Journal of Integer Sequences, Vol. 19 (2016), Article 16.4.8

A Note on a Theorem of Guo, Mező, and Qi

Antônio Francisco Neto ${ }^{1}$
DEPRO, Escola de Minas
Campus Morro do Cruzeiro, UFOP
35400-000 Ouro Preto MG
Brazil
antfrannet@gmail.com

Abstract

In a recent paper, Guo, Mező, and Qi proved an identity representing the Bernoulli polynomials at non-negative integer points m in terms of the m-Stirling numbers of the second kind. In this note, using a new representation of the Bernoulli polynomials in the context of the Zeon algebra, we give an alternative proof of the aforementioned identity.

1 Introduction

In an interesting recent paper [9], Guo, Mező, and Qi found the following identity

$$
\begin{equation*}
B_{n}(m)=\sum_{l=0}^{n}(-1)^{l} \frac{l!}{l+1} S_{m}(n+m, l+m) \tag{1}
\end{equation*}
$$

relating the Bernoulli polynomials $B_{n}(m)$ at non-negative integer points m with m-Stirling numbers of the second kind $S_{m}(n+m, l+m)$. Eq. (1) is a generalization of the identity [8, p. 560]

$$
B_{n}=\sum_{m=0}^{n}(-1)^{m} \frac{m!}{m+1} S(n, m)
$$

[^0]Note that $B_{n} \equiv B_{n}(0)$ and $S \equiv S_{0}$ are the usual Bernoulli numbers [16, Chap. 2] and Stirling numbers of the second kind [16, Chap. 1], respectively.

In this work, we will give another proof of (1) by showing that (1) is a straightforward consequence of a new Zeon representation [7, 11], [10, Chap. 5] of the Bernoulli polynomials.

We believe the approach here is of interest because it gives a straightforward demonstration of Guo, Mező, and Qi result, and, as a consequence, it provides another instance where computations involving Zeons and/or Grassmann variables provide direct and interesting results $[1,2,5,11,12,13,15]$. For more on Grassmann variables we refer the reader to the books of Berezin [3, Chap. 1], DeWitt [6, Chap. 1], and Rogers [14, Chap. 3].

For completeness, we recall some basic definitions and results already stated in previous work [11]. Throughout this work we let \mathbb{R} denote the real numbers, \mathbb{N} the positive integers, and $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$ the non-negative integers.

2 Zeon Algebra and Grassmann-Berezin Integral

Definition 1. The Zeon algebra $\mathcal{Z}_{n} \supset \mathbb{R}$ is defined as the associative algebra generated by the collection $\left\{\varepsilon_{i}\right\}_{i=1}^{n}(n<\infty)$ and the scalar $1 \in \mathbb{R}$, such that $1 \varepsilon_{i}=\varepsilon_{i}=\varepsilon_{i} 1, \varepsilon_{i} \varepsilon_{j}=\varepsilon_{j} \varepsilon_{i} \forall$ i, j and $\varepsilon_{i}^{2}=0 \forall i$.

For $\{i, j, \ldots, k\} \subset\{1,2, \ldots, n\}$ and $\varepsilon_{i j \cdots k} \equiv \varepsilon_{i} \varepsilon_{j} \cdots \varepsilon_{k}$ the most general element with n generators ε_{i} can be written as (with the convention of sum over repeated indices implicit)

$$
\begin{equation*}
\phi_{n}=a+a_{i} \varepsilon_{i}+a_{i j} \varepsilon_{i j}+\cdots+a_{12 \cdots n} \varepsilon_{12 \cdots n}=\sum_{\mathbf{i} \in 2^{[n]}} a_{\mathbf{i}} \varepsilon_{\mathbf{i}}, \tag{2}
\end{equation*}
$$

with $a, a_{i}, a_{i j}, \ldots, a_{12 \cdots n} \in \mathbb{R}, 2^{[n]}$ being the power set of $[n]:=\{1,2, \ldots, n\}$, and $1 \leq i<$ $j<\cdots \leq n$. We define the soul of ϕ_{n} by $s\left(\phi_{n}\right):=\phi_{n}-a[6$, Chap. 1$]$.

Definition 2. The Grassmann-Berezin integral on \mathcal{Z}_{n}, denoted by \int, is the linear functional $\int: \mathcal{Z}_{n} \rightarrow \mathbb{R}$ such that (we use throughout this work the compact notation $d \nu_{n}:=d \varepsilon_{n} \cdots d \varepsilon_{1}$)

$$
d \varepsilon_{i} d \varepsilon_{j}=d \varepsilon_{j} d \varepsilon_{i}, \int \phi_{n}\left(\hat{\varepsilon}_{i}\right) d \varepsilon_{i}=0 \text { and } \int \phi_{n}\left(\hat{\varepsilon}_{i}\right) \varepsilon_{i} d \varepsilon_{i}=\phi_{n}\left(\hat{\varepsilon}_{i}\right)
$$

where $\phi_{n}\left(\hat{\varepsilon}_{i}\right)$ means any element of \mathcal{Z}_{n} with no dependence on ε_{i}. Multiple integrals are iterated integrals, i.e.,

$$
\int f\left(\phi_{n}\right) d \nu_{n}=\int \cdots\left(\int\left(\int f\left(\phi_{n}\right) d \varepsilon_{n}\right) d \varepsilon_{n-1}\right) \cdots d \varepsilon_{1} .
$$

Many functions of ordinary calculus admit extensions to the realm of Zeon algebra [11]. For instance, if $\phi_{n}=a+s\left(\phi_{n}\right)$ in Eq. (2), we have

$$
\begin{equation*}
e^{\phi_{n}}:=e^{a} \sum_{m=0}^{n} \frac{s^{m}\left(\phi_{n}\right)}{m!} \tag{3}
\end{equation*}
$$

and only a finite number of terms is present in the sum on the right-hand side of Eq. (3), since $s^{m}\left(\phi_{n}\right)=0$ for $m>n$.

Likewise, we have

$$
\begin{equation*}
\frac{1}{\phi_{n}}=\frac{1}{a+s\left(\phi_{n}\right)}:=\frac{1}{a} \sum_{m=0}^{n}\left(-\frac{1}{a}\right)^{m} s^{m}\left(\phi_{n}\right) . \tag{4}
\end{equation*}
$$

3 Proof of Eq. (1)

We are now ready to prove Eq. (1). We take $\varphi_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n} \in \mathcal{Z}_{n}$ from now on. We start with

$$
\begin{equation*}
B_{n}(x)=\sum_{m=0}^{n} \frac{(-1)^{m}}{m+1} \int e^{x \varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{m} d \nu_{n} \tag{5}
\end{equation*}
$$

We will proceed by showing that

$$
\begin{equation*}
\sum_{m=0}^{n}\binom{n+1}{m} B_{m}=0 \tag{6}
\end{equation*}
$$

with $n \in \mathbb{N}, B_{0} \equiv 1,\binom{n}{m}:=n!/(m!(n-m)!)$, and

$$
\begin{equation*}
B_{n}(x)=\sum_{m=0}^{n}\binom{n}{m} B_{m} x^{n-m} \tag{7}
\end{equation*}
$$

Eqs. (6) and (7) can be regarded as the definitions of the Bernoulli numbers [8, Eq. (6.79)] and the Bernoulli polynomials [8, Eq. (7.80)], respectively.

We will first show by induction on n that

$$
\begin{equation*}
\varphi_{n}=\sum_{m=0}^{n-1} \frac{(-1)^{m}}{m+1}\left(e^{\varphi_{n}}-1\right)^{m+1} \tag{8}
\end{equation*}
$$

Indeed, it is easy to see that both sides of Eq. (8) give $\varphi_{1} \equiv \varepsilon_{1}$ for $n=1$. Next, using

Eqs. (3) and (4), we have

$$
\begin{aligned}
\varphi_{n+1} & =\varphi_{n}+\varepsilon_{n+1} \\
& =\varphi_{n}+\varepsilon_{n+1} \frac{e^{\varphi_{n}}}{1+\left(e^{\varphi_{n}}-1\right)} \\
& =\varphi_{n}+\varepsilon_{n+1} \sum_{m=0}^{n}(-1)^{m} e^{\varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{m} \\
& =\sum_{m=0}^{n-1} \frac{(-1)^{m}}{m+1}\left(e^{\varphi_{n}}-1\right)^{m+1}+\varepsilon_{n+1} \sum_{m=0}^{n}(-1)^{m} e^{\varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{m} \\
& =\sum_{m=0}^{n-1} \frac{(-1)^{m}}{m+1}\binom{m+1}{0}\left(e^{\varphi_{n}}-1\right)^{m+1}+\varepsilon_{n+1} \sum_{m=0}^{n} \frac{(-1)^{m}}{m+1}\binom{m+1}{1} e^{\varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{m} \\
& =\sum_{m=0}^{n} \frac{(-1)^{m}}{m+1}\left(e^{\varphi_{n}}+\varepsilon_{n+1} e^{\varphi_{n}}-1\right)^{m+1} \\
& =\sum_{m=0}^{n} \frac{(-1)^{m}}{m+1}\left(e^{\varphi_{n+1}}-1\right)^{m+1}
\end{aligned}
$$

and the result follows, i.e., Eq. (8) is true for all $n \geq 1$.
Now we can prove Eq. (6). Starting with Eq. (8) and using Eq. (3) we have

$$
\varphi_{n}=\sum_{m=0}^{n-1} \frac{(-1)^{m}}{m+1} \sum_{l=1}^{n} \frac{\varphi_{n}^{l}}{l!}\left(e^{\varphi_{n}}-1\right)^{m}
$$

Integrating, we get ($n \geq 2$)

$$
\begin{aligned}
0=\int \varphi_{n} d \nu_{n} & =\sum_{l=1}^{n} \sum_{1 \leq k_{1}, k_{2}, \ldots, k_{l} \leq n} \sum_{m=0}^{n-1} \frac{(-1)^{m}}{m+1} \int \varepsilon_{k_{1} k_{2} \cdots k_{l}}\left(e^{\varphi_{n}}-1\right)^{m} d \nu_{n} \\
& =\sum_{l=1}^{n-1}\binom{n}{l} \sum_{m=0}^{n-l} \frac{(-1)^{m}}{m+1} \int\left(e^{\varphi_{n-l}}-1\right)^{m} d \nu_{n-l} \\
& =\sum_{l=1}^{n}\binom{n}{l} B_{n-l}
\end{aligned}
$$

and making the change of variables $n-l \mapsto l$ we obtain Eq. (6).

We will now show Eq. (7). Indeed, from Eq. (5) we have

$$
\begin{aligned}
B_{n}(x)= & \sum_{l=0}^{n} \sum_{m=0}^{n} \frac{(-1)^{l}}{l+1} \frac{x^{m}}{m!} \int \varphi_{n}^{m}\left(e^{\varphi_{n}}-1\right)^{l} d \nu_{n} \\
= & \sum_{l=0}^{n} \frac{(-1)^{l}}{l+1} \int\left(e^{\varphi_{n}}-1\right)^{l} d \nu_{n} \\
& \quad+\sum_{l=0}^{n} \sum_{m=1}^{n} \sum_{1 \leq l_{1}, l_{2}, \ldots, l_{m} \leq n} \frac{(-1)^{l}}{l+1} x^{m} \int \varepsilon_{l_{1} l_{2} \cdots l_{m}}\left(e^{\varphi_{n}}-1\right)^{l} d \nu_{n} \\
= & \sum_{m=0}^{n}\binom{n}{m} x^{m} \sum_{l=0}^{n-m} \frac{(-1)^{l}}{l+1} \int\left(e^{\varphi_{n-m}}-1\right)^{l} d \nu_{n-m} \\
= & \sum_{m=0}^{n}\binom{n}{m} x^{m} B_{n-m}
\end{aligned}
$$

and making the change of variables $n-m \mapsto m$ we obtain Eq. (7).
We recall the generating function for the m-Stirling numbers [4, Thm. 16]

$$
\begin{equation*}
\sum_{n=l}^{\infty} S_{m}(n+m, l+m) \frac{x^{n}}{n!}=\frac{1}{l!} e^{m x}\left(e^{x}-1\right)^{l} \tag{9}
\end{equation*}
$$

with $m \in \mathbb{N}_{0}$. The Zeon representation of $S_{m}(n+m, l+m)$ comes from the generating function in Eq. (9) taking, as in previous work [11], $x \rightarrow \varphi_{n} \in \mathcal{Z}_{n}$ and doing a GrassmannBerezin integration over the Zeon algebra to get the representation

$$
\begin{equation*}
S_{m}(n+m, l+m)=\sum_{k=l}^{n} S_{m}(k+m, l+m) \underbrace{\int \frac{\varphi_{n}^{k}}{k!} d \nu_{n}}_{\delta_{k, n}}=\frac{1}{l!} \int e^{m \varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{l} d \nu_{n} \tag{10}
\end{equation*}
$$

with $\delta_{k, n}$ meaning the Kronecker delta. We note that the representation in Eq. (10) is a generalization of the representation of the usual Stirling numbers of the second kind [15, Prop. 2.1] obtained by setting $m=0$ in Eq. (10). Therefore, by setting $x \equiv m$ in Eq. (5), we conclude that

$$
B_{n}(m)=\sum_{l=0}^{n} \frac{(-1)^{l}}{l+1} \int e^{m \varphi_{n}}\left(e^{\varphi_{n}}-1\right)^{l} d \nu_{n}
$$

which is equivalent to Eq. (1) using the Zeon representation of the numbers $S_{m}(n+m, l+m)$ in Eq. (10).

4 Acknowledgments

The author thanks the anonymous referee for suggestions that improved the paper.

References

[1] A. Abdesselam, The Grassmann-Berezin calculus and theorems of the matrix-tree type, Adv. Appl. Math. 33 (2004), 51-70.
[2] A. Bedini, S. Caracciolo, and A. Sportiello, Hyperforests on the complete hypergraph by Grassmann integral representation, J. Phys. A 41 (2008), 205003.
[3] F. A. Berezin, Introduction to Superanalysis, Reidel Publishing Company, 1987.
[4] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241-259.
[5] S. Caracciolo, A. D. Sokal, and A. Sportiello, Algebraic/combinatorial proofs of Cayleytype identities for derivatives of determinants and pfaffians, Adv. Appl. Math. 50 (2013), 474-594.
[6] B. DeWitt, Supermanifolds, Cambridge University Press, 1992.
[7] P. Feinsilver, Zeon algebra, Fock space, and Markov chains, Commun. Stoch. Anal. 2 (2008), 263-275.
[8] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, second edition, 1994.
[9] B.-N. Guo, I. Mező, and F. Qi, An explicit formula for Bernoulli polynomials in terms of r-Stirling numbers of the second kind, Rocky Mountain J. Math., 2016, to appear. Available at http://projecteuclid.org/euclid.rmjm/1434400113.
[10] T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC Press, 2015.
[11] A. F. Neto and P. H. R. dos Anjos, Zeon algebra and combinatorial identities, SIAM Rev. 56 (2014), 353-370.
[12] A. F. Neto, Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and zeon algebra, J. Integer Sequences 17 (2014), Article 14.9.3.
[13] A. F. Neto, Carlitz's identity for the Bernoulli numbers and zeon algebra, J. Integer Sequences 18 (2015), Article 15.5.6.
[14] A. Rogers, Supermanifolds: Theory and Applications, World Scientific Publishing, 2007.
[15] R. Schott and G. S. Staples, Partitions and Clifford algebras, European J. Combin. 29 (2008), 1133-1138.
[16] H. S. Wilf, Generatingfunctionology, Academic Press, New York, 1990. Available at http://www.math.upenn.edu/~wilf/DownldGF.html.

2010 Mathematics Subject Classification: Primary 11B68; Secondary 11B73; 33B10; 05A15; 05A19.
Keywords: Zeon algebra, Berezin integration, Bernoulli number, m-Stirling number, generating function.
(Concerned with sequences $\underline{\text { A027641, A027642, A143494, A143495, and A143496.) }}$

Received March 13 2016; revised version received April 13 2016. Published in Journal of Integer Sequences, May 112016.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPqBrazil) under grant 307617/2012-2.

