Infinite Products Arising in Paperfolding

Leyda Almodovar
Department of Mathematics
University of Iowa
Iowa City, IA 52242
USA
leyda-almodovar@uiowa.edu
Hadrian Quan
Department of Mathematics
UC Santa Cruz
Santa Cruz, CA 95064
USA
hquan1@ucsc.edu
Eric Rowland
Department of Mathematics
University of Liege
Belgium
rowland@lacim.edu

Victor H. Moll
Department of Mathematics
Tulane University
New Orleans, LA 70118
USA
vhm@tulane.edu
Fernando Roman
Department of Mathematics
Kansas State University
Manhattan, KS 66506
USA
yahdiel@ksu.edu
Michole Washington
Department of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332
USA
mwashington9@gatech.edu

Abstract

J.-P. Allouche recently examined two infinite products where the term is a rational function of the index n raised to the term of the paperfolding sequence ϵ_{n}. A closed form is given only for one of them. We discuss an attempt to produce the missing closed form. We give a detailed analysis of convergence and a closed form for the analogous question, where the paperfolding sequence is replaced by a periodic one.

1 Introduction

The paperfolding sequence ϵ_{n} is defined by the rules

$$
\begin{align*}
\epsilon_{2 n} & =(-1)^{n} \tag{1}\\
\epsilon_{2 n+1} & =\epsilon_{n} .
\end{align*}
$$

The first few values are $\{1,1,-1,1,1\}$. For fixed $a \in \mathbb{N}$, the rules (1) determine all subsequences of the form

$$
\begin{equation*}
\left\{\epsilon_{2^{a} n+b}: a \in \mathbb{N}, 0 \leq b<2^{a}\right\} \tag{2}
\end{equation*}
$$

in terms of constants, $\left\{\epsilon_{n}\right\}$ and $\left\{(-1)^{n}\right\}$. For example, when $a=2$,

$$
\begin{equation*}
\epsilon_{4 n}=1, \epsilon_{4 n+1}=\epsilon_{2 n}=(-1)^{n}, \epsilon_{4 n+2}=(-1)^{2 n+1}=-1, \epsilon_{4 n+3}=\epsilon_{2 n+1}=\epsilon_{n} \tag{3}
\end{equation*}
$$

The work presented here is motivated by results given by Allouche [1]. In particular, the evaluation

$$
\begin{equation*}
B=\prod_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{\epsilon_{n}}=\frac{1}{8 \sqrt{2 \pi}} \Gamma\left(\frac{1}{4}\right)^{2} \tag{4}
\end{equation*}
$$

is obtained using the auxiliary product

$$
\begin{equation*}
A=\prod_{n=0}^{\infty}\left(\frac{2 n+1}{2 n+2}\right)^{\epsilon_{n}} \tag{5}
\end{equation*}
$$

Indeed, the identity

$$
\begin{equation*}
A B=\frac{1}{2} \prod_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{\epsilon_{n}} \tag{6}
\end{equation*}
$$

is split according to the parity of n and (1) yields

$$
\begin{equation*}
A B=\frac{1}{2} A \prod_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{(-1)^{n}} \tag{7}
\end{equation*}
$$

The non-vanishing of A gives

$$
\begin{equation*}
B=\frac{1}{2} \prod_{n=0}^{\infty} \frac{(4 n+4)(4 n+3)}{(4 n+5)(4 n+2)} \tag{8}
\end{equation*}
$$

A classical result expressing such products in terms of the gamma function gives the value of B. Observe that the value of A does not come from this formulation. A search for a closed form for A was the motivation for the results presented here.

An early evaluation of an infinite product was produced by Wallis in his representation

$$
\begin{equation*}
\prod_{n=1}^{\infty} \frac{(2 n)(2 n)}{(2 n-1)(2 n+1)}=\frac{\pi}{2} \tag{9}
\end{equation*}
$$

The history of this discovery appears in Osler [7]. The literature contains a variety of infinite product evaluations. For instance,

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+\frac{1}{F_{2^{n}+1}}\right)=\frac{3}{\varphi} \text { and } \prod_{n=1}^{\infty}\left(1+\frac{1}{L_{2^{n}+1}}\right)=3-\varphi \tag{10}
\end{equation*}
$$

is given by Sondow [9]. Here F_{n}, L_{n} are the Fibonacci (Lucas) numbers and $\varphi=\frac{1}{2}(\sqrt{5}+1)$ is the golden ratio.

The value of infinite products usually involves classical constants of analysis. For instance, Borwein [3] evaluates the function

$$
\begin{equation*}
D(x)=\lim _{n \rightarrow \infty} \prod_{k=1}^{2 n+1}\left(1+\frac{x}{k}\right)^{(-1)^{k+1} k} \tag{11}
\end{equation*}
$$

as a generalization of the values

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{(-1)^{n+1} n}=\frac{\pi}{2 e} \quad \text { and } \quad \prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{(-1)^{n} n}=\frac{6}{\pi e} \tag{12}
\end{equation*}
$$

established by Melzak [6]. Some exact evaluations are given in terms of the constant

$$
\begin{equation*}
A_{1}=\exp \left(\frac{1}{4}-\int_{0}^{\infty} \frac{e^{-s}}{s^{3}}\left(1-\frac{s}{2}+\frac{s^{2}}{12}-\frac{s}{e^{s}-1}\right) d s\right) \tag{13}
\end{equation*}
$$

and the Catalan constant

$$
\begin{equation*}
G=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} . \tag{14}
\end{equation*}
$$

Examples include

$$
\begin{equation*}
D(1)=\frac{A_{1}^{6}}{2^{1 / 6} \sqrt{\pi}} \text { and } D\left(\frac{1}{4}\right)=\frac{2^{1 / 6} \sqrt{\pi} A_{1}^{3}}{\Gamma\left(\frac{1}{4}\right)} e^{G / \pi} \tag{15}
\end{equation*}
$$

Other types of products involving gamma factors have recently been analyzed by Chamberland and Straub [4].

The question considered here deals with the evaluation of products of the form

$$
\begin{equation*}
\mathfrak{P}(R, s)=\prod_{n=1}^{\infty} R(n)^{s_{n}} \tag{16}
\end{equation*}
$$

Here R is a rational function and s is an automatic sequence (as studied by Allouche [1]). Examples include periodic sequences taking values in the alphabet $\{+1,-1\}$ or k-automatic sequences: a sequence $\left\{s_{n}: n \geq 0\right\}$ is k-automatic if the set of subsequences $\left\{s_{k^{j} n+\ell}: n \geq 0\right\}$ with $j \geq 0, \ell \in\left[0, k^{j}-1\right]$ is finite. More information about such sequences appears in [2].

The main example discussed here is the paperfolding sequence ϵ_{n} defined in (1). Splitting the evaluation of a product into even and odd indices leads, in the special case of a rational function of degree 1 , to the identity

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{\alpha n+\beta}{\gamma n+\delta}\right)^{\epsilon_{n}}=\prod_{n=0}^{\infty}\left(\frac{2 \alpha n+\beta}{2 \gamma n+\delta}\right)^{(-1)^{n}} \times \prod_{n=0}^{\infty}\left(\frac{2 \alpha n+\alpha+\beta}{2 \gamma n+\gamma+\delta}\right)^{\epsilon_{n}} \tag{17}
\end{equation*}
$$

The exponent $(-1)^{n}$ appearing in the first product on the right is a periodic sequence of period length 2. This motivates the evaluation of products with terms of the form $R(n)^{M_{n}}$ where M_{n} is a periodic sequence. This is the topic of Sections 2-4.

Section 2 discusses the convergence of the product

$$
\begin{equation*}
\mathfrak{P}(R, 1)=\prod_{n=0}^{\infty} R(n) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
R(z)=\frac{\left(z+a_{1}\right) \cdots\left(z+a_{d}\right)}{\left(z+b_{1}\right) \cdots\left(z+b_{d}\right)} \tag{19}
\end{equation*}
$$

This section reviews the elementary arguments showing that convergence in (18) is equivalent to $R(n) \rightarrow 1$ as $n \rightarrow \infty$ and $\mathfrak{S}(R)=0$. Here

$$
\begin{equation*}
\mathfrak{S}(R)=\sum_{b \in R^{-1}(\infty)} b-\sum_{a \in R^{-1}(0)} a \tag{20}
\end{equation*}
$$

The value of $\mathfrak{P}(R, 1)$ is then given by

$$
\begin{equation*}
\prod_{n=0}^{\infty} \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{d}\right)}=\prod_{k=1}^{d} \frac{\Gamma\left(b_{k}\right)}{\Gamma\left(a_{k}\right)} \tag{21}
\end{equation*}
$$

Section 3 discusses the convergence of products $\mathfrak{P}(R, M)$, where R is a rational function and M is a periodic sequence of period length 2 . Section 4 extends the results to any periodic sequence, with special emphasis on period lengths 3 and 4 . Section 5 considers some infinite products related to the paperfolding sequence, and Section 6 considers a generalization to certain k-automatic sequences. An alternative proof of the evaluation of Allouche's product B is presented and a new form of the product A is given. The question of existence of a closed form for A remains open.

2 Convergence of infinite products

This section considers the simplest type of product (16): R is a given rational function and $s_{n} \equiv 1$. The data for the rational function is a sequence of complex numbers $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ where a_{k}, b_{k} are not 0 nor a negative integer. The convergence of the partial finite products

$$
\begin{equation*}
\mathfrak{P}_{r}(R, 1)=\prod_{n=1}^{r} \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{r}\right)} \tag{22}
\end{equation*}
$$

is examined first.
Theorem 1. The infinite product

$$
\begin{equation*}
\mathfrak{P}(R, 1)=\prod_{n=1}^{\infty} \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{r}\right)} \tag{23}
\end{equation*}
$$

converges if and only if $d=r$ and $a_{1}+\cdots+a_{d}=b_{1}+\cdots+b_{r}$; that is, $R(n) \rightarrow 1$ and $\mathfrak{S}(R)=0$.

Proof. The convergence of a product $\prod\left(1+u_{k}\right)$ is equivalent to the convergence of the series $\sum u_{k}$. Therefore $u_{k} \rightarrow 0$ is a necessary condition for convergence. This implies $d=r$. On the other hand

$$
\begin{equation*}
\frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{r}\right)}=1+\left(a_{1}+\cdots+a_{d}-b_{1}-\cdots-b_{r}\right) \frac{1}{n}+O\left(1 / n^{2}\right) \tag{24}
\end{equation*}
$$

and the second condition on the parameters a_{k}, b_{k} is now clear.
The next question is the evaluation of the limiting product. The motivation for the final result is this: consider the problem of producing a function $h(z)$ with zeros at a prescribed sequence $\left\{z_{n}\right\}$. This is elementary if the sequence is finite: the solution is simply given as

$$
\begin{equation*}
P(z)=\prod_{n=1}^{N}\left(1-\frac{z}{z_{j}}\right) \tag{25}
\end{equation*}
$$

when $z_{j} \neq 0$. On the other hand, if the sequence is infinite, convergence issues might appear. For instance, if one would like to have a function that vanishes precisely at the negative integers, then the natural first attempt

$$
\begin{equation*}
P_{1}(z)=\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) \tag{26}
\end{equation*}
$$

fails to converge. To fix this, introduce an exponential correction and form the partial products

$$
\begin{align*}
P_{2, N}(z) & =e^{z\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}\right)} \prod_{n=1}^{N}\left(1+\frac{z}{n}\right) e^{-z / n} \tag{27}\\
& =e^{z\left(E_{1}(N)+\ln N\right)} \prod_{n=1}^{N}\left(1+\frac{z}{n}\right) e^{-z / n}
\end{align*}
$$

with

$$
\begin{equation*}
E_{1}(N)=1+\frac{1}{2}+\cdots+\frac{1}{N}-\ln N . \tag{28}
\end{equation*}
$$

The limit

$$
\begin{equation*}
\gamma=\lim _{N \rightarrow \infty} E_{1}(N) \tag{29}
\end{equation*}
$$

is the famous Euler constant. Therefore, the modified product

$$
\begin{equation*}
\frac{P_{2, N}(z)}{N^{z}}:=e^{z E_{1}(N)} \prod_{n=1}^{N}\left(1+\frac{z}{n}\right) e^{-z / n} \tag{30}
\end{equation*}
$$

has a limit as $N \rightarrow \infty$. The infinite product has zeros at the negative integers. It turns out to be convenient to write an infinite product with poles at the negative integers and also to include 0 as a pole. This yields the classical gamma function $\Gamma(z)$. The functional equation $\Gamma(z+1)=z \Gamma(z)$ is used to simplify the result.

Theorem 2. The infinite product representation of the gamma function is given by

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}=e^{\gamma z} \Gamma(z+1) \tag{31}
\end{equation*}
$$

It is now easy to write the value of the infinite product

$$
\begin{equation*}
\mathfrak{P}(R, 1)=\prod_{n=1}^{\infty} \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{r}\right)} \tag{32}
\end{equation*}
$$

in Theorem 1. Start with

$$
\begin{equation*}
\mathfrak{P}(R, 1)=\prod_{n=1}^{\infty} \frac{\left(1+b_{1} / n\right)^{-1} e^{b_{1} / n} \cdots\left(1+b_{r} / n\right)^{-1} e^{b_{r} / n}}{\left(1+a_{1} / n\right)^{-1} e^{a_{1} / n} \cdots\left(1+a_{d} / n\right)^{-1} e^{a_{d} / n}} \tag{33}
\end{equation*}
$$

and observe that the added exponential terms amount to 1. Passing to the limit in (33) gives

$$
\begin{equation*}
\mathfrak{P}(R, 1)=\prod_{k=1}^{d} \frac{\Gamma\left(b_{k}+1\right)}{\Gamma\left(a_{k}+1\right)} . \tag{34}
\end{equation*}
$$

To simplify the form of the result, shift n to $n+1$ in (32) to produce the following result.
Theorem 3. Let $a_{k}, b_{k} \in \mathbb{C}$ none of which are 0 or negative integers. Assume

$$
\begin{equation*}
a_{1}+\cdots+a_{d}=b_{1}+\cdots+b_{d} \tag{35}
\end{equation*}
$$

Then

$$
\begin{equation*}
\prod_{n=0}^{\infty} \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{d}\right)}=\prod_{k=1}^{d} \frac{\Gamma\left(b_{k}\right)}{\Gamma\left(a_{k}\right)} \tag{36}
\end{equation*}
$$

3 The first example: Sequences of period length 2

This section considers products of the form

$$
\begin{equation*}
\mathfrak{P}(R, M):=\prod_{n=0}^{\infty} R(n)^{M_{n}} \tag{37}
\end{equation*}
$$

where $M_{n}=(-1)^{n}$.
Start with the representation

$$
\begin{equation*}
R(z)=C \frac{\left(z+a_{1}\right) \cdots\left(z+a_{d}\right)}{\left(z+b_{1}\right) \cdots\left(z+b_{r}\right)} \tag{38}
\end{equation*}
$$

The partial products of $\mathfrak{P}(R, s)$ are

$$
\prod_{n=0}^{N} R(n)^{(-1)^{n}}=\prod_{n=0}^{\lfloor N / 2\rfloor} \frac{R(2 n)}{R(2 n+1)} \times \begin{cases}1, & \text { if } N \text { is odd } \tag{39}\\ R(N+1), & \text { if } N \text { is even }\end{cases}
$$

The first factor on the right in (39) is connected to the product $\mathfrak{P}\left(R_{1}, 1\right)$, where

$$
\begin{equation*}
R_{1}(z)=\frac{R(2 z)}{R(2 z+1)} . \tag{40}
\end{equation*}
$$

Its convergence is decided by Theorem 1. It is clear that the product on the left-hand side of (39) converges if and only if both factors on the right converge separately.

In particular, if $\mathfrak{P}(R, M)$ converges, then $\lim _{n \rightarrow \infty} R(n)=1$ and it must be that $C=1$ in (38). To complete the discussion, it suffices to determine conditions under which $\mathfrak{P}\left(R_{1}, 1\right)$ is finite. The rational function (40) factors as

$$
\begin{equation*}
R_{1}(z)=\frac{\left(2 z+a_{1}\right) \cdots\left(2 z+a_{d}\right)}{\left(2 z+b_{1}\right) \cdots\left(2 z+b_{r}\right)} \times \frac{\left(2 z+1+b_{1}\right) \cdots\left(2 z+1+b_{r}\right)}{\left(2 z+1+a_{1}\right) \cdots\left(2 z+1+a_{d}\right)}, \tag{41}
\end{equation*}
$$

with $d+r$ zeros at

$$
\begin{equation*}
-\frac{1}{2} a_{1}, \ldots,-\frac{1}{2} a_{d},-\frac{1}{2}\left(1+b_{1}\right), \ldots,-\frac{1}{2}\left(1+b_{r}\right) \tag{42}
\end{equation*}
$$

and $d+r$ poles at

$$
\begin{equation*}
-\frac{1}{2} b_{1}, \ldots,-\frac{1}{2} b_{r},-\frac{1}{2}\left(1+a_{1}\right), \ldots,-\frac{1}{2}\left(1+a_{d}\right) . \tag{43}
\end{equation*}
$$

Since $R_{1}(z) \rightarrow 1$ as $z \rightarrow \infty$, convergence in (39) requires the relation

$$
\begin{equation*}
\sum_{k=1}^{d} a_{k}+\sum_{k=1}^{r}\left(1+b_{k}\right)=\sum_{k=1}^{r} b_{k}+\sum_{k=1}^{d}\left(1+a_{k}\right) . \tag{44}
\end{equation*}
$$

This is equivalent to the condition $d=r$.

The value of $\mathfrak{P}(R, M)$ is obtained from Theorem 3 as

$$
\begin{equation*}
\mathfrak{P}(R, M)=\mathfrak{P}\left(R_{1}, 1\right)=\prod_{k=1}^{d} \frac{\Gamma\left(\frac{b_{k}}{2}\right) \Gamma\left(\frac{1+a_{k}}{2}\right)}{\Gamma\left(\frac{1+b_{k}}{2}\right) \Gamma\left(\frac{a_{k}}{2}\right)} . \tag{45}
\end{equation*}
$$

This is simplified using the duplication formula for the gamma function to obtain

$$
\begin{equation*}
\prod_{k=1}^{d} \frac{\Gamma\left(\frac{b_{k}}{2}\right) \Gamma\left(\frac{1+a_{k}}{2}\right)}{\Gamma\left(\frac{1+b_{k}}{2}\right) \Gamma\left(\frac{a_{k}}{2}\right)}=2^{\left(b_{1}-a_{1}\right)+\cdots+\left(b_{d}-a_{d}\right)} \prod_{k=1}^{d} \frac{\Gamma^{2}\left(\frac{b_{k}}{2}\right) \Gamma\left(a_{k}\right)}{\Gamma^{2}\left(\frac{a_{k}}{2}\right) \Gamma\left(b_{k}\right)} . \tag{46}
\end{equation*}
$$

The discussion above is summarized in the next statement.
Theorem 4. Let $R(z)$ be a rational function and $M_{n}=(-1)^{n}$. Then $\mathfrak{P}(R, M)$ converges if and only if $R(z) \rightarrow 1$ as $z \rightarrow \infty$. If

$$
\begin{equation*}
R(z)=\prod_{k=1}^{d} \frac{\left(z+a_{k}\right)}{\left(z+b_{k}\right)} \text { and } \mathfrak{S}(R)=\sum_{k=1}^{d} b_{k}-\sum_{k=1}^{d} a_{k}, \tag{47}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{P}(R, M)=2^{\mathfrak{G}(R)} \prod_{k=1}^{d} \frac{\Gamma^{2}\left(\frac{b_{k}}{2}\right) \Gamma\left(a_{k}\right)}{\Gamma^{2}\left(\frac{a_{k}}{2}\right) \Gamma\left(b_{k}\right)} . \tag{48}
\end{equation*}
$$

Example 5. Let $R(z)=(20 z+5) /(20 z+4)$. The convergence conditions are satisfied and Theorem 4 gives

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{20 n+5}{20 n+4}\right)^{(-1)^{n}}=\frac{\Gamma\left(\frac{1}{10}\right) \Gamma\left(\frac{5}{8}\right)}{\Gamma\left(\frac{1}{8}\right) \Gamma\left(\frac{3}{5}\right)} . \tag{49}
\end{equation*}
$$

Mathematica 9.0 does not evaluate the original product, but it does give the right-hand side of (49) for

$$
\begin{equation*}
\mathfrak{P}\left(R_{1}, 1\right)=\prod_{n=0}^{\infty} \frac{80 n^{2}+58 n+6}{80 n^{2}+58 n+5} \tag{50}
\end{equation*}
$$

Example 6. The infinite product

$$
\begin{equation*}
\mathfrak{P}(R, s)=\prod_{n=0}^{\infty}\left(\frac{2 \alpha n+\beta}{2 \gamma n+\delta}\right)^{(-1)^{n}} \tag{51}
\end{equation*}
$$

encountered in the paperfolding product (17) converges if and only if $\alpha=\gamma$. The product is then

$$
\begin{equation*}
\mathfrak{P}(R, s)=\prod_{n=0}^{\infty}\left(\frac{n+2 v}{n+2 u}\right)^{(-1)^{n}}=2^{2(u-v)} \frac{\Gamma^{2}(u) \Gamma(2 v)}{\Gamma^{2}(v) \Gamma(2 u)} \tag{52}
\end{equation*}
$$

with $u=\delta / 4 \alpha$ and $v=\beta / 4 \alpha$.

4 Convergence for periodic sequences

This section discusses the issue of convergence of the product

$$
\begin{equation*}
\mathfrak{P}(R, M)=\prod_{n=0}^{\infty} R(n)^{M_{n}} \tag{53}
\end{equation*}
$$

where $\left\{M_{n}\right\}$ is a periodic sequence of period length ℓ of elements of the alphabet $\{+1,-1\}$. Notation. The results are expressed in terms of

$$
\begin{align*}
& M^{+}=\left\{i: M_{i}=+1 \text { and } 0 \leq i \leq \ell-1\right\}=\left\{i_{1}, i_{2}, \ldots, i_{\left|M^{+}\right|}\right\} \tag{54}\\
& M^{-}=\left\{j: M_{j}=-1 \text { and } 0 \leq j \leq \ell-1\right\}=\left\{j_{1}, j_{2}, \ldots, j_{\left|M^{-}\right|}\right\}
\end{align*}
$$

and the period length is $\ell=\left|M^{+}\right|+\left|M^{-}\right|$.
The rational function is written as

$$
\begin{equation*}
R(n)=C \frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{r}\right)} \tag{55}
\end{equation*}
$$

with $a_{s}, b_{t} \notin\{0,-1,2, \ldots\}$ and

$$
\begin{equation*}
\mathfrak{S}(R)=\sum_{t=1}^{r} b_{t}-\sum_{s=1}^{d} a_{s} \tag{56}
\end{equation*}
$$

The partial product associated with $\mathfrak{P}(R, M)$ is

$$
\begin{align*}
\prod_{n=0}^{N} R(n)^{M_{n}} & =\prod_{k=0}^{\lfloor N / \ell\rfloor} \prod_{i \in M^{+}} R(k \ell+i)^{M_{i}} \prod_{j \in M^{-}} R(k \ell+j)^{M_{j}} \prod_{n=\ell\lfloor N / \ell\rfloor+1}^{N} R(n)^{M_{n}} \\
& =\prod_{k=0}^{\lfloor N / \ell\rfloor} \frac{\prod_{i \in M^{+}} R(k \ell+i)}{\prod_{j \in M^{-}} R(k \ell+j)} \prod_{n=\ell\lfloor N / \ell\rfloor+1}^{N} R(n)^{M_{n}} \tag{57}
\end{align*}
$$

the last product being empty if N is a multiple of the period length ℓ. An elementary argument shows that the convergence of $\mathfrak{P}(R, M)$ requires the convergence of both products in (57). The first product, which would lead to an expression of the form $\mathfrak{P}\left(R_{1}, 1\right)$ for a new rational function R_{1} is labeled the main term. The second product is called the tail product. We analyze its convergence first.

The tail product is defined by

$$
\begin{equation*}
P_{N, \ell}(M)=\prod_{n=\ell\lfloor N / \ell\rfloor+1}^{N} R(n)^{M_{n}} \tag{58}
\end{equation*}
$$

Its convergence implies $R(n) \rightarrow 1$ as $n \rightarrow \infty$. Observe that $P_{N, \ell}(M)=1$ if $N \equiv 0(\bmod \ell)$. On the other hand, in the case $N \equiv 1(\bmod \ell)$, one obtains

$$
P_{N, \ell}(M)=R(N)^{M_{N}}=R(N)^{M_{1}},
$$

since $M_{N}=M_{1}$ by periodicity. Therefore, the convergence of $\mathfrak{P}(R, M)$ requires $R(N) \rightarrow 1$ for $N \equiv 1(\bmod \ell)$. Similarly, if $N \equiv 2(\bmod \ell)$,

$$
P_{N, \ell}(M)=R(N-1)^{M_{N-1}} R(N)^{M_{N}}=R(N-1)^{M_{1}} R(N)^{M_{2}} .
$$

The convergence of $\mathfrak{P}(R, M)$ already implies $R(N-1) \rightarrow 1$ since $N-1 \equiv 1(\bmod \ell)$. This time it is required that $R(N) \rightarrow 1$. Iterating this argument it follows that $R(N) \rightarrow 1$ for $N \equiv j(\bmod \ell)$ for any residue class j. This gives the next result.

Proposition 7. Assume $\mathfrak{P}(R, M)$ converges. Then $\lim _{n \rightarrow \infty} R(n)=1$.
The limiting value of the main term is $\mathfrak{P}\left(R_{1}, 1\right)$, where

$$
\begin{equation*}
R_{1}(n)=\frac{R\left(\ell n+i_{1}\right) \cdots R\left(\ell n+i_{\left|M^{+}\right|}\right)}{R\left(\ell n+j_{1}\right) \cdots R\left(\ell n+j_{\left|M^{-}\right|}\right)} \tag{59}
\end{equation*}
$$

The ingredients entering into the convergence of $\mathfrak{P}\left(R_{1}, 1\right)$ are discussed in the next result. We assume the condition $R(n) \rightarrow 1$.

Proposition 8. Let $M_{*}=\left|M^{+}\right|-\left|M^{-}\right|$and assume $\mathfrak{P}\left(R_{1}, 1\right)$ converges. Then $\lim _{n \rightarrow \infty} R_{1}(n)=1$ and

$$
\begin{equation*}
\ell \mathfrak{S}\left(R_{1}\right)=M_{*} \mathfrak{S}(R) . \tag{60}
\end{equation*}
$$

Proof. The behavior of $R_{1}(n)$ as $n \rightarrow \infty$ comes directly from that of R. The identity (60) is a direct computation.

Combining these propositions gives the following.
Theorem 9. Let R be a rational function satisfying $\lim _{n \rightarrow \infty} R(n)=1$ with zeros and poles of R are outside $\{0,-1,-2, \ldots\}$. There are two cases.

1. Assume $M_{*} \neq 0$. Then $\mathfrak{P}(R, M)$ converges if and only if $\mathfrak{S}(R)=0$.
2. Assume $M_{*}=0$. Then $\mathfrak{P}(R, M)$ always converges.

For a general periodic sequence, the value of the product $\mathfrak{P}(R, M)$ is given by the following.

Theorem 10. Let $R(n)$ be a rational function written in the form

$$
\begin{equation*}
R(n)=\frac{\left(n+a_{1}\right) \cdots\left(n+a_{d}\right)}{\left(n+b_{1}\right) \cdots\left(n+b_{d}\right)} \tag{61}
\end{equation*}
$$

with $a_{i}, b_{j} \notin\{0,-1,-2, \ldots\}$. Let $\left\{M_{n}\right\}$ be a periodic sequence of ± 1 with period length ℓ. Assume the product

$$
\begin{equation*}
\mathfrak{P}(R, M)=\prod_{n=0}^{\infty} R(n)^{M_{n}} \tag{62}
\end{equation*}
$$

converges. Then

$$
\begin{equation*}
\mathfrak{P}(R, M)=\ell^{\mathfrak{G}(R)} \prod_{1 \leq s \leq d} \frac{\Gamma\left(a_{s}\right)}{\Gamma\left(b_{s}\right)} \prod_{i \in M^{+}} \frac{\Gamma^{2}\left(\frac{b_{s}+i}{\ell}\right)}{\Gamma^{2}\left(\frac{a_{s}+i}{\ell}\right)} . \tag{63}
\end{equation*}
$$

Proof. Splitting the product according to its residues modulo ℓ gives

$$
\begin{aligned}
\prod_{n=1}^{\infty} R(n)^{M_{n}} & =\prod_{n=0}^{\infty} \prod_{\substack{i \in M^{+} \\
j \in M^{-}}} \frac{R(\ell n+i)}{R(\ell n+j)} \\
& =\prod_{\substack{i \in M^{+} \\
j \in M^{-}}} \prod_{n=0}^{\infty} \frac{\left(n+\frac{a_{1}+i}{\ell}\right) \cdots\left(n+\frac{a_{d}+i}{\ell}\right)\left(n+\frac{b_{1}+j}{\ell}\right) \cdots\left(n+\frac{b_{d}+j}{\ell}\right)}{\left(n+\frac{b_{1}+i}{\ell}\right) \cdots\left(n+\frac{b_{d}+i}{\ell}\right)\left(n+\frac{a_{1}+j}{\ell}\right) \cdots\left(n+\frac{a_{d}+j}{\ell}\right)}
\end{aligned}
$$

The products may be expressed in terms of the gamma function to obtain

$$
\begin{equation*}
\prod_{n=1}^{\infty} R(n)^{M_{n}}=\prod_{\substack{i \in M^{+} \\ j \in M^{-}}} \frac{\Gamma\left(\frac{b_{1}+i}{\ell}\right) \cdots \Gamma\left(\frac{b_{d}+i}{\ell}\right) \Gamma\left(\frac{a_{1}+j}{\ell}\right) \cdots \Gamma\left(\frac{a_{d}+j}{\ell}\right)}{\Gamma\left(\frac{a_{1}+i}{\ell}\right) \cdots \Gamma\left(\frac{a_{d}+i}{\ell}\right) \Gamma\left(\frac{b_{1}+j}{\ell}\right) \cdots \Gamma\left(\frac{b_{d}+j}{\ell}\right)} \tag{64}
\end{equation*}
$$

and the result is simplified using Gauss' multiplication formula

$$
\begin{equation*}
(2 \pi)^{\frac{\ell-1}{2}} \ell^{\frac{1}{2}-\ell z} \Gamma(\ell z)=\prod_{j=0}^{\ell-1} \Gamma\left(z+\frac{j}{\ell}\right) . \tag{65}
\end{equation*}
$$

Take $z=a_{s} / \ell$ to produce

$$
\begin{aligned}
(2 \pi)^{\frac{\ell-1}{2}} \ell^{1 / 2-a_{s}} \Gamma\left(a_{s}\right) & =\Gamma\left(\frac{a_{s}}{\ell}\right) \Gamma\left(\frac{a_{s}+1}{\ell}\right) \cdots \Gamma\left(\frac{a_{s}+\ell-1}{\ell}\right) \\
& =\Gamma\left(\frac{a_{s}+i_{1}}{\ell}\right) \cdots \Gamma\left(\frac{a_{s}+i_{\left|M^{+}\right|}}{\ell}\right) \Gamma\left(\frac{a_{s}+j_{1}}{\ell}\right) \cdots \Gamma\left(\frac{a_{s}+j_{\left|M^{+}\right|}}{\ell}\right)
\end{aligned}
$$

since every residue modulo ℓ appears exactly once in the sets M^{+}and M^{-}. It follows that

$$
\begin{equation*}
\prod_{j \in M^{-}} \Gamma\left(\frac{a_{s}+j}{\ell}\right)=\frac{(2 \pi)^{(\ell-1) / 2} \ell^{1 / 2-a_{s}} \Gamma\left(a_{s}\right)}{\prod_{i \in M^{+}} \Gamma\left(\frac{a_{s}+i}{\ell}\right)} \tag{66}
\end{equation*}
$$

for $1 \leq s \leq d$. A similar result holds for b_{s}. Replacing in (64) concludes the proof.

Example 11. Consider the sequence $\overline{\{1,-1,-1\}}$, where the bar indicates the fundamental period; that is,

$$
M_{n}=\left\{\begin{align*}
1, & \text { if } n \equiv 0(\bmod 3) \tag{67}\\
-1, & \text { if } n \equiv 1,2(\bmod 3)
\end{align*}\right.
$$

Therefore $M^{+}=\{0\}, M^{-}=\{1,2\}$ so that $M_{*}=-1$. Theorem 9 states that the convergence of $\mathfrak{P}\left(R_{1}, 1\right)$ is equivalent to $\mathfrak{S}(R)=0$. Take $R(z)=\frac{(z+1)(z+3)}{(z+2)^{2}}$. The conditions for convergence of $\mathfrak{P}(R, M)$ are satisfied, and its value is

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{(n+1)(n+3)}{(n+2)^{2}}\right)^{M_{n}}=\frac{\Gamma(1) \Gamma^{2}\left(\frac{2}{3}\right)}{\Gamma(2) \Gamma^{2}\left(\frac{1}{3}\right)} \frac{\Gamma(3) \Gamma^{2}\left(\frac{2}{3}\right)}{\Gamma(2) \Gamma^{2}\left(\frac{3}{3}\right)}=2 \cdot \frac{\Gamma^{4}\left(\frac{2}{3}\right)}{\Gamma^{2}\left(\frac{1}{3}\right)}=\frac{3}{2 \pi^{2}} \Gamma^{6}\left(\frac{2}{3}\right) . \tag{68}
\end{equation*}
$$

by Theorem 10 .
Example 12. Let $R(z)=\frac{(z+2)(z+3)}{(z+1)(z+4)}$ and $M=\overline{\{1,1,1,-1\}}$. Then $M^{+}=\{0,1,2\}$ and $M^{-}=\{3\}$. Thus $M_{*} \neq 0$. The product $\mathfrak{P}(R, M)$ converges by Theorem 9 , and Theorem 10 gives

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{(n+2)(n+3)}{(n+1)(n+4)}\right)^{M_{n}}=\frac{1}{24 \pi} \Gamma^{4}\left(\frac{1}{4}\right) . \tag{69}
\end{equation*}
$$

5 The paperfolding sequence

The paperfolding sequence is defined by the rules

$$
\begin{equation*}
\epsilon_{2 n}=(-1)^{n} \text { and } \epsilon_{2 n+1}=\epsilon_{n} \tag{70}
\end{equation*}
$$

Allouche [1] considered the products

$$
\begin{equation*}
A=\prod_{n=0}^{\infty}\left(\frac{2 n+1}{2 n+2}\right)^{\epsilon_{n}} \text { and } B=\prod_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{\epsilon_{n}} \tag{71}
\end{equation*}
$$

and proved

$$
\begin{equation*}
B=\frac{\Gamma\left(\frac{1}{4}\right)^{2}}{8 \sqrt{2 \pi}} \tag{72}
\end{equation*}
$$

The closed-form evaluation of A remains an open problem.
The goal of this section is to present a new proof of (72) and to present an alternative product expression for A. Observe that

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{a n+b}{c n+d}\right)^{\epsilon_{n}}=\prod_{n=0}^{\infty}\left(\frac{2 a n+b}{2 c n+d}\right)^{(-1)^{n}} \times \prod_{n=0}^{\infty}\left(\frac{2 a n+(a+b)}{2 c n+(c+d)}\right)^{\epsilon_{n}} \tag{73}
\end{equation*}
$$

The convergence of the first product requires $a=c$ and its value has been obtained in Theorem 4 as

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{2 a n+b}{2 c n+d}\right)^{(-1)^{n}}=2^{d / 2 c-b / 2 a} \frac{\Gamma^{2}\left(\frac{d}{4 c}\right) \Gamma\left(\frac{b}{2 a}\right)}{\Gamma^{2}\left(\frac{b}{4 a}\right) \Gamma\left(\frac{d}{2 c}\right)} . \tag{74}
\end{equation*}
$$

Iterating this procedure converts the second factor in (73) into

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{2 a n+(a+b)}{2 c n+(c+d)}\right)^{\epsilon_{n}}=\prod_{n=0}^{\infty}\left(\frac{4 a n+(a+b)}{4 c n+(c+d)}\right)^{(-1)^{n}} \times \prod_{n=0}^{\infty}\left(\frac{4 a n+(3 a+b)}{4 c n+(3 c+d)}\right)^{\epsilon_{n}} \tag{75}
\end{equation*}
$$

The first product on the right-hand side of (75) converges and Theorem 4 gives

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{4 a n+(a+b) b}{4 c n+(c+d)}\right)^{(-1)^{n}}=2^{d / 4 c-b / 4 a} \frac{\Gamma^{2}\left(\frac{c+d}{8 c}\right) \Gamma\left(\frac{a+b}{4 a}\right)}{\Gamma^{2}\left(\frac{a+b}{8 a}\right) \Gamma\left(\frac{c+d}{4 c}\right)} \tag{76}
\end{equation*}
$$

Now observe that

$$
\begin{equation*}
\frac{c+d}{8 c}=\frac{1}{4}+\frac{d-c}{8 c} \tag{77}
\end{equation*}
$$

so (76) can be written as

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{4 a n+(a+b) b}{4 c n+(c+d)}\right)^{(-1)^{n}}=2^{d / 4 c-b / 4 a} \frac{\Gamma^{2}\left(\frac{1}{4}+\frac{d-c}{8 c}\right) \Gamma\left(\frac{1}{2}+\frac{b-a}{2 a}\right)}{\Gamma^{2}\left(\frac{1}{4}+\frac{b-a}{8 a}\right) \Gamma\left(\frac{1}{2}+\frac{d-c}{4 c}\right)} . \tag{78}
\end{equation*}
$$

Repeated application of this process gives

$$
\left.\begin{array}{l}
\prod_{n=0}^{\infty}\left(\frac{a n+b}{c n+d}\right)^{\epsilon_{n}}=2^{(d / c-b / a)} \sum_{k=1}^{N} 1 / 2^{k}
\end{array}\right] .
$$

A direct argument shows that the last product converges to 1 when $N \rightarrow \infty$. This completes the proof of the next statement.

Theorem 13. The infinite product associated with the paperfolding sequence is given by

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{a n+b}{c n+d}\right)^{\epsilon_{n}}=2^{(d / c-b / a)} \prod_{k=2}^{\infty} \frac{\Gamma^{2}\left(\frac{1}{4}+\frac{d-c}{c 2^{k}}\right) \Gamma\left(\frac{1}{2}+\frac{b-a}{a 2^{k-1}}\right)}{\Gamma^{2}\left(\frac{1}{4}+\frac{b-a}{a 2^{k}}\right) \Gamma\left(\frac{1}{2}+\frac{d-c}{c 2^{k-1}}\right)} . \tag{80}
\end{equation*}
$$

The product appearing in Theorem 13 does not seem to admit a simple closed form for general choice of the parameters a, b, d (recall that $a=c$ is required for the convergence of the product). Such a closed form is obtained in the special situation where the factors telescope. This occurs when $2 d=a+b$. The next corollary (equivalent to a theorem of Allouche [1, Theorem 1]) gives such a closed form, with $\alpha=d / a$. In that situation

$$
\begin{equation*}
\prod_{k=2}^{N} \frac{\Gamma^{2}\left(\frac{1}{4}+\frac{d-c}{c 2^{k}}\right)}{\Gamma^{2}\left(\frac{1}{4}+\frac{b-a}{a 2^{k}}\right)} \rightarrow \frac{\Gamma^{2}\left(\frac{1}{4}\right)}{\Gamma^{2}\left(\frac{\alpha}{2}-\frac{1}{4}\right)} \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{k=2}^{N} \frac{\Gamma\left(\frac{1}{2}+\frac{b-a}{a 2^{k-1}}\right)}{\Gamma\left(\frac{1}{2}+\frac{d-c}{a 2^{k-1}}\right)} \rightarrow \frac{\Gamma\left(\alpha-\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} . \tag{82}
\end{equation*}
$$

Corollary 14. A special case of the paperfolding product is given by

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{n+2 \alpha-1}{n+\alpha}\right)^{\epsilon_{n}}=2^{1-\alpha} \frac{\Gamma^{2}\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{2}\right)} \frac{\Gamma\left(\alpha-\frac{1}{2}\right)}{\Gamma^{2}\left(\frac{\alpha}{2}-\frac{1}{4}\right)} . \tag{83}
\end{equation*}
$$

Example 15. Take $\alpha=3$ to obtain

$$
\begin{equation*}
\prod_{n=0}^{\infty}\left(\frac{n+5}{n+3}\right)^{\epsilon_{n}}=3 \tag{84}
\end{equation*}
$$

Example 16. The infinite product B in (71) comes by taking the limit as $\alpha \rightarrow \frac{1}{2}$. Indeed, write (83) as

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(\frac{n+2 \alpha-1}{n+\alpha}\right)^{\epsilon_{n}}=\frac{\alpha}{\alpha-\frac{1}{2}} \frac{\Gamma^{2}\left(\frac{1}{4}\right)}{2^{\alpha} \Gamma\left(\frac{1}{2}\right)} \frac{\Gamma\left(\alpha-\frac{1}{2}\right)}{\Gamma^{2}\left(\frac{\alpha}{2}-\frac{1}{4}\right)} . \tag{85}
\end{equation*}
$$

The limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\Gamma(x)}{x \Gamma^{2}(x / 2)}=\frac{1}{4} \tag{86}
\end{equation*}
$$

gives

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{\epsilon_{n}}=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{8 \sqrt{2 \pi}} \tag{87}
\end{equation*}
$$

confirming (72).
Example 17. The method described above does not produce a closed form for the product A in (71). A direct use of the expression in Theorem 13 gives

$$
\begin{equation*}
A=\prod_{n=0}^{\infty}\left(\frac{2 n+1}{2 n+2}\right)^{\epsilon_{n}}=\sqrt{2} \prod_{k=2}^{\infty}\left(\frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{4}-\frac{1}{2^{k+1}}\right)}\right)^{2} \times \frac{\Gamma\left(\frac{1}{2}-\frac{1}{2^{k}}\right)}{\Gamma\left(\frac{1}{2}\right)} . \tag{88}
\end{equation*}
$$

Iterating the duplication formula for the gamma function yields the so-called Knar formula [5, volume 1 , page 6 , formula 6]

$$
\begin{equation*}
\Gamma(1+z)=2^{2 z} \prod_{k=1}^{\infty} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}+\frac{z}{2^{k}}\right) \tag{89}
\end{equation*}
$$

and $z=-\frac{1}{2}$ gives

$$
\begin{equation*}
\prod_{k=2}^{\infty} \frac{\Gamma\left(\frac{1}{2}-\frac{1}{2^{k}}\right)}{\Gamma\left(\frac{1}{2}\right)}=2 \sqrt{\pi} \tag{90}
\end{equation*}
$$

Then (88) becomes

$$
\begin{equation*}
A=\prod_{n=0}^{\infty}\left(\frac{2 n+1}{2 n+2}\right)^{\epsilon_{n}}=2 \sqrt{2 \pi} \prod_{k=3}^{\infty}\left(\frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{4}-\frac{1}{2^{k}}\right)}\right)^{2} \tag{91}
\end{equation*}
$$

The authors have been unable to reduce this any further.

6 Generalization to certain k-automatic sequences

This section extends the results on the paperfolding sequence to certain k-automatic sequences. As usual, let $R(z)$ be a rational function written in the form

$$
\begin{equation*}
R(z)=\frac{\left(z+a_{1}\right) \cdots\left(z+a_{d}\right)}{\left(z+b_{1}\right) \cdots\left(z+b_{d}\right)} \tag{92}
\end{equation*}
$$

and assume that a_{i} and b_{j} are not in $\{0,-1,-2, \ldots\}$.
Consider the case in which M_{n} is a 3 -automatic sequence defined by the rules

$$
\begin{align*}
M_{3 n} & =q_{0}(n), \tag{93}\\
M_{3 n+1} & =q_{1}(n), \\
M_{3 n+2} & =M_{n},
\end{align*}
$$

where q_{j} takes values in $\{+1,-1\}$ and $q_{j}(n)$ is periodic of period length ℓ_{j}. Now split the product according to residues modulo 3 to produce

$$
\begin{aligned}
\prod_{n=0}^{\infty} R(n)^{M_{n}} & =\prod_{n=0}^{\infty} R(3 n)^{M_{3 n}} \times \prod_{n=0}^{\infty} R(3 n+1)^{M_{3 n+1}} \times \prod_{n=0}^{\infty} R(3 n+2)^{M_{3 n+2}} \\
& =\prod_{n=0}^{\infty} R(3 n)^{q_{0}(n)} \times \prod_{n=0}^{\infty} R(3 n+1)^{q_{1}(n)} \times \prod_{n=0}^{\infty} R(3 n+2)^{M_{n}}
\end{aligned}
$$

The convergence and values of the first two products are provided by Theorem 9 and Theorem 10.

Assume the convergence of the product

$$
\begin{equation*}
\mathbb{P}_{0}=\prod_{n=0}^{\infty} R(3 n)^{q_{0}(n)} . \tag{94}
\end{equation*}
$$

Theorem 9 shows that this happens if $\left|q_{0}\right|=0$, where $\left|q_{0}\right|$ is the number of +1 minus the number of -1 in one period. In the remaining case, it is required that $\mathfrak{S}(R(3 z))=0$, where $\mathfrak{S}(R)$ is defined in (20). The exact form of the product is obtained from Theorem 10 which yields, with $R_{0}(z)=R(3 z)$,

$$
\begin{equation*}
\mathbb{P}_{0}=\mathfrak{P}\left(R_{0}, q_{0}\right)=\ell_{0}^{\mathfrak{S}\left(R_{0}\right)} \prod_{1 \leq s \leq d} \frac{\Gamma\left(a_{s} / 3\right)}{\Gamma\left(b_{s} / 3\right)} \prod_{i \in q_{0}^{+}} \frac{\Gamma^{2}\left(\frac{b_{s}+3 i}{3 \ell_{0}}\right)}{\Gamma^{2}\left(\frac{a_{s}+3 i}{3 \ell_{0}}\right)} . \tag{95}
\end{equation*}
$$

A similar process gives an analytic formula for the second product. Repeating the previous process yields a decomposition of the third product as

$$
\prod_{n=0}^{\infty} R(n)^{M_{n}}=\prod_{n=0}^{\infty} R(9 n+2)^{q_{0}(n)} \times \prod_{n=0}^{\infty} R(9 n+5)^{q_{1}(n)} \times \prod_{n=0}^{\infty} R(9 n+8)^{M_{n}}
$$

As before, the first two products have an explicit analytic expression and the last one has to be split again.

This process can be iterated to obtain a formula for the original product. For simplicity, the results are given for $R(z)$ a rational function of degree 1 and only in the case in which all the periodic pieces $q_{i}(n)$ have a period length that is a power of a fixed even integer. In this situation, the final formula can be simplified.

Theorem 18. Let $R(z)=\frac{z+b}{z+d}$, with $b, d \in \mathbb{R}^{+}$and let M_{n} be a k-automatic sequence satisfying the rules

$$
\begin{aligned}
M_{k n} & =q_{0}(n) \\
M_{k n+1} & =q_{1}(n) \\
& \vdots \\
M_{k n+k-2} & =q_{k-2}(n) \\
M_{k n+k-1} & =M_{n} .
\end{aligned}
$$

Assume there is an even integer L such that each sequence $q_{i}(n)$ is a periodic sequence of period length $L_{i}=L^{\alpha_{i}}$ some power of L. In addition, assume that $\left|q_{i}^{+}\right|=\left|q_{i}^{-}\right|$for all $0 \leq i \leq k-2$. Then

$$
\begin{equation*}
\mathfrak{P}(R, M)=\prod_{n=0}^{\infty} R(n)^{M_{n}} \tag{96}
\end{equation*}
$$

converges. Moreover, if $d=\frac{b+k-1}{k}$ the product in (96) can be evaluated as

$$
\begin{equation*}
\prod_{n=0}^{\infty} R(n)^{M_{n}}=\prod_{i=0}^{k-2}\left(L_{i}^{\frac{1-b}{k}} \frac{\Gamma\left(\frac{b+i}{k}\right)}{\Gamma\left(\frac{i+1}{k}\right)} \prod_{j \in q_{i}^{+}} \frac{\Gamma^{2}\left(\frac{i+1}{L_{i} k}+\frac{j}{L_{i}}\right)}{\Gamma^{2}\left(\frac{b+i}{L_{i} k}+\frac{j}{L_{i}}\right)}\right) . \tag{97}
\end{equation*}
$$

Note that the paperfolding sequence satisfies the hypothesis of the theorem. In this case $k=2$ and $q_{0}(n)=(-1)^{n}$, and $L=2$. The rational function is

$$
R(n)=\frac{n+b}{n+\frac{b+1}{2}}
$$

and (97) reduces to the result of Allouche. The idea of the proof is the argument presented in the case of the 3 -automatic sequence above. Complete details may be found in [8].

7 Acknowledgments

The second author acknowledges the partial support of NSF-DMS 1112656. This work was carried out during the 2014 Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP) which is funded by the National Science Foundation (grant No. DMS1156499) and the National Security Agency (grant No. H-98230-13-1-0262). H. Quan, F. Roman and M. Washington were undergraduates at this program, L. Almodovar was a graduate assistant and E. Rowland was a postdoctoral advisor at the MSRI-UP program.

References

[1] J.-P. Allouche, Paperfolding infinite products and the gamma function, J. Number Theory 148 (2015), 95-111.
[2] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[3] P. Borwein and W. Dykshoorn, An interesting infinite product, J. Math. Anal. Appl. 179 (1993), 203-207.
[4] M. Chamberland and A. Straub, On gamma quotients and infinite products, Adv. Appl. Math. 51 (2013), 546-562.
[5] A. Erdélyi, Higher Transcendental Functions, McGraw-Hill, 1953.
[6] Z. A. Melzak, Infinite products for πe and π / e, Amer. Math. Monthly 68 (1961), 39-41.
[7] T. J. Osler, The tables of John Wallis and the discovery of his product for π, Math. Gaz. 94 (2010), 430-437.
[8] H. Quan, F. Roman, and M. Washington, Infinite products and periodic sequences, Technical report, MSRI-UP, Berkeley, California, 2014, pp. 60-90.
[9] J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, in Diophantine Analysis and Related Fields: Proc. DARF 2011, American Institute of Physics, 2011, pp. 97-100.

2010 Mathematics Subject Classification: Primary 11B85; Secondary 33B15, 40A20.
Keywords: infinite product, gamma function, paperfolding sequence.
(Concerned with sequence A034947.)

Received May 29 2015; revised version received April 21 2016. Published in Journal of Integer Sequences, May 112016.

Return to Journal of Integer Sequences home page.

