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Abstract

Following Pólya’s “guess and test” method, we seek to discover 3-period folding
numbers analogous to the exhaustive set of 2-period folding numbers discovered by
Hilton and Pedersen in 1981. Most of the rows and columns of the 2-period folding
numbers are reported in the Online Encyclopedia of Integer Sequences (OEIS) with
various other mathematical interpretations. We provide a table of 3-period folding
numbers, but it is not exhaustive, as we demonstrate by showing other sets of 3-period
folding numbers that are not in the table. We close the paper with an algorithm for
finding more sets of 3-period folding numbers and a conjecture about how many such
sets exist.

In Loving Memory of Jean Pedersen (1934–2016 )

Dedicated to the memory of George Pólya (1887–1985 ) and Peter Hilton (1923–2010 )

1 Motivation

Once upon a time, one of the authors of this paper (JP) discovered that you could take a strip
of adding machine tape and, after making any arbitrary fold across the tape, if you bisect
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the obtuse angle that this transversal makes with the tape it produces a triangle (generally
not equilateral). This isn’t at all surprising. However, if you continue to bisect the newly
formed obtuse angles (going from left to right) then the new triangles get closer and closer
to equilateral triangles. That is, the smallest angle on this tape approaches π

3
(see [10]).

Section 2 describes how to construct a regular convex polygon from suitably folded tape.
In Section 3 we introduce one definition, one hypothesis that yields two theorems, along with
two algebraic identities. This will equip us to systematically find those sets of numbers that
require either 2- or 3-period folding procedures.

Section 4 is a brief description and a slightly different approach than what appeared in
[3, p. 351] and [7] to obtain 2-period folding numbers. We show an example, and give the
table of 2-period folding numbers in two formats.

Section 5 describes our exploration of 3-period folding numbers. We are able to present a
table of 3-period folding numbers, but unlike the table for 2-period folding numbers, it is not
exhaustive. Then in Section 6 we give examples of what we call our Mystery Monsters, which
leads to Section 7 where we give an algorithm for finding more of these Monsters, including
another set of 3-period folding numbers. We conclude, in Section 8, with a 3-period Folding
Number Conjecture and some questions for the reader to explore.

2 Important paper-folding ideas

First, let us discuss how to use our folded tape to produce a sought after regular star
{

b
a

}

-
gon1. Assume that we have a straight strip of paper with certain vertices marked, at equally
spaced intervals, on its top edge. Further assume that the creases at those vertices, labeled
Ank, n = 0, 1, 2, . . . (see Figure 1) on the top edge, form two identical angles of aπ

b
. The first

is between the crease along the line AnkAnk+2 and the second is between that line and the
line AnkAnk+1 (as shown in Figure 1(a)). If we fold this strip on AnkAnk+2, as shown in
Figure 1(b), and then twist the tape so that it folds on AnkAnk+1, as shown in Figure 1(c),
the direction of the top edge of the tape will be rotated through an angle of 2

(

aπ
b

)

. We call
this process of Folding And Twisting, the FAT-algorithm.

Now consider the equally spaced vertices Ank along the top of the tape, with k fixed and
n varying. If the FAT-algorithm is performed on a sequence of angles, each of measure aπ

b
,

at the vertices given by n = 0, 1, 2, . . . , b− 1, then the top edge of the tape will have turned
through an angle of 2aπ. Thus the vertex Abk will come into coincidence with A0. The top
edge of the tape will have visited every ath vertex of a bounding regular convex b-gon, thus
creating a star

{

b
a

}

-gon. As an example, see Figure 4(c) where a = 2 and b = 7. When
a = 1, our b-gon is a special case of the star

{

b
1

}

-gon.

1Note that when we speak of a
{

b

a

}

-gon, we assume that a, b are coprime. Then a star
{

b

a

}

-gon is the

sequence of edges that visit every ath vertex of a regular b-gon. Since, for example, the
{

7

3

}

-gon of Figure

4(d) would be the same as a
{

7

4

}

-gon, we will assume that a < b

2
. Of course, if a = 1, the

{

b

a

}

-gon becomes
the regular b-gon.
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If one wishes to produce a regular polygon with p sides where p = 2nb, this can be
achieved by putting in secondary fold lines bisecting successive angles of π

b
as many times

as necessary to produce angles of π
2nb

along the top edge of the tape. This is why we only
have to create folding procedures for odd numbers b ≥ 3, in order to be able to construct all
regular p-gons where p ≥ 3.

Figure 2 illustrates how a suitably creased strip of paper may be folded by the FAT-
algorithm to produce a regular convex p-gon. In Figure 2 we have written Vk instead of Ank,
since it is more natural in this particular context.

Because the regular convex 7-gon is the first regular polygon that we encounter for which
there is no Euclidean construction (with a straight edge and compass), we are faced with a
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real difficulty in creating a crease line making an angle of π
7
with the top edge of the tape. We

proceed by adopting a general policy we call our optimistic strategy . Assume that we can
crease an angle of 2π

7
(certainly we can come close) as shown in Figure 3(a). Given that we

have the angle of 2π
7
, one can then fold the top edge of the strip DOWN to bisect this angle,

producing two adjacent angles of π
7
at the top edge as shown in Figure 3(b). Then, since

we are content with this arrangement, we go to the bottom of the tape where we observe
that the angle to the right of the last crease line is 6π

7
— and we decide, as paper-folders,

to avoid leaving even multiples of π in the numerator of any angle next to the edge of the
tape. So we bisect this angle of 6π

7
by bringing the bottom edge of the tape UP to coincide

with the last crease line and creating the new crease line sloping up as shown in Figure 3(c).
We settle for this because there is an odd multiple of π in the numerator and go to the
top of the tape where we observe that the angle to the right of the last crease line is 4π

7
—

and, since this is 22 ·
(

π
7

)

we are forced to bisect this angle twice, each time bringing the top
edge of the tape DOWN to coincide with the last crease line, obtaining the arrangement of
crease lines shown in Figure 3(d). But now we notice something miraculous has occurred!
If we had really started with an angle of exactly 2π

7
, and if we now continue introducing

crease lines by repeatedly folding the tape DOWN TWICE at the top and UP ONCE at
the bottom, we get precisely what we want, namely pairs of adjacent angles measuring π

7
, at

equally spaced intervals along the top edge of the tape. We call this folding procedure the
D2U1-folding procedure (or, more simply (2, 1)-folding procedure), which we call a 2-period
folding procedure.

How do we prove that this evident convergence actually takes place? A very direct
approach is to admit that the first angle folded down from the top of the tape in Figure 3(a)
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might not have been precisely 2π
7
. Then the bisection forming the next crease would make

the two acute angles nearest the top edge in Figure 3(b) only approximately π
7
. Let us call

them π
7
+ ǫ (where ǫ may be either positive or negative!). Consequently the angle to the

right of this crease, at the bottom of the tape, would measure 6π
7
− ǫ. When this angle is

bisected, by folding up, the resulting acute angles nearest the bottom of the tape, labeled
3π
7
in Figure 3(c), would in fact measure 3π

7
− ǫ

2
, forcing the angle to the right of this crease

line at the top of the tape to have measure 4π
7
+ ǫ

2
. When this last angle is bisected twice by

folding the tape down, the two acute angles nearest the top edge of the tape will measure
π
7
+ ǫ

23
. This makes it clear that every time we repeat a (2, 1)-folding on the tape the error,

ǫ , is reduced by
1

23
.

We see that our optimistic strategy has paid off — by simply assuming we have an angle
of 2π

7
, or π

7
, at the top of the tape to begin with, and folding accordingly, we get what we
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want — successive angles at the top of the tape which, as we fold, rapidly get closer and
closer to π

7
. This will occur regardless of our original angle. In fact, when using any of these

iterative folding procedures, every fold line cuts the previous error ǫ in half. So if you throw
away the first 10 triangles on your folded tape, the error in the subsequent desired angles
will be less than ǫ

210
, which should be undetectable to even the most discerning eye, and the

remaining tape can be used to construct very respectable regular polygons.
Figure 4(a) shows a piece of the tape folded by the (2, 1)-folding procedure and Figure

4(b) shows the FAT regular 7-gon produced by folding and twisting on the successive long
crease lines that make angles of π

7
with the top edge of the tape. If you fold and twist on

every other successive medium crease line, the top edge of the tape will form the regular
star

{

7
2

}

-gon of Figure 4(c). If you flip the tape so as to reverse the top and bottom edges
and fold and twist on every other short crease line, the top edge of the tape will form the
regular star

{

7
3

}

-gon of Figure 4(d). The excess tape is folded around the points to get the
right-hand figure of Figure 4(d).

The procedure we use to obtain the tape on which the smallest angles converge to π
7
,

with its error correction proof, will work for any choice of your initial angle that is of the
form aπ

b
, if a and b are odd integers so that b ≥ 3 and a < b

2
. Here we only concern ourselves

with a = 1, since we only wish to construct approximations to regular convex b-gons (see [3,
p. 351], [4, p. 335], [5] for variations involving star polygons).

You may wish to use the optimistic approach yourself for constructing a regular 11-gon.
Start with two identical angles of π

11
next to each other instead of π

7
, as we did in Figure

3(b) and draw suitable lines, which when interpreted will produce instructions for folding
tape to construct a regular 11-gon. In this case you will find that the next angle of π

11

appears at the bottom edge of the tape, but if you continue it will then appear again on
the top edge of the tape. The folding procedure will be (3, 1, 1) — meaning you fold the
tape D3U1D1U3D1U1 · · · . Since the Ds and Us alternate and the exponents run repeatedly
through 3, 1, 1, we call this a 3-period folding procedure.

3 Useful tools

It is tedious to have to draw the illustrations corresponding to Figure 3 to determine the
folding procedure each time we want to fold any b-gon. What we would like is an algorithmic
way to find the folding procedure. In order to do this, we give the relevant mathematical
background; this includes two theorems (that have the same hypothesis) and two elementary
algebraic identities.

Hypothesis 1. Suppose we construct the following symbol:

b

∣

∣

∣

∣

a1 a2 · · · ar
k1 k2 · · · kr

∣

∣

∣

∣

, (1)

where b, ai are odd, ai <
b
2
,
∑r

i=1 ki = k and

b− ai = 2kiai+1, (2)
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i = 1, 2, · · · , r, ar+1 = a1, with r minimal. Note that r = the number of columns, which we
also call the period .

It was proved in [3, Chapter 4] that, given any two odd numbers a and b, with a < b
2
, there

is always a completely determined unique symbol (1) for any a = a1. Since r is minimal, the
list a1, a2, . . . , ar is without repeats; thus the symbol (1) is contracted . If gcd(b, ai) = 1,
we say the symbol (1) is reduced .

Theorem 2. (Paper-folding Theorem) Given the symbol (1) for any odd b ≥ 3 as described
above, and a1 = 1, the sequence kr, k1, k2,. . .kr−1, (or any cyclic permutation of this se-
quence) when used as consecutive exponents in the sequence DUDUDUDU · · · encodes a
folding procedure that produces tape which can be used to construct a regular b-gon.

If you fail to stop when the symbol repeats, then no harm will come in terms of the
folding procedure. You just need to stop at some point where the next a1 = 1. For example,

if you were to write the symbol for 5 as 5

∣

∣

∣

∣

1 1
2 2

∣

∣

∣

∣

, or 5

∣

∣

∣

∣

1 1 1
2 2 2

∣

∣

∣

∣

instead of the contracted

symbol 5

∣

∣

∣

∣

1
2

∣

∣

∣

∣

, the folding instructions would give the same result. When confronted with a

symbol that is not contracted, we will call it a degenerate case . The two non-contracted
symbols above thus give degenerate 2- and 3-period folding instructions, respectively.

Theorem 3. (Quasi-order Theorem) Suppose that symbol (1) is contracted and reduced,
then k is the Quasi-order of 2 mod b, denoted QO(b) = k. That is 2k ≡ ±1 mod b. In fact,
2k ≡ (−1)r mod b, where r is the period. This means that b exactly divides 2k− (−1)r, which
may be written

b | (2k − (−1)r).

Thus if r is odd, b | (2k + 1) and if r is even, b | (2k − 1).

Theorems 2 and 3 are proved by Hilton, Holton, and Pedersen in [3, p. 351].
The Quasi-order Theorem holds if the symbol (1) begins with any ai <

b
2
and because

the symbol is contracted, the QO(b), tells you the smallest k such that b
∣

∣2k + 1 (when the
number of columns in the symbol (1) is odd), or such that b

∣

∣2k − 1 (when the number of
columns in the symbol (1) is even). An important consequence of the Quasi-order Theorem,
which we will use later, is that it partitions all the integers b ≥ 3 into two distinct sets. Those
integers will either be in the set of folding instructions having an odd number of entries (r
odd) or in the set of folding instructions having an even number of entries (r even).

When r is odd, if we don’t insist on the smallest k such that b
∣

∣2k + 1, then there will
always exist an a > k such that b | 2a − 1. This is because (2k − 1)(2k + 1) = 22k − 1, so
a = 2k and b | 22k − 1. However, when r is even and k is the smallest number such that
b | 2k − 1, then it is not possible to find a suitable exponent a > k such that b | 2a + 1. This
algebraic fact manifests itself in the folding procedures in that the bottom row with an odd
number of entries greater than 1 needs to be duplicated in order for the angle π

b
to appear at
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equally spaced intervals along the top of the tape (recall when b = 11); whereas, for folding
procedures with the bottom row having an even number of entries, no repetitions are needed
for this to happen.

For all integers t and y, with t ≥ 2 and y ≥ 1 we have the following two algebraic
identities:

Identity 4.

ty − 1 = (t− 1)(ty−1 + ty−2 + · · ·+ t1 + 1)

Identity 5.

t2y+1 + 1 = (t+ 1)(t2y − t2y−1 + · · · − t1 + 1).

These identities allow us to infer that both ty−1
t−1

and t2y+1+1
t+1

are integers.

Example 6. If we wish to construct a regular convex 7-gon, we start with b = 7, a1 = 1,
and writing the beginning of symbol (1) as

b = 7

∣

∣

∣

∣

1 a1 · · ·
k1 k2 · · ·

Then, by (2), we have 7 − 1 = 6 = 21 · 3, so that k1 = 1 and a2 = 3, and filling in those
values we have

b = 7

∣

∣

∣

∣

1 3 · · ·
1 k2 · · ·

Using (2) again, we have 7− 3 = 4 = 22 · 1. This tells us that k2 = 2 and a3 = 1, but since
a1 = 1, we stop, draw the final vertical line, and obtain the symbol

b = 7

∣

∣

∣

∣

1 3
1 2

∣

∣

∣

∣

.

The number of columns tells us that r = 2, indicating a 2-period folding procedure. Then
since k1 = 1 and k2 = 2, by Theorem 2, the folding procedure is given by ( 2, 1), which is
the same procedure that was used to construct the regular 7-gon of Figure 4(b). Do you see
why? [Hint, it has to do with the value of ki that precedes ai, starting with i = 1]. Notice,
too, that the Quasi-order Theorem tells us

23 ≡ (−1)2 mod 7, or that 7
∣

∣[23 − (−1)2] = 23 − 1,

which should come as no surprise!

Example 7. If we wish to construct a regular 11-gon, we start with b = 11, a1 = 1, obtaining
the symbol

b = 11

∣

∣

∣

∣

1 5 3
1 1 3

∣

∣

∣

∣

.
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The arithmetical steps, using (2), are:

11− 1 = 10 = 21 · 5, telling us that k1 = 1, a2 = 5;

11− 5 = 6 = 21 · 3, telling us that k2 = 1, a3 = 3;

11− 3 = 8 = 23 · 1, telling us that k3 = 3, and a4 = 1,

which is the a1 we started with, so we stop. By Theorem 2, the 3-period folding procedure
that produces a regular convex 11-gon is given by ( 3, 1, 1).

4 2-period folding numbers

If we wish to examine all the numbers that have a 2-period folding procedure, we need to
find all b such that the symbol (1) has just two elements in the bottom row. That is, suppose
symbol (1) has the form

b

∣

∣

∣

∣

1 a2
x k2

∣

∣

∣

∣

.

Then, by (2), b − 1 = 2x · a2, or a2 = b−1
2x

. And again, by (2), b − a2 = 2k2 · 1, or,
substituting the value for a2 =

b−1
2x

, we have b− b−1
2x

= 2k2 . Solving for b, we obtain

b =
2x+k2 − 1

2x − 1
.

Letting 2x = t in Identity 4, we see that b is an integer if x+k2 = xy, so that k2 = xy−x,
and express

b =
2xy − 1

2x − 1
.

Beginning with this value of b, we construct the symbol (1), using (2), obtaining

b =
2xy − 1

2x − 1

∣

∣

∣

∣

1 2xy−x
−1

2x−1

x xy − x

∣

∣

∣

∣

.

Thus, all 2-period folding numbers are of this form, and the folding procedure, from
Theorem 2, is given by (xy − x, x), where x, y ≥ 1. These 2-period folding numbers appear
in Table 1, including the degenerate entries in the rows where y = 1 or 2. The sequences
arising from the rows and columns of the table are all found in OEIS, except for the columns
where x = 7, 9, 10 and the rows where y = 9, 10, 12 and all y ≥ 14. However, they do not
appear in the context of being 2-period folding numbers. Please see the “Concerned with
sequences” section at the end of the paper for a list of 2-period sequences which appear in
the OEIS.

Look at Table 1 to see if you can determine the next number in the various rows, or
columns, without calculating it. We think this is a pretty daunting task. However, if you
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look at these numbers, written in base 2, as shown in Table 2, you might detect patterns
that would allow you to extend the entries in the rows and columns more easily.

y ≥ 7 2y − 1
6 63 1365 37449 1118481 34636833
5 31 341 4681 69905 1082401 17043521
4 15 85 585 4369 33825 266305
3 7 21 73 273 1057 4161
2 3 5 9 17 33 65 2x + 1
1 1 1 1 1 1 1 1
↑
y
/x → 1 2 3 4 5 6 x ≥ 7

Table 1: Two-period folding numbers, b, expressed in base ten, where b = 2xy−1
2x−1

, with y > 1

6 (1)51 (10)51 (100)51 (1000)51 (10000)51 (100000)51

5 11111 101010101 1001001001001 10001000100010001 100001000010000100001 (100000)41

4 1111 1010101 1001001001 1000100010001 1000010000100001 (100000)31

3 111 10101 1001001 100010001 10000100001 (100000)21

2 11 101 1001 10001 100001 (100000)11
1 1 1 1 1 1 1
↑
y
/x → 1 2 3 4 5 6

Table 2: Two-period folding numbers, b, expressed in base two, where y > 1

We use here, and in future tables, the notation
(

d1 · · · dℓ
)n

to mean that the
overlined digits di between the parentheses are repeated n times. So that, for example, the
entry in Table 2 with coordinates (x, y) = (4, 5) (with ℓ = 4, d1 = 1, d2 = d3 = d4 = 0) may
then be expressed more compactly as

10001000100010001 = (1000)41.

5 3-period folding numbers

If we wish to examine all the numbers b that have a 3-period folding procedure, we need to
find all the numbers b such that the symbol (1) has just three columns. That is, we want to
be able to fill in b and ki for

b

∣

∣

∣

∣

1 a2 a3
k1 k2 k3

∣

∣

∣

∣

.
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Using (2), we see that we need b − 1 = 2k1 · a2, so that a2 = b−1
2k1

and b − a2 = 2k2 · a3,

from which, by substituting a2 =
b−1
2k1

, we infer a3 =
b2k1−b+1
2k1+k2

and thus b− b2k1−b+1
2k1+k2

= 2k3 · 1.
So, solving this last expression for b, we have a necessary condition for a 3-period folding
procedure; namely that b is an integer when

b =
2k1+k2+k3 + 1

2k1+k2 − 2k1 + 1
=

2k + 1

2k1+k2 − 2k1 + 1
, (3)

where
∑3

i=1 ki = k.
This is a considerably more complicated restriction than we had for the 2-period folding

numbers. How should we proceed? First, we need to determine if there is an integer k such
that 2k1+k2 − 2k1 + 1 exactly divides 2k + 1.

Elieser J. Oseguera (JP’s student at SCU) wrote a program for calculating the symbol
(1), with a1 = 1, so we used Eli’s program to look at a lot of examples. We noticed the
examples fell into categories, but the breakthrough came when we noticed that most of them
had k2 = 1. So assuming that a1 = 1, k1 = x, and k2 = 1, from (3), we need an integer b of
the form

b =
2x+1+k3 + 1

2x+1 − 2x + 1
=

2x+1+k3 + 1

2x(21 − 1) + 1
=

2x+1+k3 + 1

2x + 1
.

Substituting t = 2x into Identity 5, we see that in order for b to be an integer it must be
the case that x+ k3 + 1 = x(2y + 1), thus

b =
2x(2y+1) + 1

2x + 1
.

Then because x+1+k3 = x(2y+1), we get k3 = 2xy−1 and, from Theorem 2, we obtain
the special set of 3-period folding numbers whose folding instructions are (2xy− 1, x, 1), for
x, y ≥ 1. Here is the complete symbol encoding those 3-period folding numbers:

b =
2x(2y+1) + 1

2x + 1

∣

∣

∣

∣

1 22xy−1
2x+1

22xy+x−1
−22xy−1+1

2x+1

x 1 2xy − 1

∣

∣

∣

∣

. (4)

Theorem 2 tells us that if we fold repeatedlyD2xy−1UxD1U2xy−1DxU1 · · · , then the small-
est angle on the tape will converge to π

b
. Consequently, we can use this tape to construct

arbitrarily good approximations to those regular convex b-gons using the FAT-algorithm.
When x = y = 1 this becomes the degenerate 3-period folding procedure (1, 1, 1).

As with the 2-period folding numbers, the sequence of numbers in any row, or column,
of Table 3 is not familiar to most people — but if you look at Table 4, where these numbers
are expressed in base 2, you may find the sequences less mysterious.
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6 2731 13421773 61083979321 264917625139441 1117984489315730401
5 683 838861 954437177 1034834473201 1091781727847393
4 171 52429 14913081 4042322161 1066193093601
3 43 3277 233017 15790321 1041204193
2 11 205 3641 61681 1016801
1 3 13 57 241 993
↑
y

/x → 1 2 3 4 5

Table 3: Three-period folding numbers, b, expressed in base ten, where b = 2x(2y+1)+1
2x+1

, with
x and y 6= 1

6 (10)511 (1100)51101 (111000)5111001 (11110000)511110001 (1111100000)51111100001

5 (10)411 (1100)41101 (111000)4111001 (11110000)411110001 (1111100000)41111100001

4 10101011 (1100)31101 (111000)3111001 (11110000)311110001 (1111100000)31111100001

3 101011 (1100)21101 (111000)2111001 (11110000)211110001 (1111100000)21111100001
2 1011 11001101 111000111001 1111000011110001 11111000001111100001
1 11 1101 111001 11110001 1111100001
↑
y

/x → 1 2 3 4 5

Table 4: Three-period folding numbers, b, expressed in base two, with x and y 6= 1

Note that Table 1 contains all possible 2-period folding numbers, whereas of Table 3
does not contain all possible 3-period folding numbers. So we have more work to do. It is
also important to note that as a consequence of the Quasi-order Theorem, except for the
degenerate 2- and 3-period folding number 3, none of the numbers in Table 1 can appear in
Table 3.

The sequences corresponding to the first column (x = 1) and the first two rows (y = 1, 2)
of Table 3, arising from 3-period folding numbers, appear on OEIS (see A007583, A020515,
A020518 in [12]).

6 Mystery monsters

We realized that the numbers in Table 3 were only a subset of what is possible because we
encountered in our preliminary explorations other numbers that did not fit into the table.
The numbers in these categories tended to begin big and to increase in size very rapidly, so
we called them Mystery Monsters .

Let us give some examples and then, on the basis of what we learn from these examples,
we will state an algorithm for finding more 3-period folding numbers.
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Monster A

We discovered the following 3-period symbol:

20165

∣

∣

∣

∣

1 5041 3781
2 2 14

∣

∣

∣

∣

.

Recalling the degenerate symbol

5

∣

∣

∣

∣

1 1 1
2 2 2

∣

∣

∣

∣

,

led us to conjecture that there would be a family of symbols of the form

b

∣

∣

∣

∣

1 a1 a2
2 2 12y + 2

∣

∣

∣

∣

.

Using (3) to find b, and then using (2) to construct the symbol (1), we soon discovered there
is, indeed, a sequence of such symbols for Monster A of the form

b =
212y+6 + 1

24 − 22 + 1
=

26(2y+1) + 1

13

∣

∣

∣

∣

1 212y+4
−3

13
212y+4

−212y+2+1
13

2 2 12y + 2

∣

∣

∣

∣

, (5)

y = 0, 1, 2, 3, . . .
By Theorem 2, the folding procedure for this b would be (12y + 2, 2, 2). What pleased

us most was that when we calculated the first few cases of this set, they displayed the same
repetitive nature in base 2 that we had seen for the numbers in Tables 2 and 4. Thus, for
Monster A, we obtained the following table for 0 ≤ y ≤ 3.

y b in base ten b in base two
0 5 101

1 20165 (100111011000)1101

2 82595525 (100111011000)2101
3 338311270085 (100111011000)3101

Satisfying as this was, it did not give us a dependable algorithm for finding such sequences,
because we needed to recall a particular degenerate case. So, we tried a more systematic
approach.

Suppose we want to determine whether or not a 3-period folding procedure can exist so
that the symbol for b would be of the form:

b

∣

∣

∣

∣

1 a1 a3
2 2 k3

∣

∣

∣

∣

.

From (3) we would have

b =
22+2+k3 + 1

22+2 − 22 + 1
=

2k3+4 + 1

24 − 22 + 1
=

2k3+4 + 1

13
.

13



To determine whether or not 13 can divide a number of the form 2k3+4 +1, we use Theorem

3. Hence we calculate the symbol (1) with b = 13, obtaining 13

∣

∣

∣

∣

1 3 5
2 1 3

∣

∣

∣

∣

, and we deduce,

from Theorem 3, that the QO(13) = 6, with the number of columns, r, odd, meaning that
the first time 13 divides a number of the form 2k + 1 is when k = 6. This forces k3 = 2,
which is our degenerate case. But, don’t despair, we appeal to Identity 5 to infer that if
13 | 26 + 1, then 13 | 26(2y+1) + 1, thus giving us the same value of b as in (5) above.

Monster B

It was then natural to see if we could have a symbol of the form

b

∣

∣

∣

∣

1 a2 a3
3 2 k3

∣

∣

∣

∣

.

As before, from (3) we have

b =
23+2+k3 + 1

23+2 − 23 + 1
=

2k3+5 + 1

25 − 23 + 1
=

2k3+5 + 1

25
.

To determine whether or not 25 can divide a number of the form 2k3+5 + 1, we again use

Theorem 3. We calculate the symbol (1) with b = 25, obtaining 25

∣

∣

∣

∣

1 3 11 7 9
3 1 1 1 4

∣

∣

∣

∣

, and

we deduce, from Theorem 3, that QO(25) = 10, with an odd number of columns, so the first
time 25 divides a number of the form 2k + 1 is when k = 10. This forces k3 = 5. Then, by
Identity 5 we know that 25 | 210(2y+1) + 1. Indeed, in general, we have

b =
210(2y+1) + 1

25

∣

∣

∣

∣

1 220y+7
−3

25
220y+8

−220y+5+1
25

3 2 20y + 5

∣

∣

∣

∣

, y ≥ 0.

By Theorem 2, the folding procedure for this b would be (20y + 5, 3, 2).
For Monster B, we have the following table for 0 ≤ y ≤ 2.

y b in base ten b in base two
0 41 101001

1 42949673 (10100011110101110000)1101001

2 45035996273705 (10100011110101110000)2101001

Monster C

Encouraged by this, we examine the set of 3-period folding numbers where k2 = 2. Trying
to construct Monster C of the form

b

∣

∣

∣

∣

1 a1 a3
4 2 k3

∣

∣

∣

∣

14



turns out to be futile, because from (3) b would have to be an integer of the form
2k3+6+1
26−24+1

= 2k3+6+1
49

and writing the symbol (1) with b = 49, we have

49

∣

∣

∣

∣

1 3 23 13 9 5 11 19 15 17
4 1 1 2 3 2 1 1 1 5

∣

∣

∣

∣

, (with 10 columns!).

Theorem 3 tells us that QO(49) = 21, with an even number of columns. This means 49
cannot divide any number of the form 2k+1. So no 3-period folding instructions of the type
(k3, 4, 2) can exist.2

Monster D

Undaunted, and hoping to learn something about this process, we tried to construct Monster
D of the type

b

∣

∣

∣

∣

1 a1 a3
5 2 k3

∣

∣

∣

∣

.

From (3), we infer that in this case b must be of the form
2k+1

27−25+1
= 2k+1

27−25+1
= 2k+1

97
. To see if this is possible, we check the QO(97) by first constructing

the symbol (1) with b = 97, obtaining

97

∣

∣

∣

∣

1 3 47 25 9 11 43 27 35 31 33
5 1 1 3 3 1 1 1 1 1 6

∣

∣

∣

∣

(with 11 columns).

Theorem 3 tells us that QO(97) = 24, with an odd number of columns. Thus, we know that
97
∣

∣ = 224 + 1. This, along with Identity 5, gives the relevant information for Monster D as

b =
224(2y+1) + 1

27 − 25 + 1
=

224(2y+1) + 1

97

∣

∣

∣

∣

1 248y+19
−3

97
248y+22

−248y+17+1
97

5 2 48y + 17

∣

∣

∣

∣

.

By Theorem 2, the folding procedure for this b would be (48y + 17, 5, 2).

When y = 0, b = 101010001110100001, in base 2. For a general y ≥ 1 in base 2,
b = (101010001110100000111111010101110001011111000000)y−1101010001110100001.

7 A general approach for finding other 3-period folding

numbers

Now looking back at Monsters A through D, it looks as though a general procedure for
discovering 3-period folding sequences might go as follows:

2It was proved by Hilton and Pedersen in [6], using a different technique, that 7 cannot divide any number
of the form 2k + 1, and it follows that 49 cannot divide any number of the form 2k + 1 as well. For our
purposes, the argument we use seems simpler, and has the advantage that it covers all impossible cases.
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(a) We seek to find k3 for symbol (1) with a1 = 1, k1 = x and k2 = f(x). Thus we want
to fill in k3 for

b

∣

∣

∣

∣

1 a2 a3
x f(x) k3

∣

∣

∣

∣

.

(b) Calculate from (3) the candidate b = 2x+f(x)+k3+1
2x+f(x)

−2x+1
, calling the denominator d, so that

d = 2x+f(x) − 2x + 1.

(c) Calculate the symbol (1) using d in the b position, noting whether the number of
columns in the symbol is even or odd. Then use Theorem 3 to find the QO(d).

(d) (i) If r is even, no such folding procedure can exist.

(ii) If r is odd, then the general symbol can be written as

b =
2QO(d)(2y+1)+1

2x+f(x) − 2x + 1

∣

∣

∣

∣

1 a2 a3
x f(x) [QO(d)(2y + 1)− x− f(x)]

∣

∣

∣

∣

, (6)

and, by Theorem 2, the folding procedure is given by

([QO(d)(2y + 1)− x− f(x)], f(x), x).

For a reality check, let us try our algorithm to obtain the b in (4) appearing in Table 3.

(a) We seek to find k3 for symbol (1) with a1 = 1, k1 = x and k2 = 1. Thus we want to
fill in k3 for

b

∣

∣

∣

∣

1 a2 a3
x 1 k3

∣

∣

∣

∣

.

(b) Calculate from (3) the candidate b = 2x+1+k3+1
2x+1

−2x+1
, calling the denominator d, so that

d = 2x+1 − 2x + 1.

(c) Construct symbol (1), beginning with 2x+1 − 2x + 1 in the b position. Thus, since
(2x+1 − 2x + 1)− 1 = 2x+1 − 2x = 2x(21 − 1) = 2x · 1, we have

2x+1 − 2x + 1

∣

∣

∣

∣

1
x

∣

∣

∣

∣

(which has an odd number of columns).

By Theorem 3 the QO(2x+1 − 2x + 1) = x and (2x+1 − 2x + 1)
∣

∣2x + 1. This is not too
surprising if you simplify (2x+1 − 2x + 1).

(d) Since r is odd, we are in case (ii) so that the relevant information can be written as

b =
2x(2y+1)+1

2x+1 − 2x + 1
=

2x(2y+1)+1

2x + 1

∣

∣

∣

∣

1 a2 a3
x 1 x(2y + 1)− x− 1

∣

∣

∣

∣

,

which is the same as (4) when k3 is simplified.
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A set of monsters

We close by demonstrating our algorithm to find another set of 3-period folding numbers.

(a) We seek to find k3 for symbol (1) with a1 = 1, k1 = x and k2 = x− 1. Thus we want
to fill in k3 for

b

∣

∣

∣

∣

1 a2 a3
x x− 1 k3

∣

∣

∣

∣

.

(b) Calculate from (3) the candidate b = 22x−1+k3+1
22x−1

−2x+1
, calling the denominator d, so that

d = 22x−1 − 2x + 1.

(c) To obtain the QO(22x−1−2x+1), we construct symbol (1), beginning with 22x−1−2x+1
in the b position. After repeated use of (2), we produce

22x−1−2x+1

∣

∣

∣

∣

1 (2x−1 − 1) (22x−2 − 2x−1 − 2x−2 + 1) (2x+1 − 2x − 1) (22x−1 − 2x + 1)
x 1 x− 2 1 2x− 2

∣

∣

∣

∣

(with an odd number, 5, of columns!).

(d) Since the number of columns is odd, we are in case (ii) with the
QO(22x−1 − 2x + 1) = 4x− 2, so we express the general symbol as

b =
2(4x−2)(2y+1) + 1

22x−1 − 2x + 1

∣

∣

∣

∣

1 a1 a3
x x− 1 (8xy + 2x− 4y − 1)

∣

∣

∣

∣

, (7)

for x ≥ 2

The numbers in this set turn out to start out fairly large (x = 3, this is our Monster B)
and increase at a rapid rate, so we won’t give the table here.

Although we don’t give the explicit values of a2 and a3 in (6) and (7), it is an excellent
exercise in algebra to work these out for particular values of f(x) and x, using (2), starting
with b, when the algorithm produces a suitable value for b.

Our preliminary investigations indicate that we still have not found all the 3-period
folding numbers. So, although we’ve made some progress, at this point, in the interest of
saving space, we offer our conjecture.

8 3-period folding numbers conjecture

We have shown that each set of 3-period folding numbers (rows or columns of Table 3, along
with Monsters A, B, and D) is an unbounded sequence of numbers. On the basis of our
study, we have the
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Three-period folding numbers conjecture:

There are also an unbounded number of sets of 3-period folding numbers such as (4) and (7).

Questions for the Reader

1. Can you discover another set of 3-period folding numbers similar to (4) and (7)?

2. [Harder] Can you prove, or disprove, our Three-period Folding Numbers Conjecture?

3. Can you devise an algorithm for finding 4-period folding numbers?

4. In papers by Bekes, Pedersen, and Shao [1], Froemke and Grossman [2], Hilton, Ped-
ersen, and Walden [8], McFarlane and Withers [9], and Polster [11], the authors used
the basic ideas of Theorems 2 and 3 to discuss their applications in a wide variety of
situations, some purely mathematical (in combinatorics or group theory), and some
connected with the real world. Can the reader find other applications of these Theo-
rems, within mathematics, or in the real world?

5. The first column and first two rows of Table 3 appear in the OEIS along with their
interpretations within mathematics or the real world. Do the other entries of Table 3
or any of the 3-period sets of Monster numbers have any other interpretations within
mathematics or the real world?
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