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Abstract

A recent analysis of returns and hills of generalized Dyck paths is carried over to
the language of t-ary trees, from which, by explicit bivariate generating functions, all
the relevant results follow quickly and smoothly. A conjecture about the (discrete)
limiting distribution of hills is settled in the affirmative.

1 Introduction

In a recent paper in this journal [2], generalized Dyck paths where investigated: they have
an up-step u = (1, 1) and a down-step d = (1,−t + 1), where t ≥ 2, start at the origin, end
on the x-axis, and never go below the x-axis. A general reference for such lattice paths is an
encyclopedic paper by Banderier and Flajolet [1].

Two parameters were investigated (with the help of Riordan arrays): the number of
returns to the x-axis (the origin itself does not count), and the number of (contiguous)
subpaths of the form u

t−1
d, that sit on the x-axis.

In the present note, I would like to emphasize that the language of trees, in particular
t-ary trees, is favorable here, because it allows one to write the relevant generating functions
with ease, without any mentioning of Riordan arrays, and also leads to settling a conjecture
mentioned in the recent paper mentioned before [2].

The family of t-ary trees is recursively described: such a tree is either an external node
(depicted as a square), or a root (an internal node, depicted as a circle), followed by subtrees
(in this order) T1, . . . , Tt. For this and many other concepts, we refer to the universal book
by Flajolet and Sedgewick [3]. The generating function T (z) =

∑

n≥0 anz
n, where an is the
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number of trees of size n (n internal nodes) is, following the recursive definition, given by
T (z) = 1 + zT t(z). Extracting coefficients is efficiently done by setting z = u/(1 + u)t, thus
T = 1 + u, and contour integration; the method is closely related to the Lagrange inversion
formula. Here is an example:

[zn]T k(z) =
1

2πi

∮

dz

zn+1
T k(z)

=
1

2πi

∮

du(1 + u− tu)(1 + u)t(n+1)

(1 + u)t+1un+1
(1 + u)k

= [un](1 + u− tu)(1 + u)tn+k−1

=

(

tn+ k − 1

n

)

− (t− 1)

(

tn+ k − 1

n− 1

)

=
k

n

(

tn+ k − 1

n− 1

)

.

This produces in particular (for k = 1) the numbers an = 1
n

(

tn
n−1

)

.
There is a natural bijection between the family of generalized Dyck paths and the family

of t-ary trees. It is based on the decomposition of paths according to the first return to
the x-axis. The first part of the Dyck paths is (recursively) responsible for the first t − 1
subtrees, and the rest of the Dyck path for the remaining t-th subtree. It is then apparent
that the number of down-steps is the same as the number of internal nodes of the associated
tree. Here is the situation depicted for t = 3.

· · ·
· · ·

· · ·

T1 T2 T3

Figure 1: The decomposition of generalized Dyck paths leading (recursively) to a ternary
tree with subtrees T1, T2, T3.

Now a little reflection convinces us that the number of returns is the same as the number
of (internal) nodes on the path from the root to the rightmost leaf. And, further: the number
of hills is the number of nodes on this rightmost path with the property that its first t − 1
subtrees are empty (are the empty subtree, consisting only of an external node).
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Figure 2: A ternary tree with 10 (internal) nodes. It has 6 returns and 3 hills.

In what follows, we will analyze these parameters in terms of t-ary trees. In particular,
we will freely speak about returns and hills of t-ary trees.

Cameron and McLeod [2], defined the negative binomial distribution via

P{Y = k} =

(

k − 1

r − 1

)

pr(1− p)k−r.

This is somewhat in contrast with the book Analytic Combinatorics [3] and Wikipedia, as
it is a shifted version, and the roles of p and 1− p are interchanged from the more common
definitions. Nevertheless, we will stick to this definition here, for the reason of comparisons.
The numbers r and p are called the parameters of the distribution.

2 The number of returns on t-ary trees

Let F (z, v) be the generating function with respect to the size and the number of returns,
i. e., the coefficient of znvk is the number trees with n internal nodes and k returns. Then
we find the equation

F (z, v) = 1 + zT t−1(z)vF (z, v).

Since zT t−1(z) = T (z)−1
T (z)

, this leads to the explicit form

F (z, v) =
1

1− v T (z)−1
T (z)

.

Therefore

[vk]F (z, v) =
(T (z)− 1

T (z)

)k

=
( u

1 + u

)k

.
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Furthermore

[zn][vk]F (z, v) = [zn]
( u

1 + u

)k

=
1

2πi

∮

dz

zn+1

( u

1 + u

)k

=
1

2πi

∮

du(1 + u− tu)(1 + u)t(n+1)

un+1(1 + u)t+1

( u

1 + u

)k

= [un−k](1 + u− tu)(1 + u)tn−1−k

=

(

tn− 1− k

n− k

)

− (t− 1)

(

tn− 1− k

n− 1− k

)

=
k

n

(

tn− 1− k

n− k

)

.

Division by an gives the probability that a random tree of size n has k returns:

pk(n) = k

(

tn−1−k
n−k

)

(

tn
n−1

) → k(t− 1)2

tk+1
, fixed k, n → ∞.

In order to compute the d-th (factorial) moment, we evaluate

∂d

∂vd
F (z, v)

∣

∣

∣

v=1
= d!T (z)(T (z)− 1)d = d!(1 + u)ud.

Furthermore,

[zn]
∂d

∂vd
F (z, v)

∣

∣

∣

v=1
= [un−d]d!(1 + u− tu)(1 + u)tn

= d!

(

tn

n− d

)

− d!(t− 1)

(

tn

n− 1− d

)

=
(td+ 1)d!

n− d

(

tn

n− 1− d

)

.

For the expected value, we consider d = 1 and divide by an, with the result

(t+ 1)n

n(t− 1) + 2
∼ t+ 1

t− 1
.

The second factorial moment is obtained via d = 2, with the result

2(2t+ 1)n(n− 1)

(tn− n+ 3)(tn− n+ 2)
∼ 2(2t+ 1)

(t− 1)2
.

This leads to the variance:

2
n(t− 1)(n− 1)(tn+ 1)

(tn− n+ 3)(tn− n+ 2)2
∼ 2t

(t− 1)2
.

This section reproved and extended the results of [2] on the number of returns. Note that

the quantity k(t−1)2

tk+1 is P{Y = k + 1}, where Y is a random variable, distributed according
to the negative binomial distribution for r = 2 and p = t−1

t
.
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3 The number of hills on t-ary trees

Let G(z, v) be the generating function with respect to the size (variable z) and the number
of hills (variable v). Then we find the recursion

G(z, v) = 1 + zT t−1(z)G(z, v) + z(v − 1)G(z, v).

Since zT t−1(z) = 1− 1/T (z), we find the explicit solution

G(z, v) =
T (z)

1− (v − 1)zT (z)
=

∑

k≥0

(v − 1)kzkT k+1(z).

By d-fold differentation, followed by setting v = 1, we get the generating function of the d-th
factorial moments (apart from normalization):

d!zdT d+1(z).

Furthermore,

[zn]d!zdT d+1(z) =
d!

2πi

∮

dz

zn+1−d
T d+1(z)

=
d!

2πi

∮

du(1 + u− tu)(1 + u)t(n−d)+d

un+1−d

= d![un−d](1 + u− tu)(1 + u)t(n−d)+d

= d!

(

tn− (t− 1)d

n− d

)

− d!(t− 1)

(

tn− (t− 1)d

n− 1− d

)

=
(d+ 1)!

n− d

(

tn− (t− 1)d

n− 1− d

)

.

For d = 1, this leads to the expected value:

n
(

tn
n−1

)

2

n− 1

(

tn− t+ 1

n− 2

)

=
2(tn− t+ 1)!(tn− n+ 1)!

t(tn− 1)!(tn− n− t+ 3)!
→ 2(t− 1)t−2

tt−1
.

The variance evaluates to

n
(

tn
n−1

)

6

n− 2

(

tn− 2t+ 2

n− 3

)

+
2(tn− t+ 1)!(tn− n+ 1)!

t(tn− 1)!(tn− n− t+ 3)!
−
[

2(tn− t+ 1)!(tn− n+ 1)!

t(tn− 1)!(tn− n− t+ 3)!

]2

,

which we do not attempt to simplify any further.
Writing

G(z, v) =
∑

n,k

gn,kz
nvk,
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it is possible to derive an explicit form for the coefficients gn,k, but they are not as nice as
the corresponding quantities in the previous section:

G(z, v) =
∑

k≥0

(v − 1)kzkT k+1(z)

=
∑

n≥0

zn
∑

k≥0

(v − 1)k
k + 1

n− k

(

tn− (t− 1)k

n− 1− k

)

=
∑

n≥0

zn
∑

k≥0

∑

0≤j≤k

(

k

j

)

vj(−1)k−j k + 1

n− k

(

tn− (t− 1)k

n− 1− k

)

.

This leads to

gn,j =
∑

j≤k≤n

(

k

j

)

(−1)k−j k + 1

n− k

(

tn− (t− 1)k

n− 1− k

)

.

The limiting distribution of gn,j/an, for j fixed, must thus be determined in a different
way.

We need a crash course in asymptotic tree enumeration here; all this can be found in
Flajolet and Sedgewick’s book [3], but compare also an older paper by Meir and Moon [4], in
particular the notion of simply generated families of trees. The procedure that we describe
here is closely related to the discussion in [3, Section IX-3], where very similar parameters
were analyzed.

We start from u = zφ(u), with φ(u) = (1 + u)t. The quantity τ is determined via the
equation φ(τ) = τφ′(τ). In our case this leads to τ = 1

t−1
. Then there is the quantity

ρ = τ
φ(τ)

, which here evaluates to

ρ =
(t− 1)t−1

tt
.

Then one knows by general principles that the function u(z) has a square-root singularity
around z = ρ, with the local expansion

u ∼ τ −
√

2τ

ρφ′′(τ)

√

1− z/ρ.

This is here

T (z) = 1 + u ∼ t

t− 1
−

√

2t

(t− 1)3

√

1− z/ρ.

This expansion will now be used inside of G(z, v), with the result (Maple):

G(z, v) ∼ a−
√
2t2t−3/2

(t− 1)3/2
(

tt−1 + (t− 1)t−2 − (t− 1)t−2v
)2

√

1− z/ρ,
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with a being an unimportant constant. Note that

√
2t2t−3/2

(t− 1)3/2
(

tt−1 + (t− 1)t−2 − (t− 1)t−2v
)2

∣

∣

∣

∣

∣

v=1

=

√

2t

(t− 1)3
.

Thus, the limiting distribution is given by the probability generating function

t2t−2

(

tt−1 + (t− 1)t−2 − (t− 1)t−2v
)2 =

t2t−2

(tt−1+(t−1)t−2)2

(

1− (t−1)t−2

tt−1+(t−1)t−2v
)2 .

The coefficient of vk in it given by

(k + 1)
t2t−2(t− 1)(t−2)k

(tt−1 + (t− 1)t−2)k+2
.

which is P{Y = k + 2}, for a random variable Y , which follows the negative binomial
distribution with parameters r = 2 and p = tt−1

tt−1+(t−1)t−2 , as conjectured in [2].
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