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Abstract

Many authors have studied the problem of finding sequences of rational points

on elliptic curves such that either the abscissae or the ordinates of these points are

in arithmetic progression. In this paper we obtain upper bounds for the lengths of

sequences of rational points on curves of the type y2 = x3 + k, k ∈ Q \ {0}, such

that the ordinates of the points are in arithmetic progression, and also when both the

abscissae and the ordinates of the points are separately the terms of two arithmetic

progressions.

1 Introduction

Let there exist n rational points Pi = (xi, yi), i = 1, 2, . . . , n on an elliptic curve E over Q
such that either the n numbers xi, i = 1, 2, . . . , n, or the n numbers yi, i = 1, 2, . . . , n, are the
terms of an arithmetic progression. We say that there exists an x-arithmetic progression,
or a y-arithmetic progression, of length n on the elliptic curve E depending on whether
the abscissae or the ordinates of the points Pi are in arithmetic progression. Further, we
say there exists a simultaneous arithmetic progression of length n on the curve E if the n
numbers xi, i = 1, 2, . . . , n are in arithmetic progression and simultaneously, the n numbers
yi, i = 1, 2, . . . , n are also, in some order, the terms of an arithmetic progression.

The problem of finding x-arithmetic progressions on various models of elliptic curves
has been studied by several mathematicians [3, 4, 5, 6, 10, 13, 13, 15]. The existence of
simultaneous arithmetic progressions on the cubic model of elliptic curves has also been
studied [7].
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This paper is concerned with the existence of y-arithmetic progressions as well as si-
multaneous arithmetic progressions on Mordell curves which are elliptic curves defined by
equations of the type,

y2 = x3 + k, (1)

where k is a rational number. Mohanty [11] found an y-arithmetic progression of four
consecutive integers on the curve (1) when k = 1025 and conjectured [12] that the length of
an x-arithmetic progression on a Mordell curve cannot exceed 4. Later, Lee and Vélez [9]
found infinitely many families of Mordell curves with x-arithmetic progressions of length 4
and y-arithmetic progressions of length 6.

In this paper we show that the maximum length of a y-arithmetic progression on a
Mordell curve is 6, and we explicitly find infinitely many Mordell curves on which there
exist y-arithmetic progressions of length 6. Further, we show that the maximum length of a
simultaneous arithmetic progression on a Mordell curve is 3, and we explicitly find infinitely
many Mordell curves on which there exist simultaneous arithmetic progressions of length 3.

2 Notation and preliminaries

Now we will introduce some basic notation. We denote by Sx(E) (respectively, Sy(E)) as
the maximal number length of x-arithmetic progression (respectively, y-arithmetic progres-
sion) on the elliptic curve E. Also, let Sx,y(E) denote the maximal length of simultaneous
arithmetic progression on the elliptic curve E

To prove one of our results we need the following theorem of Bremner [2].

Theorem 1. The only general rational solution of the surface

x3 + y3 + cz3 = c (c 6= 1) (2)

are given, up to symmetry, by

(i) (λ,−λ, 1) and (ii)

(

9

c
λ4 − 3λ,−

9

c
λ4,

9

c
λ3 − 1

)

and the additional case when c = 2

(iii) (x, y, z) =(−4λ2 + 6λ− 1,−4λ2 + 2λ+ 1, 4λ2 − 4λ+ 1)

(iv) (x, y, z) =(
2

27
(4λ4 − 4λ3 − 6λ2 + 17λ− 2),

4

27
(2λ4 − 8λ3 + 6λ2 + 4λ− 13),

−1

27
(8λ4 − 20λ3 + 24λ2 + 16λ− 37))

(3)

with λ ∈ Q.
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3 Main results

We obtained an upper bound for Sy(E) and Sx,y(E) where E : y2 = x3 + k with k ∈ Q∗.
Indeed, we prove the following results.

Theorem 2. Let E : y2 = x3 + k be an elliptic curve for some k ∈ Q. Then Sy(E) ≤ 6.
Moreover, there exist infinitely many such elliptic curves E : y2 = x3 + k with Sy(E) = 6.

Proof. At first we will construct an infinite family of elliptic curves of the form E : y2 =
x3 + k with six rational points such that the y-coordinates of these six rational points are in
arithmetic progression. After that, we will show that there exist at most six rational points
whose y-coordinates are in arithmetic progression i.e., Sy(E) ≤ 6.

Let r and d be two arbitrary non-zero rational numbers and k = r2 − d3. Consequently
(d,±r) lie on E. Now we want (x1,±3r) and (x2,±5r) (with x1, x2 ∈ Q) to be on E and
that would give,

8r2 + d3 = x3

1
, 24r2 + d3 = x3

2
.

Hence,
16r2 = x3

2
− x3

1
(4)

and
2d3 = 3x3

1
− x3

2
. (5)

Considering X1 =
x1

d
and X2 =

x2

d
in (5), we get

3X3

1
−X3

2
= 2. (6)

Now (X1, X2) = (1
4
, −5

4
) is a point on (6) and correspondingly one gets x1 = d

4
and

x2 =
−5d
4
. Now putting the values of x1 and x2 in (4) we get

210r2 = −126d3. (7)

At this point if we choose d = −14q2 for any q ∈ Q∗, then r = ±147

8
q3. Hence

k = r2 − d3 =
197225

64
q6. (8)

Therefore corresponding to every rational number q we can find d, r and k; i.e., we can find
infinitely many elliptic curves of the form y2 = x3+ k with at least six rational points whose
y-coordinates are in arithmetic progression.

Next we will show that there do not exist more than six rational points whose y-
coordinates are in arithmetic progression.

Let d be any non-zero rational number. Let us assume that there exist seven rational
points on E, whose y-coordinates are in arithmetic progression. Without loss of generality,
we may take the points to be

P1 = (x1, y1), P2 = (x2, y1 + d), P3 = (x3, y1 − d), P4 = (x4, y1 + 2d),
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P5 = (x5, y1 − 2d), P6 = (x6, y1 + 3d), P7 = (x7, y1 − 3d).

One has
y2
1
= x3

1
+ k, (9)

(y1 + d)2 = x3

2
+ k, (10)

(y1 − d)2 = x3

3
+ k, (11)

(y1 + 2d)2 = x3

4
+ k, (12)

(y1 − 2d)2 = x3

5
+ k, (13)

(y1 + 3d)2 = x3

6
+ k, (14)

(y1 − 3d)2 = x3

7
+ k. (15)

Now calculating [(10)− (11)] , [(12)− (13)] , and [(14)− (15)] one has

4y1d = x3

2
− x3

3
, (16)

8y1d = x3

4
− x3

5
, (17)

12y1d = x3

6
− x3

7
. (18)

Case 1: In this case we are considering y1 6= 0. From (17) it is clear that one of x4 and x5

has to be non-zero as d 6= 0 and y1 6= 0. So, without loss of generality we can assume that
x5 is non-zero.

Now, eliminating y1 from the equations (16) and (17), we have

2(x3

2
− x3

3
) = x3

4
− x3

5

⇒8(x3

2
− x3

3
) = 4(x3

4
− x3

5
)

⇒− 8x3

2
+ 8x3

3
+ 4x3

4
= 4x3

5

⇒

(

−2x2

x5

)3

+

(

2x3

x5

)3

+ 4

(

x4

x5

)3

= 4

⇒X3 + Y 3 + 4Z3 = 4

(19)

where X = −2x2

x5

, Y = 2x3

x5

, and Z = x4

x5

.
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Again, eliminating y1 from the equations (18) and (17), we get

2(x3

7
− x3

6
) = 3(x3

5
− x3

4
)

⇒8x3

7
− 8x3

6
+ 12x3

4
= 12x3

5

⇒

(

2x7

x5

)3

+

(

−2x6

x5

)3

+ 12

(

x4

x5

)3

= 12

⇒U3 + V 3 + 12W 3 = 12

(20)

where U = 2x7

x5

, V = −2x6

x5

, and W = x4

x5

.
To find rational solution of (19) and (20) we use Bremner’s result. Using Theorem (1)

we get all possible rational solutions of (19) and (20). The rational solutions of (19) are

(i) (λ,−λ, 1) and (ii)

(

9

4
λ4 − 3λ,−

9

4
λ4,

9

4
λ3 − 1

)

with λ ∈ Q.
The rational solutions of (20) are

(i) (µ,−µ, 1) and (ii)

(

3

4
µ4 − 3µ,−

3

4
µ4,

3

4
µ3 − 1

)

with µ ∈ Q.
One can see from (19) and (20) that,

Z = W =
x4

x5

.

Clearly,
9

4
λ3 − 1 = 1 and

3

4
µ3 − 1 = 1

cannot hold for any λ, µ ∈ Q.
Now if possible let us assume that for some λ and µ,

9

4
λ3 − 1 =

3

4
µ3 − 1.

That gives 3λ3 = µ3, which is again not possible as λ, µ ∈ Q.
Thus we get Z = W = 1 and that implies x4 = x5. Now from (12) and (13) we can write,

(y1 + 2d) = ±(y1 − 2d).

This forces y1 = 0 as d 6= 0, which is a contradiction.

Case 2: In this case we consider y1 = 0. Thus our points are

P1 = (x1, 0), P2 = (x2, d), P3 = (x3,−d), P4 = (x4, 2d),
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P5 = (x5,−2d), P6 = (x6, 3d), P7 = (x7,−3d).

One can easily check that, k = (−x1)
3, x2 = x3, and x6 = x7. Thus,

d2 = x3

2
− x3

1
. (21)

4d2 = x3

4
− x3

1
. (22)

9d2 = x3

6
− x3

1
. (23)

From (21) it is clear that one of x1 and x2 has to be non-zero as d 6= 0. So, without loss of
generality we can assume that x1 is non-zero.

Eliminating d from the equations (21), (22) and (23), we have

x3

6
− x3

4
= 5(x3

2
− x3

1
)

⇒

(

x4

x1

)3

+

(

−x6

x1

)3

+ 5

(

x2

x1

)3

= 5

⇒L3 +M3 + 5N3 = 5

(24)

where L = x4

x1

,M = −x6

x1

, and N = x2

x1

. Again using Bremner’s result, the solution set of the
equation (24) is

(i) (ν,−ν, 1) and (ii)

(

9

5
ν4 − 3ν,−

9

5
ν4,

9

5
ν3 − 1

)

,

where ν ∈ Q.
Note that N 6= 1, as N = 1 implies d = 0, which is not possible. Let x1 be any non-zero

rational number, say q. Then we have

x2 =

(

9

5
ν3 − 1

)

q, x4 =

(

9

5
ν4 − 3ν

)

q, x6 =

(

9

5
ν4

)

q.

Substituting in the values of x2 and x6 into (21) and (23) respectively, we have

d2 =

[

(

9

5
ν3 − 1

)3

− 1

]

q3,

9d2 =

[

(

9

5
ν4

)3

− 1

]

q3.

Therefore we get

9

[

(

9

5
ν3 − 1

)3

− 1

]

=

[

(

9

5
ν4

)3

− 1

]

,
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which leads us to
9(9t− 5)3 = 93t4 + 1000,

where ν3 = t.
We will prove that this equation does not have any rational solution. Putting s = 3t we

have the following equation:

9s4 − 243s3 + 1215s2 − 2025s+ 2125 = 0. (25)

Using the rational root theorem, we can see that (25) does not have any rational solution.
Therefore our system of equations [(9) to (15)] do not have any rational solution. Hence there
do not exist seven rational points on y2 = x3+k with y-coordinates in arithmetic progression,
i.e., Sy(E) ≤ 6.

Now we will state the result related to simultaneous arithmetic progression.

Theorem 3. Let E : y2 = x3 + k be an elliptic curve for some k ∈ Q. Then Sx,y(E) ≤ 3.
Moreover, there exist infinitely many such elliptic curves E : y2 = x3 + k with Sx,y(E) = 3.

Proof. Let d and d′ be given nonzero rational numbers. Suppose P1 = (x1, y1) is a rational
point on E : y2 = x3 + k for some k ∈ Q. Therefore, P1 satisfies

y2
1
= x3

1
+ k. (26)

Suppose P2 and P3 are other rational points on E such that P1, P2 and P3 form a simultaneous
arithmetic progression with differences d and d′ of length 3. Therefore, we let P2 = (x1 +
d, y1 + d′) and P3 = (x1 − d, y1 − d′) and we get

(y1 + d′)2 = (x1 + d)3 + k (27)

and
(y1 − d′)2 = (x1 − d)3 + k. (28)

By subtracting (28) from (27), we get

4y1d
′ = 6x2

1
d+ 2d3. (29)

From (26) and (27), we get

2y1d
′ + d′

2
= 3x2

1
d+ 3x1d

2 + d3. (30)

Therefore, from (29) and (30), we get

2d′
2
= 6x1d

2 ⇐⇒ x1 =
1

3

d′2

d2
. (31)
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Once we get x1 as a function of d and d′, we can get y1 and k as a function of d and d′.
Since this is true for a given non-zero rational numbers d and d′, we conclude that there are
infinitely many elliptic curves E of the form y2 = x3 + k which admits Sx,y(E) ≥ 3.

In order to finish the proof of the theorem, now it is enough to prove that Sx,y(E) ≤ 3
for all elliptic curves E : y2 = x3 + k.

Let E be one such curve. If possible, let P1, P2, P3 and P4 be the rational points on E
which form a simultaneous arithmetic progression of length 4 with some differences d and d′

for the x and y coordinates respectively. Now, we need to consider several cases depending
on the arrangement of coordinates of Pi’s.

Case 1: Let P1 = (x1−d, y1−d′), P2 = (x1, y1), P3 = (x1+d, y1+d′) and P4 = (x1+2d, y1+
2d′).

Since P1, P2 and P3 are in simultaneous arithmetic progression, by the previous discussion,

we conclude that x1 =
1

3

d′2

d2
. Since P4 is a rational point on E, we get

(y1 + 2d′)2 = (x1 + 2d)3 + k. (32)

From the equations (32) and (26), we get

4y1d
′ + 4d′

2
= 6x2

1
d+ 12x1d

2 + 8d3. (33)

Now, by putting x1 = d′2/3d2 in (33), we arrive at d = 0, which is a contradiction. Thus, we
conclude, in this case, Sx,y(E) ≤ 3.

Case 2: Let P1 = (x1, y1), P2 = (x1+d, y1+d′), P3 = (x1+2d, y1+3d′), P4 = (x1+3d, y1+2d′).
Since these are rational points on E, we have

y2
1
= x3

1
+ k. (34)

(y1 + d′)2 = (x1 + d)3 + k, (35)

(y1 + 3d′)2 = (x1 + 2d)3 + k, (36)

and
(y1 + 2d′)2 = (x1 + 3d)3 + k. (37)

Eliminating y1 and k, from the equations (34), (35) and (36), we get

6d′
2
= −3x2

1
d+ 3x1d

2 + 5d3. (38)

Again, eliminating y1 and k, from the equations (34), (36) and (37), we have

6d′
2
= −15x2

1
d− 57x1d

2 − 65d3. (39)
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Now eliminating d′ from the equations (38) and (39), we get

6x2

1
+ 30x1d+ 35d2 = 0. (40)

Clearly, the quadratic equation (40) in x1 does not have any rational solutions and hence we
conclude, in this case, Sx,y(E) ≤ 3.

The remaining 22 cases can be proved similarly and we list them in Table 1.
From Table 1, we can see that the discriminant D is not a perfect square for a rational

number d in all the cases. Hence, we conclude that x1 cannot be rational, which is a
contradiction. Therefore, in all the cases, we get Sx,y(E) ≤ 3. This completes the proof of
Theorem 3.

4 Some open problems

While we obtained upper bounds for the lengths of y−arithmetic progressions and simulta-
neous arithmetic progressions on Mordell curves, we could not obtain an upper bound for the
length of x−arithmetic progressions on Mordell curves. It would be of interest to determine
such an upper bound. Similarly it would be of interest to determine upper bounds for the
length of x−arithmetic progressions, y−arithmetic progressions and simultaneous arithmetic
progressions on various models of elliptic curves.

5 Acknowledgments

We want to thank Ajai Choudhry for suggesting and discussing this problem. We also want
to thank Kalyan Chakraborty and R. Thangadurai for going through this paper carefully.
Finally, we would like to thank the anonymous referee for his/her valuable comments.

9



Table 1

Cases Points Final Equation Discriminant(D)
Case 3 (x1, y1), (x1 + d, y1 + 2d′) 3x2

1
+ 9x1d+ 8d2 = 0 −15d2

(x1 + 2d, y1 + d′), (x1 + 3d, y1 + 3d′)
Case 4 (x1, y1), (x1 + d, y1 + 2d′) 24x2

1
+ 84x1d+ 86d2 = 0 −1200d2

(x1 + 2d, y1 + 3d′), (x1 + 3d, y1 + d′)
Case 5 (x1, y1), (x1 + d, y1 + 3d′) 3x2

1
+ 14x1d+ 28d2 = 0 −140d2

(x1 + 2d, y1 + d′), (x1 + 3d, y1 + 2d′)
Case 6 (x1, y1), (x1 + d, y1 + 3d′) 6x2

1
+ 24x1d+ 29d2 = 0 −120d2

(x1 + 2d, y1 + 2d′), (x1 + 3d, y1 + d′)
Case 7 (x1, y1 + d′), (x1 + d, y1 + 2d′), 3x2

1
− 3x1d− 8d2 = 0 105d2

(x1 + 2d, y1), (x1 + 3d, y1 + 3d′)
Case 8 (x1, y1 + d′), (x1 + d, y1 + 2d′), 6x2

1
+ 12x1d+ 11d2 = 0 −120d2

(x1 + 2d, y1 + 3d′), (x1 + 3d, y1)
Case 9 (x1, y1 + d′), (x1 + d, y1) 6x2

1
+ 6x1d− d2 = 0 60d2

(x1 + 2d, y1 + 2d′), (x1 + 3d, y1 + 3d′)
Case 10 (x1, y1 + d′), (x1 + d, y1) 12x2

1
+ 36x1d+ 37d2 = 0 −480d2

(x1 + 2d, y1 + 3d′), (x1 + 3d, y1 + 2d′)
Case 11 (x1, y1 + d′), (x1 + d, y1 + 3d′) 15x2

1
+ 45x1d+ 44d2 = 0 −615d2

(x1 + 2d, y1), (x1 + 3d, y1 + 2d′)
Case 12 (x1, y1 + d′), (x1 + d, y1 + 3d′) 12x2

1
+ 30x1d+ 25d2 = 0 −300d2

(x1 + 2d, y1 + 2d′), (x1 + 3d, y1)
Case 13 (x1, y1 + 2d′), (x1 + d, y1) 12x2

1
+ 30x1d+ 25d2 = 0 −300d2

(x1 + 2d, y1 + d′), (x1 + 3d, y1 + 3d′)
Case 14 (x1, y1 + 2d′), (x1 + d, y1) 15x2

1
+ 45x1d+ 44d2 = 0 −615d2

(x1 + 2d, y1 + 3d′), (x1 + 3d, y1 + d′)
Case 15 (x1, y1 + 2d′), (x1 + d, y1 + d′) 6x2

1
+ 12x1d+ 11d2 = 0 −120d2

(x1 + 2d, y1), (x1 + 3d, y1 + 3d′)
Case 16 (x1, y1 + 2d′), (x1 + d, y1 + d′) 3x2

1
− 3x1d− 8d2 = 0 105d2

(x1 + 2d, y1 + 3d′), (x1 + 3d, y1)
Case 17 (x1, y1 + 2d′), (x1 + d, y1 + 3d′) 12x2

1
+ 36x1d+ 37d2 = 0 −480d2

(x1 + 2d, y1), (x1 + 3d, y1 + d′)
Case 18 (x1, y1 + 2d′), (x1 + d, y1 + 3d′) 6x2

1
+ 6x1d− d2 = 0 60d2

(x1 + 2d, y1 + d′), (x1 + 3d, y1)
Case 19 (x1, y1 + 3d′), (x1 + d, y1) 6x2

1
+ 24x1d+ 29d2 = 0 −120d2

(x1 + 2d, y1 + d′), (x1 + 3d, y1 + 2d′)
Case 20 (x1, y1 + 3d′), (x1 + d, y1) 3x2

1
+ 21x1d+ 28d2 = 0 105d2

(x1 + 2d, y1 + 2d′), (x1 + 3d, y1 + d′)
Case 21 (x1, y1 + 3d′), (x1 + d, y1 + d′) 12x2

1
+ 42x1d+ 43d2 = 0 −300d2

(x1 + 2d, y1), (x1 + 3d, y1 + 2d′)
Case 22 (x1, y1 + 3d′), (x1 + d, y1 + d′) 9x2

1
+ 27x1d+ 24d2 = 0 −135d2

(x1 + 2d, y1 + 2d′), (x1 + 3d, y1)
Case 23 (x1, y1 + 3d′), (x1 + d, y1 + 2d′) 6x2

1
+ 30x1d+ 35d2 = 0 60d2

(x1 + 2d, y1), (x1 + 3d, y1 + d′)
Case 24 (x1, y1 + 3d′), (x1 + d, y1 + 2d′) d = 0

(x1 + 2d, y1 + d′), (x1 + 3d, y1)
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