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Abstract

By using an explicit formula for Bernoulli polynomials we obtained in a recent
work (in which Bn (x) is written as a linear combination of the polynomials (x− r)n,
r = 1, . . . ,K+1, where K ≥ n), it is possible to obtain Bernoulli polynomial identities
from polynomial-combinatorial identities. Using this approach, we obtain some gen-
eralizations and new demonstrations of the 1971 Carlitz identity involving Bernoulli
numbers, and we also obtain some new identities involving Bernoulli polynomials.

1 Introduction

Bernoulli numbers have been in the interest of mathematicians since they were discovered (by
Jakob Bernoulli in the 17th century). It turns out that Bernoulli numbers are related to many
important mathematical objects appearing in different fields of mathematics, as described
by Mazur [15]. A popular way to introduce these numbers is through the generating function
of Bernoulli polynomials Bn (x), namely

text

et − 1
=

∞
∑

n=0

Bn (x)
tn

n!
. (1)

The Bernoulli numbers are then Bn = Bn (0). Many different explicit formulas for
Bernoulli numbers and polynomials, together with some of their generalizations, have ap-
peared throughout the years: Gould [10] gives a good review of this. We also mention the
remarkable work of Dilcher and Slavutskii [5], containing hundreds of references related to
Bernoulli numbers and polynomials.
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Recently we found [20] yet another explicit formula for Bernoulli polynomials: for non-
negative integers K ≥ n, we have

Bn (x) =
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n . (2)

(Since we will be dealing with sums and multiple sums troughout the work, we will use
capital indices I and J and the parameter K for formula (2), and only for this formula.) It
turns out [20, lemma 3] that the coefficients of the right-hand side of (2) are such that

1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) = 1. (3)

That is, formula (2) gives us the Bernoulli polynomial Bn (x) expressed as an affine
combination of the polynomials (x− r)n, r = 1, . . . , K + 1. Note that the degree n of the
Bernoulli polynomial Bn (x) appears only in the term (x− I + J − 1)n of formula (2), and
it is not related directly to the number (K +1) of terms in the sum, except for the fact that
K must be not lesser than n. For example, if we set K = 4 in (2), we obtain the formula

Bn (x) =
137

60
(x− 1)n −

163

60
(x− 2)n +

137

60
(x− 3)n −

21

20
(x− 4)n +

1

5
(x− 5)n , (4)

which works for n = 0, 1, 2, 3, 4. That is, with n = 0 formula (4) gives us B0 (x) = 1, with
n = 1 gives us B1 (x) = x − 1

2
, and so on · · · , up to n = 4, corresponding to B4 (x) =

x4 − 2x3 + x2 − 1
30
.

Under a different point of view, for each n ∈ N, formula (2) gives us infinitely many
expressions for the n-th Bernoulli polynomial Bn (x), namely, the right-hand side of (2) with
K ≥ n. For example, the Bernoulli polynomial B2 (x) = x2 − x+ 1

6
can be written as

B2 (x) =
11

6
(x− 1)2 −

7

6
(x− 2)2 +

1

3
(x− 3)2

=
25

12
(x− 1)2 −

23

12
(x− 2)2 +

13

12
(x− 3)2 −

1

4
(x− 4)2

=
137

60
(x− 1)2 −

163

60
(x− 2)2 +

137

60
(x− 3)2 −

21

20
(x− 4)2 +

1

5
(x− 5)2

...

corresponding to the right-hand side of (2) with K = 2, 3, 4, . . ..
But formula (2) implies more interesting facts.

Theorem 1. The polynomial identity

n
∑

k=0

an,k (x+ α)k =
n
∑

k=0

bn,k (x+ β)k , (5)
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implies the Bernoulli polynomial identity

n
∑

k=0

an,kBk (x+ α) =
n
∑

k=0

bn,kBk (x+ β) . (6)

Proof. Take K ≥ n. Beginning with the left-hand side of (6), and using first (2), using then
(5), and finally using again (2), we obtain

n
∑

k=0

an,kBk (x+ α) =
n
∑

k=0

an,k
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ α− I + J − 1)k

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

)

n
∑

k=0

an,k (x+ α− I + J − 1)k

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

)

n
∑

k=0

bn,k (x+ β − I + J − 1)k

=
n
∑

k=0

bn,k
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ β − I + J − 1)k

=
n
∑

k=0

bn,kBk (x+ β) ,

as desired.

(The result established in Theorem 1 contains some of the spirit of umbral calculus
[6, 23].)

For example, beginning with the expansion (x+ y)n =
∑n

k=0

(

n

k

)

ykxn−k, and using The-
orem 1, we obtain the following known property of Bernoulli polynomials:

Bn (x+ y) =
n
∑

k=0

(

n

k

)

ykBn−k (x) . (7)

We will be using extensively the following property of Bernoulli polynomials:

Bn (1− x) = (−1)n Bn (x) . (8)

Observe that (8), together with formula (2), give us the following identity:

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ I − J)n =
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n , (9)
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where 0 ≤ n ≤ K. Moreover, we claim that the following identity is true

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ I − J)n1 (y − I + J)n2 (10)

=
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n1 (y + I − J + 1)n2 ,

where 0 ≤ n1 + n2 ≤ K. In fact, if n2 = 0, formula (10) is true by (9). If (10) is true for a
given n2 ∈ N, then for 0 ≤ n1 + n2 + 1 ≤ K we have

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ I − J)n1 (y − I + J)n2+1

=(y + x)
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ I − J)n1 (y − I + J)n2

−
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x+ I − J)n1+1 (y − I + J)n2

=(y + x)
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n1 (y + I − J + 1)n2

−

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n1+1 (y + I − J + 1)n2

=
K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (x− I + J − 1)n1 (y + I − J + 1)n2+1
,

proving our claim.
The starting point in Section 2 is the identity

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)m
m
∑

l=0

(

m

l

)

Bn+l,

wherem and n are arbitrary non-negative integers, posed by Carlitz [3] in 1971. The fascinat-
ing symmetric beauty of this identity has produced generalizations, different demonstrations,
rediscoveries, and the kind of mathematical honors bestowed on nice (and/or important) re-
sults. Here we join the group of fans of this identity, and use Theorem 1 to give one more
demonstration and show some generalizations (that we call “Carlitz-type identities”) of this
Carlitz’s identity. In Section 3 we consider the expression obtained when one performs in-
tegrations in a multinomial expansion (x1 + · · ·+ xk)

n, with respect to two of its variables.
The obtained expression is a polynomial identity that produces, by using Theorem 1, some

4



Bernoulli identities. We show some of them. In Section 4 we show a miscellany of Bernoulli
polynomial identities. The common characteristic is that all of them come from already
known results. These known results are polynomial identities (combinatorial identities) that
can be “converted” to Bernoulli polynomial identities (by using Theorem 1). We collected
some of the results appearing in the works of H. W. Gould [7, 8, 11], the Abel’s sums, the
extensions of A. Hurwitz [13] on Abel’s sums, among others, to give the Bernoulli version of
each of them. These Bernoulli identities are, as far as we know, new results.

2 Carlitz-type identities

In 1971, Carlitz [3] posed the following identity for Bernoulli numbers:

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)m
m
∑

l=0

(

m

l

)

Bn+l. (11)

where m,n are arbitrary non-negative integers. Since then, identity (11) has captured the
attention of many mathematicians, generating contrasting comments which go from “nearly
trivial result” [6, p. 17], to “a remarkable identity” [25]. And the interest continues nowadays:
we have found three recent works [9, 18, 21] concerning identity (11). Besides the several
generalizations available for (11), in the history of this identity we find also some rediscovers
of it, and very likely also rediscovers of some of its demonstrations. We comment in passing
that the case m = 0 of (11) says that, for n ∈ N, we have (the known recurrence for Bernoulli
numbers):

n
∑

l=0

(

n+ 1

l

)

Bl = 0. (12)

The polynomial version of (11) is

(−1)n
n
∑

l=0

(

n

l

)

Bm+l (y) = (−1)m
m
∑

l=0

(

m

l

)

Bn+l (−y) , (13)

which gives us (11) with y = 0. More generally, we have the polynomial identity

(−1)n
n
∑

l=0

(

n

l

)

xn−lBm+l (y) = (−1)m
m
∑

l=0

(

m

l

)

xm−lBn+l (1− x− y) , (14)

which gives us (13) with x = 1. (Formulas (13) and (14) appear in the work of Chen and
Sun [4].) By taking the derivative with respect to y in both sides of (14) (and shifting n and
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m to n+ 1 and m+ 1, respectively), we get

(−1)n+1
n+1
∑

l=0

(

n+ 1

l

)

(m+ 1 + l) xn+1−lBm+l (y) (15)

= (−1)m
m+1
∑

l=0

(

m+ 1

l

)

(n+ 1 + l) xm+1−lBn+l (1− x− y) .

In particular, by setting x = 1 and y = 0 in (15), we obtain that

(−1)n+1
n+1
∑

l=0

(

n+ 1

l

)

(m+ 1 + l)Bm+l = (−1)m
m+1
∑

l=0

(

m+ 1

l

)

(n+ 1 + l)Bn+l. (16)

Using that, for m+n > 0 we have ((−1)m + (−1)n)Bn+m+1 = 0 (consequence of the fact
that odd Bernoulli numbers B3, B5, . . . are equal to 0), we can write (16) (with m+ n > 0)
as

(−1)n+1
n
∑

l=0

(

n+ 1

l

)

(m+ 1 + l)Bm+l = (−1)m
m
∑

l=0

(

m+ 1

l

)

(n+ 1 + l)Bn+l. (17)

In particular, if m = n we have the identity:

n
∑

l=0

(

n+ 1

l

)

(n+ 1 + l)Bn+l = 0, (18)

where n ∈ N. Identity (18) was obtained by Kaneko [14] in 1995. Its importance is that it
gives a recurrence for Bernoulli numbers that, comparing with (12), requires only “the half”
of terms to obtain the n-th Bernoulli number Bn in terms of the previous ones (for example,
in the case n = 5 identity (18) gives us B10 = − 1

66

((

6
1

)

7B6 +
(

6
3

)

9B8

)

, in contrast with the 6

terms in B10 = − 1
11

∑8
l=0

(

11
l

)

Bl of (12)). Identity (16), obtained by Momiyama [16] in 2001,
is then a generalization of Kaneko’s identity (18).

In this section we present a proof of (14), and consider also generalizations of this
Bernoulli polynomial identity.

Proposition 2. We have the Bernoulli polynomial identity (14).

Proof. We begin with the trivial identity ym (x+ y)n = (x+ y)n (x+ y − x)m, which we
write as

n
∑

l=0

(

n

l

)

xn−lym+l = (−1)m
m
∑

l=0

(

m

l

)

xm−l (−1)m+l (x+ y)n+l
. (19)

By seeing (19) as a polynomial identity between two y-polynomials, we use Theorem 1 to
obtain

n
∑

l=0

(

n

l

)

xn−lBm+l (y) =
m
∑

l=0

(

m

l

)

xm−l (−1)m+l
Bn+l (x+ y) . (20)

Finally, use (8) to obtain (14) from (20).
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By using formula (2), we can obtain an explicit expression for the polynomial involved
in identity (14). In fact, if K ≥ m+ n, the left-hand side of (14) is

(−1)n
n
∑

l=0

(

n

l

)

xn−lBm+l (y)

= (−1)n
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (y − I + J − 1)m
n
∑

l=0

(

n

l

)

xn−l (y − I + J − 1)l

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (y − I + J − 1)m (−x− y + I − J + 1)n . (21)

A similar calculation gives us that the right-hand side of (14) is (for K ≥ m+ n)

(−1)m
m
∑

l=0

(

m

l

)

xm−lBn+l (1− x− y)

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (−x− y − I + J)n (y + I − J)m . (22)

The fact that (21) and (22) are equal, comes from (10). Thus, we can write identity (14)
as

(−1)n
n
∑

l=0

(

n

l

)

xn−lBm+l (y) = (−1)m
m
∑

l=0

(

m

l

)

xm−lBn+l (1− x− y) (23)

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (y − I + J − 1)m (−x− y + I − J + 1)n ,

where K ≥ m+ n.
By playing the game of the “trivial identity” (together with the use of Theorem 1), it

is possible to produce similar formulas to (20). For example, one can obtain the following
identities, where the non-negative indices n,m, p, q can be interchanged:

(−1)n
n
∑

l1=0

p
∑

l2=0

(

n

l1

)(

p

l2

)

yn−l1Bp−l2 (x+ y)Bm+l1+l2 (z) (24)

= (−1)m
m
∑

l1=0

p
∑

l2=0

(

m

l1

)(

p

l2

)

(−1)l2 ym−l1Bp−l2 (x)Bn+l1+l2 (1− y − z) .
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m
∑

l1=0

p
∑

l2=0

(

m

l1

)(

p

l2

)

zp−l2Bn+l1 (x)Bm−l1+l2 (y) (25)

=
m
∑

l1=0

n
∑

l2=0

(

m

l1

)(

n

l2

)

zn−l2Bm−l1+l2 (x− z)Bp+l1 (y + z) .

m
∑

l1=0

p
∑

l2=0

q
∑

l3=0

(

m

l1

)(

p

l2

)(

q

l3

)

uq−l3Bn+l1 (x)Bm−l1+l2 (y)Bp−l2+l3 (z) (26)

=

p
∑

l1=0

m
∑

l2=0

n
∑

l3=0

(

p

l1

)(

m

l2

)(

n

l3

)

(−u)n−l3 Bq+l1 (z + u)Bp−l1+l2 (y − u)Bm−l2+l3 (x+ u) .

In the following proposition we consider a first natural generalization of (14).

Proposition 3. We have the following Bernoulli polynomial identity

(−1)n
∑

l1+···+lk=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k Bm+l1 (x1 + y) (27)

= (−1)m
∑

l1+···+lk=m

(

m

l1, . . . , lk

)

xl2
2 · · · xlk

k Bn+lk (1− x1 − · · · − xk − y) .

Proof. Consider the trivial identity

(x1 + y)m (x2 + · · ·+ xk + (x1 + y))n

= (x1 + · · ·+ xk + y)n (−x2 − · · · − xk + (x1 + · · ·+ xk + y))m ,

or
∑

l1+···+lk=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k (x1 + y)m+l1 (28)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)

(−x2)
l2 · · · (−xk)

lk (x1 + · · ·+ xk + y)n+l1 .

By considering (28) as an identity between two y-polynomials, use Theorem 1 to obtain
that
∑

l1+···+lk=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k Bm+l1 (x1 + y) (29)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)

(−x2)
l2 · · · (−xk)

lk Bn+l1 (x1 + · · ·+ xk + y) .

Finally, use (8) to obtain (27).
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For example, if we distribute an adequate amount of 1’s and −1’s in the variables
x1, . . . , xk, we see from (27) that the following identities hold for k ≥ 1,

(−1)n
∑

2k∑

j=1

lj=n

(

n

l1, . . . , l2k

)

(−1)

k∑

j=2

lj

Bm+l1 (x)

= (−1)m
∑

2k∑

j=1

lj=m

(

m

l1, . . . , l2k

)

(−1)

k∑

j=2

lj

Bn+l1 (−x) ,

∑

2k+1∑

j=1

lj=n

(

n

l1, . . . , l2k+1

)

(−1)

k∑

j=1

lj

Bm+l2k+1
(x)

=
∑

2k+1∑

j=1

lj=m

(

m

l1, . . . , l2k+1

)

(−1)

k∑

j=1

lj

Bn+l2k+1
(x) .

If in (27) we set y = 1
2

(

1−
∑k

i=2 xi

)

− x1, we obtain that

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k Bm+l1

(

1−
∑k

i=2 xi

2

)

(30)

= (−1)m
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

xl2
2 · · · xlk

k Bn+l1

(

1−
∑k

i=2 xi

2

)

.

Moreover, by using (2) we can easily see that both sides of (30) are equal to

1

K + 1

K
∑

I=0

I
∑

J=0

(−1)J+I

(

K+1
J

)

(

K

I

)

(

−
1 +

∑k

i=2 xi

2
− I + J

)n(

1−
∑k

i=2 xi

2
+ I − J

)m

, (31)

where K ≥ m+ n.
If we take the variables x2, . . . , xk in (30) such that

∑k

i=2 xi = 1 or
∑k

i=2 xi = −1, we
obtain essentially identity (11), as the following corollary says.

Corollary 4.
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(a) If
∑k

i=2 xi = 1, we have the identity

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k Bm+l1 (32)

= (−1)m
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

xl2
2 · · · xlk

k Bn+l1

= (−1)m
m
∑

l=0

(

m

l

)

Bn+l.

(b) If
∑k

i=2 xi = −1, we have the identity

(−1)n
n
∑

l=0

(

n

l

)

Bm+l =
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

(−1)l1 xl2
2 · · · xlk

k Bm+l1 (33)

=
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

(−1)l1 xl2
2 · · · xlk

k Bn+l1

= (−1)m
m
∑

l=0

(

m

l

)

Bn+l.

Proof.

(a) From (30) and (31) we see that, if
∑k

i=2 xi = 1, we have

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

xl2
2 · · · xlk

k Bm+l1 (34)

= (−1)m
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

xl2
2 · · · xlk

k Bn+l1

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)J+I

(

K+1
J

)

(

K

I

) (−1− I + J)m (I − J)n ,

where K ≥ m + n. On the other hand, from (23) with x = 1 and y = 0 we see that,
for K ≥ m+ n, we have

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)m
m
∑

l=0

(

m

l

)

Bn+l (35)

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)I+J

(

K+1
J

)

(

K

I

) (−1− I + J)m (I − J)n .

Identity (32) comes from (34) and (35).
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(b) From (30) and (31) we see that, if
∑k

i=2 xi = −1, we have

∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

(−1)l1 xl2
2 · · · xlk

k Bm+l1 (36)

=
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

(−1)l1 xl2
2 · · · xlk

k Bn+l1

=
1

K + 1

K
∑

I=0

I
∑

J=0

(−1)J+I

(

K+1
J

)

(

K

I

) (I − J)n (−1− I + J)m ,

where K ≥ m+ n. Identity (33) comes from (36) and (35).

For example, we have the identities (for k ≥ 2)

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

Bm+l1

(k − 1)n−l1
(37)

= (−1)m
∑

∑k
i=1

li=m

(

m

l1, . . . , lk

)

Bn+l1

(k − 1)m−l1

= (−1)m
m
∑

l=0

(

m

l

)

Bn+l,

and (for k ≥ 1)

(−1)n
n
∑

l=0

(

n

l

)

Bm+l =
∑

∑k
i=0

li=n

(

n

l0, l1, . . . , lk

)

(−1)l0 ωl1
1 · · ·ωlk

k Bm+l0 (38)

=
∑

∑k
i=0

li=m

(

m

l0, l1, . . . , lk

)

(−1)l0 ωl1
1 · · ·ωlk

k Bn+l0

= (−1)m
m
∑

l=0

(

m

l

)

Bn+l,

where 1, ω1, . . . , ωk ∈ C are the (k + 1)-th roots of 1. In particular, we have the identities
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((37) and (38) together, with trinomial and quatranomial coefficients)

(−1)n
n
∑

l=0

(

n

l

)

Bm+l = (−1)n
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

Bm+l1

2n−l1

= (−1)m
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

Bn+l1

2m−l1

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

(−1)l1
(

−1+i
√
3

2

)l2+2l3
Bm+l1

=
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

(−1)l1
(

−1+i
√
3

2

)l2+2l3
Bn+l1

= (−1)n
∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

Bm+l1

3n−l1

= (−1)m
∑

l1+l2+l3+l4=m

(

m

l1, l2, l3, l4

)

Bn+l1

3m−l1

= (−1)n
∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

(−i)l2 (i)l4 Bm+l1

= (−1)m
∑

l1+l2+l3+l4=m

(

m

l1, l2, l3, l4

)

(−i)l2 (i)l4 Bn+l1

= (−1)m
m
∑

l=0

(

m

l

)

Bn+l.

In the following corollary we collect some particular cases of (30). Instead of writing both
sides of (30), we will say that “the left-hand side of this identity is invariant if we interchange
n and m”.

Corollary 5. Let n,m, k be non-negative integers, with k ≥ 2. The following expressions
are invariant by interchanging n and m.

(a)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

Bm+l1

(

1−
k

2

)

. (39)

(b) If x 6= 1,

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

x2l2+···+klkBm+l1

(

x2 + x− 1− xk+1

2 (x− 1)

)

. (40)
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(c)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

2l2 · · · klkBm+l1

(

4− k − k2

4

)

. (41)

(d)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

1

2l2 · · · klk
Bm+l1

(

1−
Hk

2

)

, (42)

where Hk is the k-th harmonic number.

(e)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

F l2
2 · · ·F lk

k Bm+l1

(

3− Fk+2

2

)

, (43)

where Fk is the k-th Fibonacci number.

(f)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

Ll2
2 · · ·Llk

k Bm+l1

(

5− Lk+2

2

)

, (44)

where Lk is the k-th Lucas number.

(g)

(−1)n
∑

∑k
i=1

li=n

(

n

l1, . . . , lk

)

(ln 2)l2 · · · (ln k)lk Bm+l1

(

ln

√

e

k!

)

. (45)

Proof. The corresponding identity is obtained from (30) if, for s = 2, . . . , k : (a) we set
xs = 1. (b) we set xs = xs. (c) we set xs = s. (d) we set xs = s−1. (e) we set xs = Fs, and
use that

∑k

i=2 Fi = Fk+2 − 2. (f) we set xs = Ls, and use that
∑k

i=2 Li = Lk+2 − 4. (g) we
set xs = ln s.

We can go further in the generalization of (14).

Proposition 6. For integers k, s ≥ 2, let αij, βij, i = 1, . . . , k, j = 1, . . . , s, be given complex
numbers such that

k
∑

i=1

αij = βkj and
k
∑

i=1

βij = αkj, (46)
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for j = 1, . . . , s. Then we have the following Bernoulli polynomial identity

∑

l1+···+lk=n

(

n

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

αijxj

)li


Bm+lk

(

s
∑

j=1

αkjxj + y

)

(47)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

βijxj

)li


Bn+lk

(

s
∑

j=1

βkjxj + y

)

.

Proof. We have

∑

l1+···+lk=n

(

n

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

αijxj

)li




(

s
∑

j=1

αkjxj + y

)m+lk

=

(

s
∑

j=1

αkjxj + y

)m( k
∑

i=1

s
∑

j=1

αijxj + y

)n

=

(

s
∑

j=1

αkjxj + y

)m( s
∑

j=1

k
∑

i=1

αijxj + y

)n

, (48)

and

∑

l1+···+lk=m

(

m

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

βijxj

)li




(

s
∑

j=1

βkjxj + y

)n+lk

=

(

s
∑

j=1

βkjxj + y

)n( k
∑

i=1

s
∑

j=1

βijxj + y

)m

=

(

s
∑

j=1

βkjxj + y

)n( s
∑

j=1

k
∑

i=1

βijxj + y

)m

. (49)

Conditions (46) on the coefficients αij and βij give us, from (48) and (49), that

∑

l1+···+lk=n

(

n

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

αijxj

)li




(

s
∑

j=1

αkjxj + y

)m+lk

(50)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)





k−1
∏

i=1

(

s
∑

j=1

βijxj

)li




(

s
∑

j=1

βkjxj + y

)n+lk

.

By seeing (50) as an identity between two y-polynomials, we use Theorem 1 to obtain
the desired conclusion (formula (47)).
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Some concrete examples of the result of Proposition 6 are the following:

(−1)n
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

(x+ 2y + 3z)l1 (2x+ 3y + 4z)l2Bm+l3 (3x+ 4y + 5z) (51)

= (−1)m
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

2l1 (x+ 2y + 3z)l1 (x+ y + z)l2×

×Bn+l3 (1− 3 (2x+ 3y + 4z)) .

∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

(x− 1)l1 (y − 1)l3 Bm+l4 (1− x− y) (52)

=
∑

l1+l2+l3+l4=m

(

m

l1, l2, l3, l4

)

(−1)l1+l3 (x+ y)l1 2l2Bn+l4 .

∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

(−1)l4 (x+ y)l1 (z + x)l2 (y + z)l3 Bm+l4 (1 + x+ y + z) (53)

=
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

(−1)l3 (x+ y + z)l1+l2 Bn+l3 (x+ y + z) .

To end this section, we show five identities coming from (47), together with some addi-
tional known facts.

1. The binomial coefficient recurrence gives us that

∑

l1+l2+l3=n

(

n

l1, l2, l3

)

(−1)l1+l2

(

p

r

)l1
(

p

r − 1

)l2

Bm+l3

((

p+ 1

r

))

(54)

=
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

(−1)l1
((

p+ 1

r

)

+ 1

)l2

Bn+l3 .

2. The known fact Br (x+ 1)−Br (x) = rxr−1, gives us the identity:

∑

l1+l2+l3=n

(

n

l1, l2, l3

)

(−1)l2 Bl1
r (x+ 1)Bl2

r (x)Bm+l3

(

y − rxr−1
)

(55)

=
∑

l1+l2+l3=m

(

m

l1, l2, l3

)

(

−
r

2

)l1+l2

x(r−1)(l1+l2)Bn+l3 (y) .
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3. If z1, z2, z3 ∈ C are vertices of an equilateral triangle in the complex plane (equivalently,
if z21 + z22 + z23 = z1z2 + z1z3 + z2z3), we have that

(−1)n
∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

z2l11 z2l22 z2l33 Bm+l3 (56)

= (−1)m
∑

l1+l2+l3+l4=m

(

m

l1, l2, l3, l4

)

(z1z2)
l1 (z1z3)

l2 (z2z3)
l3 ×

× Bn+l4 (1− z1z2 − z1z3 − z2z3) .

4. The known fact for harmonic numbers
∑k−1

r=1 Hr = kHk − k, gives us that

∑

l1+···+lk=n

(

n

l1, . . . , lk

)

(−1)n+lk H l1
1 · · ·H

lk−1

k−1Bm+lk (kHk) (57)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)

km−lk

2l1 · · · klk−1

Bn+lk (k) .

5. If (x1, . . . , xk) is a Pythagorean k-tuple (that is, if x2
1 + · · ·+ x2

k−1 = x2
k), we have

∑

l1+···+lk=n

(

n

l1, . . . , lk

)

(−1)lk x2l1
1 · · · x

2lk−1

k−1 Bm+lk

(

1 + x2
k

)

(58)

=
∑

l1+···+lk=m

(

m

l1, . . . , lk

)

(−1)lk x2l1
1 · · · x

2lk−1

k−1 Bn+lk .

3 Some identities from integration

Beginning with the multinomial expansion of (x1 + · · ·+ xk)
n, we fix two indices 1 ≤ j1, j2 ≤

k. It is possible to show (we leave the details to the reader), that if we integrate m1 times
with respect to variable xj1 (from 0 to xj1), and m2 times with respect to variable xj2 (from
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0 to xj2), we obtain

∑

l1+···+lk=n

(

n

l1, . . . , lk

)

x
lj1+m1

j1
x
lj2+m2

j2

∏k

i=1,i 6=j1,j2
xli
i

∏m1

i=1 (lj1 + i)
∏m2

i=1 (lj2 + i)
(59)

=

(

∑k

i=1 xi

)n+m1+m2

∏m1+m2

i=1 (n+ i)
−

m2−1
∑

t=0

xt
j2

(

∑k

i=1,i 6=j2
xi

)n+m1+m2−t

t!
∏m1+m2−t

i=1 (n+ i)

−

m1−1
∑

s=0

xs
j1

(

∑k

i=1,i 6=j1
xi

)n+m1+m2−s

s!
∏m1+m2−s

i=1 (n+ i)

+

m2−1
∑

t=0

m1−1
∑

s=0

xt
j2
xs
j1

(

∑k

i=1,i 6=j1,j2
xi

)n+m1+m2−s−t

s!t!
∏m1+m2−s−t

i=1 (n+ i)
.

With this expression, together with Theorem 1, we obtain the following identity for
Bernoulli polynomials:

∑

l1+···+lk=n

(

n

l1, . . . , lk

)

x
lj2+m2

j2

∏k

i=1,i 6=j1,j2
xli
i

∏m1

i=1 (lj1 + i)
∏m2

i=1 (lj2 + i)
Blj1+m1

(xj1) (60)

=
Bn+m1+m2

(

∑k

i=1 xi

)

∏m1+m2

i=1 (n+ i)
−

m2−1
∑

t=0

xt
j2
Bn+m1+m2−t

(

∑k

i=1,i 6=j2
xi

)

t!
∏m1+m2−t

i=1 (n+ i)

−

m1−1
∑

s=0

(

∑k

i=1,i 6=j1
xi

)n+m1+m2−s

Bs (xj1)

s!
∏m1+m2−s

i=1 (n+ i)

+

m2−1
∑

t=0

m1−1
∑

s=0

xt
j2

(

∑k

i=1,i 6=j1,j2
xi

)n+m1+m2−s−t

Bs (xj1)

s!t!
∏m1+m2−s−t

i=1 (n+ i)
.

(and a similar expression interchanging j1 with j2). If j3 6= j1, j2, we obtain also from (59)
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and Theorem 1 that

∑

l1+···+lk=n

(

n

l1, . . . , lk

)

x
lj1+m1

j1
x
lj2+m2

j2

∏k

i=1,i 6=j1,j2,j3
xli
i

∏m1

i=1 (lj1 + i)
∏m2

i=1 (lj2 + i)
Blj3

(

xlj3

)

(61)

=
Bn+m1+m2

(

∑k

i=1 xi

)

∏m1+m2

i=1 (n+ i)
−

m2−1
∑

t=0

xt
j2
Bn+m1+m2−t

(

∑k

i=1,i 6=j2
xi

)

t!
∏m1+m2−t

i=1 (n+ i)

−

m1−1
∑

s=0

xs
j1
Bn+m1+m2−s

(

∑k

i=1,i 6=j1
xi

)

s!
∏m1+m2−s

i=1 (n+ i)

+

m2−1
∑

t=0

m1−1
∑

s=0

xt
j2
xs
j1
Bn+m1+m2−s−t

(

∑k

i=1,i 6=j1,j2
xi

)

s!t!
∏m1+m2−s−t

i=1 (n+ i)
.

Some examples are the following:

Bn+1 (x1 + x2 + x3)

n+ 1
=

∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl2
2 x

l3
3

l1 + 1
Bl1+1 (x1) +

(x2 + x3)
n+1

n+ 1
(62)

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl1+1
1 xl2

2

l1 + 1
Bl3 (x3) +

Bn+1 (x2 + x3)

n+ 1
.

Bn+2 (x1 + x2 + x3)

(n+ 1) (n+ 2)
(63)

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl2+1
2 xl3

3 Bl1+1 (x1)

(l1 + 1) (l2 + 1)
+

Bn+2 (x1 + x3) + (x2 + x3)
n+2 − xn+2

3

(n+ 1) (n+ 2)

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl1+1
1 xl2+1

2 Bl3 (x3)

(l1 + 1) (l2 + 1)
+

Bn+2 (x1 + x3) + Bn+2 (x2 + x3)− Bn+2 (x3)

(n+ 1) (n+ 2)

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl2
2 x

l3
3 Bl1+2 (x1)

(l1 + 1) (l1 + 2)
+

(x2 + x3)
n+2

(n+ 1) (n+ 2)
+

(x2 + x3)
n+1

n+ 1
B1 (x1)

=
∑

l1+l2+l3=n

(

n

l1, l2, l3

)

xl1+2
1 xl2

2 Bl3 (x3)

(l1 + 1) (l1 + 2)
+

Bn+2 (x2 + x3)

(n+ 1) (n+ 2)
+

Bn+1 (x2 + x3)

n+ 1
x1
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Bn+3 (4x)

(n+ 1) (n+ 2) (n+ 3)
=

∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

xn−l1Bl1+3 (x)

(l1 + 1) (l1 + 2) (l1 + 3)
(64)

+
(3x)n+3

(n+ 1) (n+ 2) (n+ 3)
+

(3x)n+2
B1 (x)

(n+ 1) (n+ 2)
+

(3x)n+1
B2 (x)

2 (n+ 1)

=
∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

xn+3−l3Bl3 (x)

(l1 + 1) (l1 + 2) (l1 + 3)

+
Bn+3 (3x)

(n+ 1) (n+ 2) (n+ 3)
+

xBn+2 (3x)

(n+ 1) (n+ 2)
+

x2Bn+1 (3x)

2 (n+ 1)

Some particular numerical cases of (60) are given in the following corollary.

Corollary 7. We have the identities

∑

l1+l2+l3=n

(

n

l1, l2, l3

)

(−1)l2+1
Bl1+1

(l1 + 1) (l2 + 1)
=

1

(n+ 1) (n+ 2)
.

∑

l1+l2+l3=n

(

n

l1, l2, l3

)

Bl3

(l1 + 1) (l2 + 1)
=

1

n+ 1
.

∑

l1+l2+l3=2n

(

2n

l1, l2, l3

)

(−1)l1 Bl3

(l1 + 1) (l2 + 1) (l2 + 2)
=

1

2n+ 2
.

∑

l1+l2+l3=2n+1

(

2n+ 1

l1, l2, l3

)

Bl3

(l1 + 1) (l1 + 2) (l2 + 1) (l2 + 2)
=

1

4 (n+ 1) (n+ 2) (2n+ 3)
.

∑

l1+l2+l3=2n

(

2n

l1, l2, l3

)(

Bl1+1Bl2+1

(l1 + 1) (l2 + 1)
−

Bl1+2Bl2

(l1 + 1) (l1 + 2)

)

=
1−B2n+2

(2n+ 1) (2n+ 2)
.

∑

l1+l2+l3+l4=n

(

n

l1, l2, l3, l4

)

(−1)l4 Bl2+3

(l1 + 1) (l2 + 1) (l2 + 2) (l2 + 3)
= −

n

12 (n+ 2) (n+ 3) (n+ 4)
.

∑

l1+l2+l3+l4=2n

(

2n

l1, l2, l3, l4

)

(−1)l4 Bl1+2
∏2

i=1 (l1 + i)
∏3

j=1 (l2 + j)
=

2n+ 3− 2 (2n+ 5)B2n+4

2
∏5

i=1 (2n+ i)
.
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4 New Bernoulli identities from old combinatorial iden-

tities

We form groups of identities, attending to the common theme behind them and/or the source
where they come from. We begin with a group of identities coming from some of the Gould’s
works [7, 8, 11].

Proposition 8 (Gould-Bernoulli identities). We have the following Bernoulli polynomial
identities

n
∑

k=0

(−1)k
(

n

k

)

Bn+1 (x− k) =
(n+ 1)!

2
(2x− n− 1) . (65)

⌊n
2 ⌋
∑

k=0

2 (n+ 1)

2k + 1

(

n

2k

)

B2k+1 (x) = Bn+1 (x+ 1) + (−1)n Bn+1 (x− 1) . (66)

n
∑

k=0

(−1)k
(

n

k

)

(k + 1)k−1
Bn−k (x+ k) = Bn (x− 1) . (67)

n
∑

k=0

(

n

k

)(

m

k

)

(−1)k Bk (x) =
n
∑

k=0

(

n

k

)(

n+m− k

n

)

Bk (−x) . (68)

n
∑

k=0

(−1)k

4k

(

n

k

)(

2k

k

)

Bk (x) =
1

4n

n
∑

k=0

(−1)k
(

2n− 2k

n− k

)(

2k

k

)

Bk (x− 1) . (69)

(

n+ r

n

) n
∑

k=0

(

n

k

)

(

k+r

k

)Bk+r (x) = Bn+r (x+ 1)−
r−1
∑

k=0

(

n+ r

k

)

Bk (x) . (70)

⌊n
2 ⌋
∑

k=0

n−2k
∑

j=0

(

n

2k

)(

2k

k

)(

n+ k

k

)(

n− 2k

j

)

Bk+j (x)Bn−k−j (y) =
n
∑

k=0

(

n

k

)3

Bk (x)Bn−k (y) .

(71)

n
∑

k=0

(−1)k
(

n

k

)

Br (x− bk) =

{

0 if r < n;

n!bn if r = n.
(72)

Bn (x+ 1) =
n
∑

r=0

n
∑

k=r

(−1)r (k − r)k

r + 1

(

n

k

)(

k

r

)

Bn−k (x− k) . (73)

y

(

y + n

n

) n
∑

k=0

(−1)k
(

n

k

)

Bn (x− k)

(y + k)2
= Bn (x+ y)

n
∑

j=0

1

y + j
− nBn−1 (x+ y) . (74)
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n−1
∑

k=0

k
∑

j=0

Bj (x)Bk−j (y)

j! (k − j)!
zn−k =

n
∑

k=1

Bk (x+ kz)Bn−k (y − kz)−Bk (x)Bn−k (y)

k! (n− k)!
. (75)

Proof. For (65), (66), (67), (68), (69), (70) and (71), see identities (1.14), (1.38), (1.117),
(3.17), (3.84), (4.13) and (6.7) in Gould’s book [7], respectively. For (72) see identity (10.6)
in Gould’s book [8, Vol. 4]. For (73) and (74), see identities (1.17) and (1.57), in Gould’s
book [8, Vol. 5], respectively. For (75), see formula (2.3) in [11].

Next we consider the Bernoulli version of some of the Abel’s sums.

Proposition 9 (Abel-Bernoulli sums). We have the following Bernoulli polynomial iden-
tities

n
∑

l=0

(

n

l

)

(x+ l)l−1
Bn−l (y + n− l) =

1

x
Bn (y + x+ n) . (76)

n
∑

l=0

(

n

l

)

(x+ l)l−2
Bn−l (y + n− l) =

1

x2
Bn (x+ y + n)−

n

x (x+ 1)
Bn−1 (x+ y + n) . (77)

n
∑

l=0

(

n

l

)

(x+ l)l−3
Bn−l (y + n− l) (78)

=
1

x3
Bn (x+ y + n)−

n (2x+ 1)

x2 (x+ 1)2
Bn−1 (x+ y + n) +

n (n− 1)

x (x+ 1) (x+ 2)
Bn−2 (x+ y + n) .

n
∑

l=0

(

n

l

)

(x+ l)l Bn−l (y + n− l) =
n
∑

l=0

(

n

l

)

l!Bn−l (x+ y + n) . (79)

n
∑

l=0

(x+ l)l+1

l! (n− l)!
Bn−l (y + n− l) =

∑

l1+l2+l3=n

x+ l1

l3!
Bl3 (x+ y + n) . (80)

Proof. See the corresponding Abel’s sums in Riordan’s book [22, p. 23].

By using one of the Hurwitz multinomial extensions of Abel’s identities [13], we have the
following proposition:

Proposition 10 (Abel-Hurwitz-Bernoulli identity). We have the following Bernoulli
polynomial identities
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(a) For 1 ≤ r ≤ m

∑

l1+···+lm=n

(

n

l1, . . . , lm

)

Blr (xr + lr)
m
∏

j=1,j 6=r

(xj + lj)
lj (81)

=
n
∑

l=0

(

n

l

)

(m+ l − 2)!

(m− 2)!
Bn−l

(

m
∑

i=1

xi + n

)

.

(b)

∑

l1+···+lm=n

1

l1! · · · lm!

m
∏

j=1

Blj (xj + lj) (82)

=
n
∑

l=0

∑

s1+···+sm+1=n−l

nsm+1

s1! · · · sm+1!

(

m+ l − 2

l

) m
∏

j=1

Bsj (xj) .

Proof. The polynomial identity behind Bernoulli identities (81) and (82) comes from Ri-
ordan’s book [22, p. 25], formula (35). Identity (81) is obtained by seeing the mentioned
formula as an identity between two xr-polynomials and applying Theorem 1. Identity (82)

is obtained expanding first the multinomial term (
∑m

i=1 xi + n)
n−l

of the right-hand side of
the mentioned formula, and then applying Theorem 1 m times (one for each variable xi,
i = 1, . . . ,m).

By using a result concerning Abel-type sums, we have

Proposition 11. We have the following Bernoulli polynomial identities

znBm (x+ y) =
n
∑

l=0

m
∑

k=0

(

n

l

)(

m

k

)

x (x− lu)k−1 (−ku)l (z + ku)n−l
Bm−k (y + lu) . (83)

(x+ y)m Bn (z) =
n
∑

l=0

m
∑

k=0

(

n

l

)(

m

k

)

x (x− lu)k−1 (−ku)l (y + lu)m−k
Bn−l (z + ku) . (84)

Bm (x+ y)Bn (z) =
n
∑

l=0

m
∑

k=0

(

n

l

)(

m

k

)

x (x− lu)k−1 (−ku)l Bm−k (y + lu)Bn−l (z + ku) .

(85)
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Proof. All three identities are obtained applying Theorem 1 to formula (1) of the Huang and
Liu paper [12] about Abel-type polynomial identities: identity (83) is obtained by seeing the
mentioned formula (1) as an identity between two y-polynomials. Identity (84) is obtained by
seeing that formula as an identity between two z-polynomials. And identity (85) is obtained
by seeing (83) as an identity between two z-polynomials (or (84) as an identity between two
y-polynomials).

In 2001, Simons [24] found a “curious identity” (of two polynomials involving some prod-
ucts of binomial coefficients in their coefficients). Four years later, Munarini [17] generalized
Simons’ result. In the following proposition we show the Bernoulli version of each of these
identities.

Proposition 12. We have the following Bernoulli polynomial identities

n
∑

k=0

(

n

k

)(

n+ k

k

)

Bk (x) = (−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

Bk (−x) (86)

n
∑

k=0

(

β − α + n

n− k

)(

β + k

k

)

(−y)n−k
Bk (x+ y) =

n
∑

k=0

(

α

n− k

)(

β + k

k

)

yn−kBk (x) . (87)

⌊n
2 ⌋
∑

k=0

(

α

k

)(

2α− 2k

n− 2k

)

(−1)k y2kBn−2k (x+ y) =
n
∑

k=0

(

α

k

)(

2α− k

n− k

)

(2y)k Bn−k (x) . (88)

⌊n
2 ⌋
∑

k=0

(

2β + n+ 1

n− 2k

)(

β + k

k

)

x2kBn−2k (y − x) =
n
∑

k=0

(

2β + n+ 1

n− k

)(

β + k

k

)

(−2x)k Bn−k (y) .

(89)

Proof. Identity (86) comes from Theorem 1 and the “curious identity” of Simons [24]. Iden-
tities (87), (88) and (89) are obtained with Theorem 1, and the work of Munarini [17]
concerning a generalization of Simons’ identity, formulas (3), (8) —corrected—, and (9),
respectively.

A natural corollary from (86) is the following:

Corollary 13. The n-th degree polynomial

Pn (x) =
n
∑

k=0

(

n

k

)(

n+ k

k

)

Bk (x) , (90)
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is even (odd) if and only if n is even (odd, respectively). In particular, if n is odd, we have
the identity

n
∑

k=0

(

n

k

)(

n+ k

k

)

Bk = 0. (91)

Proof. This is a straightforward consequence of (86).

In [19] we used the following two-parameters generalization of Stirling numbers of the
second kind, due to P. Blasiak [2]: for positive integers r, s, such that r ≥ s, the (r, s)-Stirling
numbers of the second kind Sr,s (p, k) can be defined by the explicit formula

Sr,s (p, k) =
(−1)k

k!

k
∑

i=s

(−1)i
(

k

i

) p
∏

l=1

(i+ (l − 1) (r − s)) s . (92)

The case r = s = 1 corresponds to the standard Stirling numbers of the second kind
S (p, k). It can be shown that Sr,s (p, k) 6= 0 for r ≤ k ≤ rp. In the case r = s we proved the
following identity [19, formula (58)]

rp
∑

k=r

k!Sr,r (p, k) x
k−r =

rp
∑

k=r

(−1)k−rp
k!Sr,r (p, k) (x+ 1)k−r

, (93)

Thus we have

Proposition 14. We have the following Bernoulli polynomial identity

rp
∑

k=r

k!Sr,r (p, k)Bk−r (−x) = (−1)r(p+1)
rp
∑

k=r

k!Sr,r (p, k)Bk−r (x) . (94)

Proof. Use Theorem 1 in (93), change x by −x and use (8).

Corollary 15. The r (p− 1)-th degree polynomial

Qr,p (x) =

rp
∑

k=r

k!Sr,r (p, k)Bk−r (x) , (95)

is even if and only if r is even or p is odd, and is odd if and only if r is odd and p is even.
In particular, if r is odd and p is even we have the identity

rp
∑

k=r

k!Sr,r (p, k)Bk−r = 0. (96)

Proof. The affirmations are easy to see consequences from (94).

24



In the particular case r = 1 (where the standard Stirling numbers of the second kind are
involved), we have: for p ∈ N, the p-th degree polynomial Qp (x) =

∑p

k=1 k!S (p, k)Bk−1 (x)
is even (odd) if and only if p is odd (even, respectively). In particular, if p is even, we have
the identity

∑p

k=1 k!S (p, k)Bk−1 = 0.
By using the explicit formula for the (r, r)-Stirling numbers of the second kind ((92) with

s = r), identity (96) acquires the following nice form (for r odd and p even)

r(p−1)
∑

k=0

k
∑

l=0

(

k + r

l + r

)(

l + r

r

)p

(−1)k+l
Bk = 0. (97)

In the following proposition we show the Bernoulli polynomial version of some combina-
torial identities obtained by (improper) integration of some more sophisticated expressions
than those we considered in Section 4.

Proposition 16. We have the following Bernoulli polynomial identities

n
∑

l=0

1 + (−1)l

l + 1
Bl+1 (x) =

n
∑

l=0

(−1)l

l + 1

(

n+ 1

l + 1

)

(

Bl+1 (x+ 1) + (−1)l Bl+1 (x− 1)
)

. (98)

n
∑

l=1

(

n

l

)

Bl (x− 1)

l
=

n
∑

l=1

Bl (x)− 1

l
. (99)

k
∑

l=1

(−1)l
Bl (x− 1)

l
=

k
∑

l=1

(

k

l

)

(−1)l
Bl (x)− 1

l
. (100)

Proof. See [1, Cor. 2.1 and 2.3].

To end this section, we want to consider the famous Faulhaber formula (closely related
to the origins of Bernoulli numbers)

n
∑

j=1

jr =
Br+1 (n+ 1) + (−1)r Br+1

r + 1
, (101)

where r is a non-negative integer.

Proposition 17 (Faulhaber-type formula). Let k, n be non-negative integers. We have
the following Bernoulli polynomial identity

n
∑

j=1

Bk (x+ j) =
1

k + 1

k
∑

r=0

(

k + 1

r + 1

)

(Br+1 (n+ 1) + (−1)r Br+1)Bk−r (x) . (102)

Proof. We use Faulhaber formula (101) to write

n
∑

j=1

(x+ j)k =
k
∑

r=0

(

k

r

)

xk−r

n
∑

j=1

jr =
k
∑

r=0

(

k

r

)

Br+1 (n+ 1) + (−1)r Br+1

r + 1
xk−r. (103)

By using Theorem 1 in (103) we obtain the desired conclusion (102).
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