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Abstract

Let (Tn)n≥0 be the Tribonacci sequence defined by the recurrence Tn+2 = Tn+1 +
Tn + Tn−1, with T0 = 0 and T1 = T2 = 1. In this short note, we prove that there are
no integer solutions (u,m) to the Brocard-Ramanujan equation m! + 1 = u2 where u

is a Tribonacci number.

1 Introduction

In the past few years, several authors have considered Diophantine equations involving fac-
torial numbers. For instance, Erdős and Selfridge [6] proved that n! is a perfect power only
when n = 1. However, the most famous among such equations was posed by Brocard [5] in
1876 and independently by Ramanujan ([17], [18, p. 327]) in 1913. The Diophantine equation

m! + 1 = u2 (1)

is now known as Brocard-Ramanujan Diophantine equation.
It is a simple matter to find the three known solutions, namely m = 4, 5 and 7. Recently,

Berndt and Galway [2] showed that there are no further solutions with m ≤ 109. An
interesting contribution to the problem is due to Overholt [15], who showed that the equation
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(1) has only finitely many solutions if we assume a weak version of the abc conjecture.
However, the Brocard-Ramanujan equation is still an open problem.

Let (Fn)n≥0 be the Fibonacci sequence (sequence A000045 in the OEIS [19]) given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn, for n ≥ 0.

A number of mathematicians have been interested in Diophantine equations that involve
both factorial and Fibonacci numbers. For example, Grossman and Luca [8] showed that if
k is fixed, then there are only finitely many positive integers n such that

Fn = m1! +m2! + · · ·+mk!

holds for some positive integers m1, . . . ,mk. Also, all the solutions for the case k ≤ 2 were
determined. Later, Bollman, Hernández and Luca [3] solved the case k = 3. In a recent
paper, Luca and Siksek [11] found all factorials expressible as the sum of at least three
Fibonacci numbers.

In 1999, Luca [10] proved that Fn is a product of factorials only when n = 1, 2, 3, 6 and 12.
Also, Luca and Stănică [12] showed that the largest product of distinct Fibonacci numbers
which is a product of factorials is F1F2F3F4F5F6F8F10F12 = 11!.

In 2012, Marques [13] proved that (m,u) = (4, 5) is the only solution of Eq. (1) where
u is a Fibonacci number. His proof depends on the primitive divisor theorem together with
factorizations formulas for Fn ± 1.

Among the several generalizations of Fibonacci numbers, one of the best known is the
Tribonacci sequence (Tn)n≥0 (sequence A000073 in the OEIS). This is defined by the recur-
rence Tn+1 = Tn + Tn−1 + Tn−2, with initial values T0 = 0 and T1 = T2 = 1. The first few
terms of this sequence are

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705.

Tribonacci numbers have a long history. They were first studied in 1914 by Agronomof
[1] and subsequently by many others. The name Tribonacci was coined in 1963 by Feinberg
[7].

Here, we are interested in solutions (m,u) of the Brocard-Ramanujan equation where u is
a Tribonacci number. We point out that in this we have neither a primitive divisor theorem
for Tn nor a factorization formula for Tn ± 1.

More precisely, we shall prove the following theorem.

Theorem 1. There is no solution (m,u) for the Brocard-Ramanujan equation (1), where u
is a Tribonacci number.

The idea behind the proof is as follows. The equation we are interested in solving is
m! = (Tn− 1)(Tn+1). The 2-adic valuation of m! is m+O(logm). We show that the 2-adic
valuation of (Tn − 1)(Tn + 1) is / 8 log n/ log 2. Thus m / 8 log n/ log 2. This forces m! to
be smaller than (Tn − 1)(Tn +1), for m and n sufficiently large, which allows us to complete
the proof.
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2 The proof of Theorem 1

2.1 A key lemma

The p-adic order, νp(r), of r is the exponent of the highest power of a prime p which divides
r. The p-adic order of a Fibonacci number was completely characterized by Lengyel [9].
Also, very recently the 2-adic order of Tribonacci numbers was made explicit by Lengyel and
Marques [14]. Here, we shall prove the following key result which will play an important role
in the proof of Theorem 1.

Lemma 2. We have

ν2(Tn + 1) =







































15, if n = 61;

0, if n ≡ 0, 3 (mod 4);

1, if n ≡ 1, 2, 6 (mod 8);

3, if n ≡ 5 (mod 16);

ν2((n+ 3)2)− 3, if n ≡ 13, 29, 45 (mod 64);

ν2((n− 61)(n+ 3))− 3, if n > 61 and n ≡ 61 (mod 64).

and, for n ≥ 5,

ν2(Tn − 1) =































0, if n ≡ 0, 3 (mod 4);

1, if n ≡ 5 (mod 8);

ν2(n+ 2)− 1, if n ≡ 6 (mod 8);

ν2(n− 2)− 1, if n ≡ 2 (mod 8);

ν2((n− 1)(n+ 7))− 3, if n ≡ 1 (mod 8).

The case Tn − 1:
First, note that Lengyel and Marques [14] proved that Tn − 1 is odd for every n ≡ 0, 3

(mod 4), which proves the first case. Now, note that, in order to prove the second case, it
suffices to prove that Tn ≡ 3 (mod 4). In this case, we have n = 8k + 5, with k ≥ 0. Then
we proceed on induction on k. For k = 0, it follows directly, since T5 − 1 = 7− 1 = 6 = 2 · 3.
So, we suppose that T8k+5 ≡ 3 (mod 4). Using the sum formula for Tn (proved by Feng [16]),
we have that

T8(k+1)+5 = T(8k+5)+8

= T6T8k+5 + (T6 + T5)T8k+6 + T7T8k+7

= 13T8k+5 + 20T8k+6 + 24T8k+7

≡ 3 (mod 4).
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In the third case, for t ≥ 6 and s ≥ 1 odd, we write n = 2t−3s + 2. Now, by a Lengyel
and Marques result [14, Lemma 3.1], we have that

T2t−3s+2 = T2t−3s+1 + T2t−3s + T2t−3s−1

≡ 1 + 2t−4 + 0 (mod 2t−3)

≡ 1 + 2t−4 (mod 2t−3).

This yields ν2(Tn − 1) = t− 4 = ν2(2
t−3s)− 1 = ν2(n− 2)− 1.

The fourth case follows by proceeding in the same way as the third one. For t ≥ 6 and
s ≥ 1 odd, we write n = 2t−3s − 2. Then, by the Lengyel and Marques result [14, Lemma
3.1], we have that

T2t−3s−2 = T2t−3s+1 − T2t−3s − T2t−3s−1

≡ 1− 2t−4 − 0 (mod 2t−3)

≡ 1 + 2t−4 (mod 2t−3).

This yields ν2(Tn − 1) = t− 4 = ν2(2
t−3s)− 1 = ν2(n+ 2)− 1.

Now, for the last case, we know that 16 divides exactly one among n − 1 and n + 7.
Suppose that 16|(n+ a), for some a ∈ {−1, 7}. Then ν2(n+ b) = 3 for b ∈ {−1, 7} \ {a}. So,
we desire to prove that

ν2(Tn − 1) = ν2(n+ a).

For that, we write n = 2t−2s − a, for t ≥ 5 and s ≥ 1 odd, and proceed as in Lengyel and
Marques [14, Lemma 3.1] to prove that

T2t−2s−a − 1 ≡ 2t−2 (mod 2t−1).

Therefore
ν2(Tn − 1) = t− 2 = ν2(n+ a) + 1,

and this completes the proof.

The case Tn + 1:
The first two cases are trivial. The third and the fourth cases follow in the same way.

Note that, in order to prove them, it suffices to show that Tn ≡ 1 (mod 4) when n ≡ 1, 2, 6
(mod 8) and to show that Tn = 7 (mod 16) when n ≡ 5 (mod 16). In order to avoid
unnecessary repetitions, we shall prove only one of these cases. So, let us write n = 8k + 6
and apply induction on k ≥ 0. For k = 0, it follows directly, since T6+1 = 13+1 = 14 = 2·7.
Now, suppose that T8k+6 ≡ 1 (mod 4). Then, we have that

T8(k+1)+6 = T(8k+6)+8

= T6T8k+6 + (T6 + T5)T8k+7 + T7T8k+8

= 13T8k+6 + 20T8k+7 + 24T8k+8

≡ 1 (mod 4).
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Now, for the the fifth case, note that, if n = 64k + 13,

ν2((n+ 3)2)− 3 = 2ν2(n+ 3)− 3

= 2ν2(64k + 13 + 3)− 3 = 2ν2(16(4k + 1))− 3 = 2 · 4− 3

= 5.

So, it suffices to prove that Tn ≡ 31 (mod 64). Again, we proceed on induction. First,
observe that T13 = 927 ≡ 31 (mod 64). Now, we have that

T64(k+1)+13 = T(64k+13)+64

= T62T64k+13 + (T62 + T61)T64k+14 + T63T64k+15

≡ −1 + 32T64k+14 (mod 64).

But, from the previous case, we have that T64k+14 ≡ 1 (mod 4). Then,

T64(k+1)+13 ≡ −1 + 32T64k+14 (mod 64)

≡ 32− 1 (mod 64)

≡ 31 (mod 64).

When n ≡ 29, 45 (mod 64), we proceed in the same way.
For the last case, we proceed as for the last case of the previous theorem. Note that 128

divides exactly one among n−61 and n+3. Suppose that 128|(n+a), for some a ∈ {−61, 3}.
Then ν2(n+ b) = 6 for b ∈ {−61, 3} \ {a}. So, we desire to prove that

ν2(Tn + 1) = ν2(n+ a) + 3.

For that, we write n = 2t−2s − a, for t ≥ 8 and s ≥ 1 odd, and proceed as in Lengyel and
Marques [14, Lemma 3.1] to prove that

T2t−2s−a + 1 ≡ 2t+1 (mod 2t+2).

Therefore
ν2(Tn + 1) = t+ 1 = ν2(n+ a) + 3.

This completes the proof.
Now, we are ready to deal with the proof of the main theorem.

2.2 The proof

If n ≤ 61, a straightforward search shows that there are no solutions. So we shall suppose
that n > 61. Then m ≥ 30. Next we use the fact that ν2(m!) ≥ m − ⌊logm/ log 2⌋ − 1
(which is a consequence of the De Polignac’s formula) together with Lemma 2. Then

m−

⌊

logm

log 2

⌋

− 1 ≤ ν2(m!) = ν2(Tn − 1) + ν2(Tn + 1)

< ν2((n+ 2)(n− 2)(n− 1)(n+ 7)(n+ 3)3(n− 61)) + 5

≤ 8ν2(n+ ω) + 5,
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for some ω ∈ {−61,−2,−1, 2, 3, 7}. Thus ν2(n+ω) ≥ (m−⌊logm/ log 2⌋− 6)/8. Therefore,
2⌊(m−⌊logm/ log 2⌋−6)/8⌋ | (n+ ω). In particular, 2⌊(m−⌊logm/ log 2⌋−6)/8⌋ ≤ |n+ ω| ≤ n+ 61 (here
we used that n+ ω 6= 0). By applying the log function, we obtain

⌊

1

8

(

m−

⌊

logm

log 2

⌋

− 6

)⌋

≤
log(n+ 61)

log 2
. (2)

On the other hand, (1.83)2n−4 < T 2
n = m!+1 < 2(m/2)m (the first inequality was proved

by Bravo and Luca [4]). So n < 0.9m log(m/2) + 2.6. Substituting this in equation (2), we
obtain

⌊

1

8

(

m−

⌊

logm

log 2

⌋

− 6

)⌋

≤
log(0.9m log(m/2) + 63.6)

log 2
.

This inequality yields m ≤ 78. Then n < 0.9 · 78 log(78/2) + 2.6 = 259.782 . . .. Now, we use
a simple routine written in Mathematica which does not return any solution in the range
30 ≤ m ≤ 78 and 62 ≤ n ≤ 259. The proof is complete.
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