$
\begin{equation*}
D_{j}:=D_{j}(\beta)=e^{-\frac{1}{2} \beta j}\left(\frac{1}{(j+1)(j+2)}\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{j+2}+\chi_{j}(\beta)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{j}\right) \tag{12}
\end{equation*}
$$

where

$$
\chi_{j}(\beta)=-\left(\frac{\mathrm{d}}{\mathrm{~d} \beta}\right)^{j} \log \Gamma\left(e^{\beta}\right)
$$

Now, if $L \subseteq(0, \infty)$ is compact, then $K:=\log L$ is compact in \mathbb{R}. Applying (10) with $K=\log L$ and $\beta=\log \theta \in K$, we obtain

$$
(\log n)^{\frac{r+1}{2}} \sup _{\theta \in L} \sup _{1 \leq k \leq n}\left|\frac{\Gamma(\theta) \theta^{k}}{n^{\theta-1} n!}\left[\begin{array}{l}
n \\
k
\end{array}\right]-\frac{e^{-\frac{1}{2} x_{n}^{2}(k, \theta)}}{\sqrt{2 \pi \theta \log n}} \sum_{j=0}^{r} \frac{G_{j}\left(x_{n}(k, \theta) ; \log \theta\right)}{(\log n)^{j / 2}}\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

By Stirling's formula, uniformly in $\theta \in L, n \in \mathbb{N}$ and $1 \leq k \leq n$, we have

$$
\frac{\Gamma(\theta) \theta^{k}}{n^{\theta-1} n!}\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\theta^{k}}{\theta^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left(1+O\left(n^{-1}\right)\right)=\frac{\theta^{k}}{\theta^{(n)}}\left[\begin{array}{l}
n \\
k
\end{array}\right]+O\left(n^{-1}\right)
$$

We conclude the proof by noting that $G_{j}(x ; \log \theta)=\theta^{-j / 2} H_{j}(x)$ which follows directly from $\widetilde{\chi}_{j}(0)=\chi_{j}(\log \theta)$. Indeed, by comparing (6) and (12), we obtain

$$
D_{j}(\log \theta)=\theta^{-j / 2} \widetilde{D_{j}}(\theta)
$$

which implies that

$$
B_{j}\left(D_{1}(\log \theta), \ldots, D_{j}(\log \theta)\right)=\theta^{-j / 2} B_{j}\left(\widetilde{D_{1}}(\theta), \ldots, \widetilde{D_{j}}(\theta)\right)
$$

since $B_{j}\left(z_{1}, \ldots, z_{j}\right)$ is a sum of terms of the form $c \cdot z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{j}^{i_{j}}$ with $1 i_{1}+2 i_{2}+\cdots+j i_{j}=j$; see (2). Comparing (5) and (11), we obtain the required identity $G_{j}(x ; \log \theta)=\theta^{-j / 2} H_{j}(x)$.

To see that $\widetilde{\chi}_{j}(0)=\chi_{j}(\log \theta)$, one can easily show by induction over $j \geq 1$ that, both

$$
\chi_{j}(\beta)=-\sum_{\ell=1}^{j}\left\{\begin{array}{l}
j \\
\ell
\end{array}\right\} \psi^{(\ell-1)}\left(e^{\beta}\right) e^{\ell \beta}
$$

and

$$
\widetilde{\chi}_{j}(\beta)=-\sum_{\ell=1}^{j}\left\{\begin{array}{l}
j \tag{13}\\
\ell
\end{array}\right\} \psi^{(\ell-1)}\left(\theta e^{\beta}\right)\left(\theta e^{\beta}\right)^{\ell}
$$

Here $\psi^{(j)}(x)=(\log \Gamma(x))^{(j+1)}$ denotes the polygamma function and $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the Stirling number of the second kind satisfying the recurrence

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\}+k\left\{\begin{array}{l}
n \\
k
\end{array}\right\}, \quad 1 \leq k \leq n, \quad n \in \mathbb{N}
$$

with initial conditions $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}=1,\left\{\begin{array}{l}n \\ 0\end{array}\right\}=\left\{\begin{array}{l}0 \\ n\end{array}\right\}=0$.
Proof of Theorem 5. It follows from Theorems 2.10 in [16] that for sufficiently large n, the maximizers of the function $k \mapsto \mathbb{P}\left(K_{n}(\theta)=k\right)$ must be of the form $\left\lfloor u_{n}^{*}\right\rfloor$ or $\left\lceil u_{n}^{*}\right\rceil$.

Next we prove that the maximizer is unique (for sufficiently large n) by following a method of Erdős [5] who considered the case $\theta=1$. Thanks to (8), the uniqueness is evident if θ is irrational. Hence, we assume that $\theta=Q_{1} / Q_{2}$ is rational with Q_{1}, Q_{2} being integer. We have, by (1),

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\sum_{1 \leq a_{1}<\ldots<a_{n-k} \leq n-1} a_{1} \cdots a_{n-k} .
$$

Put $k_{n}=\left\lceil u_{n}^{*}(\theta)\right\rceil=\theta \log n+O(1)$ as $n \rightarrow \infty$. By (8), it is sufficient to show that

$$
\theta^{k_{n}}\left[\begin{array}{c}
n \tag{14}\\
k_{n}
\end{array}\right] \neq \theta^{k_{n}-1}\left[\begin{array}{c}
n \\
k_{n}-1
\end{array}\right] .
$$

By Erdős' argument relying on the prime number theorem with an appropriate error term [5, p. 233], for all sufficiently large n, there is a prime number p satisfying $(n-1) / k_{n}<p<$ $(n-1) /\left(k_{n}-1\right)$. Then,

$$
\left[\begin{array}{c}
n \\
k_{n}
\end{array}\right] \not \equiv 0 \quad(\bmod p), \quad\left[\begin{array}{c}
n \\
k_{n}-1
\end{array}\right] \equiv 0 \quad(\bmod p)
$$

because in the representation of the former Stirling number all products except one are divisible by p, whereas in the latter all products are divisible by p. If n is large, p is not among the prime factors of Q_{1} and Q_{2}. Hence (14) follows and the mode of $K_{n}(\theta)$ is unique. Finally, the formula for M_{n} follows from Theorem 2.13 of [16].

Proof of Proposition 6. Recall Hammersley's formula (9):

$$
u_{n}(1)=\left\lfloor\log n+\gamma+\frac{\zeta(2)-\zeta(3)}{\log n+\gamma-\frac{3}{2}}+\frac{h(n)}{\left(\log n+\gamma-\frac{3}{2}\right)^{2}}\right\rfloor
$$

with some $-1.1<h(n)<1.44$. It is easy to check that

$$
\frac{\zeta(2)-\zeta(3)}{x}-\frac{1.1}{x^{2}}>-\frac{1}{2} \text { and } \frac{\zeta(2)-\zeta(3)}{x}+\frac{1.44}{x^{2}}<\frac{1}{2}
$$

for $x>2.5$. Hence, the proposition is true for $\log n+\gamma-\frac{3}{2}>2.5$, that is for $n \geq 31$. For $n=1,2, \ldots, 30$ the statement is easy to verify using Mathematica 9 .

Proof of Theorem 7 (i) and (ii). Part (i) follows essentially from Theorem 2.10 in [16] and its proof. Namely, by [16, Equation (90)], for $k=k(n)=u_{n}^{*}(\theta)+g \in \mathbb{Z}$ with $g=O(1)$, we have

$$
\sqrt{2 \pi \theta \log n}\left(\mathbb{P}\left(K_{n}(\theta)=k+1\right)-\mathbb{P}\left(K_{n}(\theta)=k\right)\right)=-\frac{2 g+1}{2 \theta \log n}+o\left(\frac{1}{\log n}\right) .
$$

The same relation, but with a better remainder term $O\left(\frac{1}{\log ^{2} n}\right)$, follows from (16) which we shall prove below. Taking $g=-\left\{u_{n}^{*}(\theta)\right\}$, so that $k=\left\lfloor u_{n}^{*}(\theta)\right\rfloor$ and $k+1=\left\lceil u_{n}^{*}(\theta)\right\rceil$, yields

$$
\begin{aligned}
\mathbb{P}\left(K_{n}(\theta)=\left\lceil u_{n}^{*}(\theta)\right\rceil\right)-\mathbb{P}\left(K_{n}(\theta)=\left\lfloor u_{n}^{*}(\theta)\right\rfloor\right) & \\
& =\frac{1}{\sqrt{2 \pi \theta \log n}}\left(\frac{\left\{u_{n}^{*}(\theta)\right\}-\frac{1}{2}}{\theta \log n}+O\left(\frac{1}{\log ^{2} n}\right)\right) .
\end{aligned}
$$

It follows that there is a sufficiently large constant $C_{0}>0$ such that, if $\left\{u_{n}^{*}(\theta)\right\}>\frac{1}{2}+\frac{C_{0}}{\log n}$, then the right-hand side is positive, and the mode equals $\left\lceil u_{n}^{*}(\theta)\right\rceil$. Similarly, if $\left\{u_{n}^{*}(\theta)\right\}<$ $\frac{1}{2}-\frac{C_{0}}{\log n}$, then the right-hand side is negative, and the mode equals $\left\lfloor u_{n}^{*}(\theta)\right\rfloor$.

The proof of part (ii) follows immediately from part (i) and the fact that, for every fixed $L>0$, we have $\log (n+L)-\log n \rightarrow 0$ as $n \rightarrow \infty$.

Proof of Theorem 7 (iii). In view of part (i) it suffices to show that

$$
\limsup _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\#\left\{1 \leq k \leq n: \operatorname{dist}\left(u_{k}^{*}(\theta), \mathbb{Z}+1 / 2\right)<\varepsilon\right\}}{n}=0,
$$

which, in turn, follows from the fact that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\#\{1 \leq k \leq n: \operatorname{dist}(\log k, \alpha \mathbb{Z}+\beta)<\varepsilon\}}{n}=0, \tag{15}
\end{equation*}
$$

for all $\alpha>0$ and $\beta \in \mathbb{R}$. Equation (15) would be true if the sequence of fractional parts of $\alpha^{-1} \log k, k \in \mathbb{N}$, were uniformly distributed on $[0,1]$. However, the latter claim is unfortunately not true [17, Examples 2.4 and 2.5, pp. 8-9]. Let us prove (15). We have, assuming that $\varepsilon<\alpha / 2$,

$$
\begin{aligned}
& \#\{1 \leq k \leq n: \operatorname{dist}(\log k, \alpha \mathbb{Z}+\beta)<\varepsilon\}=\sum_{k=1}^{n} \#\{j \in \mathbb{Z}: \operatorname{dist}(\log k, \alpha j+\beta)<\varepsilon\} \\
&=\sum_{j \in \mathbb{Z}} \#\left\{1 \leq k \leq n: e^{\alpha j+\beta-\varepsilon}<k<e^{\alpha j+\beta+\varepsilon}\right\} \\
& \leq \sum_{j \in \mathbb{Z}} \#\left\{k \in \mathbb{N}: e^{\alpha j+\beta-\varepsilon} \vee 1 \leq k \leq e^{\alpha j+\beta+\varepsilon} \wedge n\right\}
\end{aligned}
$$

The summand on the right-hand side is the number of integers in the interval $\left[e^{\alpha j+\beta-\varepsilon} \vee\right.$ $\left.1, e^{\alpha j+\beta+\varepsilon} \wedge n\right]$ (which is empty if either $e^{\alpha j+\beta-\varepsilon}>n$ or $e^{\alpha j+\beta+\varepsilon}<1$). Hence, it is bounded from above by $\left(e^{\alpha j+\beta+\varepsilon} \wedge n-e^{\alpha j+\beta-\varepsilon} \vee 1+1\right)_{+}$. Therefore,

$$
\#\{1 \leq k \leq n: \operatorname{dist}(\log k, \alpha \mathbb{Z}+\beta)<\varepsilon\} \leq \sum_{j \in \mathbb{Z}}\left(e^{\alpha j+\beta+\varepsilon} \wedge n-e^{\alpha j+\beta-\varepsilon} \vee 1+1\right)_{+}
$$

Further,

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}}\left(e^{\alpha j+\beta+\varepsilon} \wedge n-e^{\alpha j+\beta-\varepsilon} \vee 1+1\right)_{+} \\
& =\sum_{j \in \mathbb{Z}} e^{\alpha j+\beta+\varepsilon} \mathbb{1}_{\{\alpha j+\beta+\varepsilon<0\}}+\sum_{j \in \mathbb{Z}} e^{\alpha j+\beta+\varepsilon} \mathbb{1}_{\{\alpha j+\beta-\varepsilon<0,0 \leq \alpha j+\beta+\varepsilon<\log n\}} \\
& +\sum_{j \in \mathbb{Z}} n \mathbb{1}_{\{\alpha j+\beta-\varepsilon<0, \log n \leq \alpha j+\beta+\varepsilon\}} \\
& +\sum_{j \in \mathbb{Z}}\left(e^{\alpha j+\beta+\varepsilon}-e^{\alpha j+\beta-\varepsilon}+1\right) \mathbb{1}_{\{\alpha j+\beta-\varepsilon \geq 0, \alpha j+\beta+\varepsilon<\log n\}} \\
& +\sum_{j \in \mathbb{Z}}\left(n-e^{\alpha j+\beta-\varepsilon}+1\right)_{+} \mathbb{1}_{\{\alpha j+\beta-\varepsilon \geq 0, \log n \leq \alpha j+\beta+\varepsilon\}}
\end{aligned}
$$

Note that the first series converges, the second contains at most one summand since we assume $\varepsilon<\alpha / 2$, and the third vanishes for n large enough. It can be checked that

$$
\sum_{j \in \mathbb{Z}}\left(e^{\alpha j+\beta+\varepsilon}-e^{\alpha j+\beta-\varepsilon}+1\right) \mathbb{1}_{\{\alpha j+\beta-\varepsilon \geq 0, \alpha j+\beta+\varepsilon<\log n\}} \leq C(\alpha, \beta)\left(e^{\beta+\varepsilon}-e^{\beta-\varepsilon}\right) n
$$

with an absolute constant $C(\alpha, \beta)$. Further, for n sufficiently large, we have

$$
\sum_{j \in \mathbb{Z}}\left(n-e^{\alpha j+\beta-\varepsilon}+1\right)_{+} \mathbb{1}_{\{\alpha j+\beta-\varepsilon \geq 0, \log n \leq \alpha j+\beta+\varepsilon\}} \leq n\left(1-e^{-2 \varepsilon}\right)+1
$$

Putting pieces together gives (15).

Proof of Theorem 7 (iv). Recall the notation $w_{n}=\theta \log n$ and $x_{n}(k)=x_{n}(k, \theta)=(k-$ $\left.w_{n}\right) / \sqrt{w_{n}}$. Using Theorem 1 with $r=4$, we obtain

$$
\begin{aligned}
& \sqrt{2 \pi w_{n}} \mathbb{P}\left(K_{n}(\theta)=k\right)=e^{-\frac{1}{2} x_{n}^{2}(k)} \\
& \quad \times\left(1+\frac{H_{1}\left(x_{n}(k)\right)}{w_{n}^{1 / 2}}+\frac{H_{2}\left(x_{n}(k)\right)}{w_{n}}+\frac{H_{3}\left(x_{n}(k)\right)}{w_{n}^{3 / 2}}+\frac{H_{4}\left(x_{n}(k)\right)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right)\right),
\end{aligned}
$$

as $n \rightarrow \infty$ uniformly in $1 \leq k \leq n$. Now let $k=\theta \log n+a$, where $a=O(1)$ as $n \rightarrow \infty$, so that $x_{n}(k)=a / w_{n}^{1 / 2}$. We have

$$
\begin{aligned}
& H_{1}\left(x_{n}(k)\right)=A_{11}(\theta) \frac{a}{w_{n}^{1 / 2}}+A_{12}(\theta) \frac{a^{3}}{w_{n}^{3 / 2}}, \\
& H_{2}\left(x_{n}(k)\right)=A_{21}(\theta)+A_{22}(\theta) \frac{a^{2}}{w_{n}}+o\left(\frac{1}{w_{n}}\right), \\
& H_{3}\left(x_{n}(k)\right)=A_{31}(\theta) \frac{a}{w_{n}^{1 / 2}}+o\left(\frac{1}{w_{n}^{1 / 2}}\right), \\
& H_{4}\left(x_{n}(k)\right)=A_{41}(\theta)+o(1),
\end{aligned}
$$

where $A_{11}(\theta), \ldots, A_{41}(\theta)$ are some polynomials in $\widetilde{\chi_{1}}(0), \widetilde{\chi_{2}}(0), \widetilde{\chi_{3}}(0)$ and $\widetilde{\chi_{4}}(0)$; see Remark 2 . Plugging these expressions into the asymptotic expansion above and using the expansion $e^{y}=1+y+y^{2} / 2+o\left(y^{2}\right)$, as $y \rightarrow 0$, yields

$$
\sqrt{2 \pi w_{n}} \mathbb{P}\left(K_{n}(\theta)=k\right)=1-\left(\frac{a^{2}}{2}-A_{11}(\theta) a-A_{21}(\theta)\right) \frac{1}{w_{n}}+\frac{P_{\theta}(a)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right),
$$

where

$$
P_{\theta}(a):=\frac{1}{8} a^{4}+\left(A_{12}(\theta)-\frac{1}{2} A_{11}(\theta)\right) a^{3}+\left(A_{22}(\theta)-\frac{1}{2} A_{21}(\theta)\right) a^{2}+A_{31}(\theta) a+A_{41}(\theta) .
$$

Now let us write $k=\theta \log n+a^{*}+g$, where $a^{*}:=A_{11}(\theta)=-\frac{\theta \Gamma^{\prime}(\theta)}{\Gamma(\theta)}-\frac{1}{2}$, yielding

$$
\begin{align*}
\sqrt{2 \pi w_{n}} \mathbb{P}\left(K_{n}(\theta)=k\right)=1-\left(\frac{g^{2}-\left(a^{*}\right)^{2}}{2}-A_{21}(\theta)\right) \frac{1}{w_{n}} & \\
& +\frac{P_{\theta}\left(a^{*}+g\right)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right) . \tag{16}
\end{align*}
$$

We are interested in g being either $\left\lfloor u_{n}^{*}(\theta)\right\rfloor-u_{n}^{*}(\theta)=: g_{n}^{\prime}$ or $\left\lceil u_{n}^{*}(\theta)\right\rceil-u_{n}^{*}(\theta)=: g_{n}^{\prime \prime}$. Let M be the set of natural numbers n with $\left\{u_{n}^{*}(\theta)\right\}<1 / 2<\left\{u_{n+1}^{*}(\theta)\right\}$. Note that M has infinitely many elements because $\log n \rightarrow \infty$ and $\log (n+1)-\log n \rightarrow 0$. In the remainder of the proof, we always consider $n \in M$. Since $u_{n+1}^{*}(\theta)-u_{n}^{*}(\theta)=O\left(n^{-1}\right)$, we have

$$
g_{n}^{\prime}=-1 / 2+O\left(n^{-1}\right), \quad g_{n}^{\prime \prime}=1 / 2+O\left(n^{-1}\right)
$$

Putting $k=\left\lfloor u_{n}^{*}(\theta)\right\rfloor$ into (16) yields

$$
\begin{aligned}
& \sqrt{2 \pi w_{n}} \mathbb{P}\left(K_{n}(\theta)=\left\lfloor u_{n}^{*}(\theta)\right\rfloor\right) \\
& =1-\left(\frac{\left(g_{n}^{\prime}\right)^{2}-\left(a^{*}\right)^{2}}{2}-A_{21}(\theta)\right) \frac{1}{w_{n}}+\frac{P_{\theta}\left(a^{*}+g_{n}^{\prime}\right)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right) \\
& =1-\left(\frac{1-4\left(a^{*}\right)^{2}}{8}-A_{21}(\theta)\right) \frac{1}{w_{n}}+\frac{P_{\theta}\left(a^{*}-1 / 2\right)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right) .
\end{aligned}
$$

Analogously, putting $k=\left\lceil u_{n}^{*}(\theta)\right\rceil$ gives

$$
\begin{aligned}
& \sqrt{2 \pi w_{n}} \mathbb{P}\left(K_{n}(\theta)=\left\lceil u_{n}^{*}(\theta)\right\rceil\right) \\
& =1-\left(\frac{1-4\left(a^{*}\right)^{2}}{8}-A_{21}(\theta)\right) \frac{1}{w_{n}}+\frac{P_{\theta}\left(a^{*}+1 / 2\right)}{w_{n}^{2}}+o\left(\frac{1}{\log ^{2} n}\right) .
\end{aligned}
$$

For sufficiently large n the mode $u_{n}(\theta)$ equals either $\left\lfloor u_{n}^{*}(\theta)\right\rfloor$ or $\left\lceil u_{n}^{*}(\theta)\right\rceil$ depending on the sign of

$$
s^{*}(\theta):=P_{\theta}\left(a^{*}+1 / 2\right)-P_{\theta}\left(a^{*}-1 / 2\right) .
$$

In the following we shall show that $s^{*}(\theta)>0$, hence $u_{n}(\theta)=\left\lceil u_{n}^{*}(\theta)\right\rceil$, while $\operatorname{nint}\left(u_{n}(\theta)\right)=$ $\left\lfloor u_{n}^{*}(\theta)\right\rfloor$, so that $u_{n}(\theta) \neq \operatorname{nint}\left(u_{n}^{*}(\theta)\right)$. Recalling the polygamma function $\psi^{(m)}(\theta)=(\log \Gamma(\theta))^{(m+1)}$, the authors [15] checked with the help of Mathematica 9 that

$$
s^{*}(\theta)=\frac{\theta^{2}}{2}\left(2 \psi^{(1)}(\theta)+\theta \psi^{(2)}(\theta)\right) .
$$

Using the well-known formula for the polygamma function [1, 6.4.10]

$$
\psi^{(m)}(\theta)=(\log \Gamma(\theta))^{(m+1)}=(-1)^{m+1} m!\sum_{k=0}^{\infty} \frac{1}{(\theta+k)^{m+1}}, \quad-\theta \notin \mathbb{N}_{0}, \quad m \geq 1
$$

we finally obtain

$$
s^{*}(\theta)=\theta^{2} \sum_{k=1}^{\infty} \frac{k}{(\theta+k)^{3}}, \quad \theta>0
$$

yielding positivity of $s^{*}(\theta)$ for all $\theta>0$. The proof of part (iv), as well as of the whole theorem, is complete.

Remark 8. For $\theta=1$ we have $s^{*}(1)=\zeta(2)-\zeta(3)$, a term appearing in Hammersley's formula (9). In fact, in the special case $\theta=1$ part (iv) could be deduced directly from (9).

3 Acknowledgements

The work of Alexander Marynych was supported by a Humboldt Research Fellowship of the Alexander von Humboldt Foundation. The work of Henning Sulzbach was supported by a Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation.

References

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series, 1964.
[2] N. H. Bingham, Tauberian theorems for Jakimovski and Karamata-Stirling methods, Mathematika 35 (1988), 216-224.
[3] E. Cramer, Asymptotic estimators of the sample size in a record model, Statist. Papers 41 (2000), 159-171.
[4] R. Durrett, Probability Models for DNA Sequence Evolution, Probability and its Applications, Springer, second edition, 2008.
[5] P. Erdős, On a conjecture of Hammersley, J. London Math. Soc. 28 (1953), 232-236.
[6] W. Ewens and S. Tavaré, Multivariate Ewens distribution. In N. L. Johnson, S. Kotz, and N. Balakrishnan, editors, Discrete Multivariate Distributions, Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley \& Sons, 1997.
[7] W. Feller, The fundamental limit theorems in probability, Bull. Amer. Math. Soc. 51 (1945), 800-832.
[8] V. Féray, P.-L. Méliot, and A. Nikeghbali, Mod- ϕ convergence, I: Normality zones and precise deviations, preprint, 2015, http://arxiv.org/abs/1304.2934.
[9] R. Grübel and Z. Kabluchko, Edgeworth expansions for profiles of lattice branching random walks, to appear in Ann. Inst. H. Poincaré, 2015, http://arxiv.org/abs/1503.04616.
[10] J. M. Hammersley, On estimating restricted parameters, J. Roy. Statist. Soc. Ser. B. 12 (1950), 192-229, discussion, 230-240.
[11] J. M. Hammersley, The sums of products of the natural numbers, Proc. London Math. Soc. (3) 1 (1951), 435-452.
[12] H.-K. Hwang, Théorèmes limites pour les structures combinatories et les fonctions arithmétiques, Ph.D. thesis, 1994, http://algo.stat.sinica.edu.tw/hk/?p=80.
[13] H.-K. Hwang, Asymptotic expansions for the Stirling numbers of the first kind, J. Combin. Theory Ser. A 71 (1995), 343-351.
[14] Z. Kabluchko, V. Vysotsky, and D. Zaporozhets, Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, preprint, 2015, http://arxiv.org/abs/1510.04073.
[15] Z. Kabluchko, A. Marynych, and H. Sulzbach, Mathematica notebook, 2016, http://www.math.uni-muenster.de/statistik/kabluchko/files/stirling.pdf and http://www.math.uni-muenster.de/statistik/kabluchko/files//stirling.nb.
[16] Z. Kabluchko, A. Marynych, and H. Sulzbach, General Edgeworth expansions with applications to profiles of random trees, preprint, 2016, http://arxiv.org/abs/1606.03920, version with full proofs at http://www.math.uni-muenster.de/statistik/kabluchko/files/edgeworth_full.pdf.
[17] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, 1974.
[18] G. Louchard, Asymptotics of the Stirling numbers of the first kind revisited: a saddle point approach, Discrete Math. Theor. Comput. Sci. 12 (2010), 167-184.
[19] I. Mező, On the maximum of r-Stirling numbers, Adv. in Appl. Math. 41 (2008), 293-306.
[20] L. Moser and M. Wyman, Asymptotic development of the Stirling numbers of the first kind, J. London Math. Soc. 33 (1958), 133-146.
[21] A. Rényi, On the outliers of a series of observations, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 12 (1962), 105-121.
[22] M. Sibuya, Log-concavity of Stirling numbers and unimodality of Stirling distributions, Ann. Inst. Statist. Math. 40 (1988), 693-714.
[23] N. M. Temme, Asymptotic estimates of Stirling numbers, Stud. Appl. Math. 89 (1993), 233-243.
[24] H. S. Wilf, The asymptotic behavior of the Stirling numbers of the first kind, J. Combin. Theory Ser. A 64 (1993), 344-349.
[25] H. Yamato, Edgeworth expansions for the number of distinct components associated with the Ewens sampling formula, J. Japan Statist. Soc. 43 (2013), 17-28.

2010 Mathematics Subject Classification: Primary 11B73; Secondary 60C05, 41A60, 60F05, 60F10.
Keywords: asymptotic expansion, Ewens distribution, Stirling number of the first kind, mode of a distribution.
(Concerned with sequences A008275, A048994, A132393.)

Received revised version received Published in Journal of Integer Sequences,

Return to Journal of Integer Sequences home page.

