Returns, Hills, and t-ary Trees

Helmut Prodinger
Department of Mathematical Sciences
Stellenbosch University
7602 Stellenbosch
South Africa
hproding@sun.ac.za

Abstract

A recent analysis of returns and hills of generalized Dyck paths is carried over to the language of t-ary trees, from which, by explicit bivariate generating functions, all the relevant results follow quickly and smoothly. A conjecture about the (discrete) limiting distribution of hills is settled in the affirmative.

1 Introduction

In a recent paper in this journal [2], generalized Dyck paths where investigated: they have an up-step $\mathrm{u}=(1,1)$ and a down-step $\mathrm{d}=(1,-t+1)$, where $t \geq 2$, start at the origin, end on the x-axis, and never go below the x-axis. A general reference for such lattice paths is an encyclopedic paper by Banderier and Flajolet [1].

Two parameters were investigated (with the help of Riordan arrays): the number of returns to the x-axis (the origin itself does not count), and the number of (contiguous) subpaths of the form $\mathrm{u}^{t-1} \mathrm{~d}$, that sit on the x-axis.

In the present note, I would like to emphasize that the language of trees, in particular t-ary trees, is favorable here, because it allows one to write the relevant generating functions with ease, without any mentioning of Riordan arrays, and also leads to settling a conjecture mentioned in the recent paper mentioned before [2].

The family of t-ary trees is recursively described: such a tree is either an external node (depicted as a square), or a root (an internal node, depicted as a circle), followed by subtrees (in this order) T_{1}, \ldots, T_{t}. For this and many other concepts, we refer to the universal book by Flajolet and Sedgewick [3]. The generating function $T(z)=\sum_{n>0} a_{n} z^{n}$, where a_{n} is the
number of trees of size n (n internal nodes) is, following the recursive definition, given by $T(z)=1+z T^{t}(z)$. Extracting coefficients is efficiently done by setting $z=u /(1+u)^{t}$, thus $T=1+u$, and contour integration; the method is closely related to the Lagrange inversion formula. Here is an example:

$$
\begin{aligned}
{\left[z^{n}\right] T^{k}(z) } & =\frac{1}{2 \pi i} \oint \frac{d z}{z^{n+1}} T^{k}(z) \\
& =\frac{1}{2 \pi i} \oint \frac{d u(1+u-t u)(1+u)^{t(n+1)}}{(1+u)^{t+1} u^{n+1}}(1+u)^{k} \\
& =\left[u^{n}\right](1+u-t u)(1+u)^{t n+k-1} \\
& =\binom{t n+k-1}{n}-(t-1)\binom{t n+k-1}{n-1} \\
& =\frac{k}{n}\binom{t n+k-1}{n-1} .
\end{aligned}
$$

This produces in particular (for $k=1$) the numbers $a_{n}=\frac{1}{n}\binom{t n}{n-1}$.
There is a natural bijection between the family of generalized Dyck paths and the family of t-ary trees. It is based on the decomposition of paths according to the first return to the x-axis. The first part of the Dyck paths is (recursively) responsible for the first $t-1$ subtrees, and the rest of the Dyck path for the remaining t-th subtree. It is then apparent that the number of down-steps is the same as the number of internal nodes of the associated tree. Here is the situation depicted for $t=3$.

Figure 1: The decomposition of generalized Dyck paths leading (recursively) to a ternary tree with subtrees T_{1}, T_{2}, T_{3}.

Now a little reflection convinces us that the number of returns is the same as the number of (internal) nodes on the path from the root to the rightmost leaf. And, further: the number of hills is the number of nodes on this rightmost path with the property that its first $t-1$ subtrees are empty (are the empty subtree, consisting only of an external node).

Figure 2: A ternary tree with 10 (internal) nodes. It has 6 returns and 3 hills.

In what follows, we will analyze these parameters in terms of t-ary trees. In particular, we will freely speak about returns and hills of t-ary trees.

Cameron and McLeod [2], defined the negative binomial distribution via

$$
\mathbb{P}\{Y=k\}=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

This is somewhat in contrast with the book Analytic Combinatorics [3] and Wikipedia, as it is a shifted version, and the roles of p and $1-p$ are interchanged from the more common definitions. Nevertheless, we will stick to this definition here, for the reason of comparisons. The numbers r and p are called the parameters of the distribution.

2 The number of returns on t-ary trees

Let $F(z, v)$ be the generating function with respect to the size and the number of returns, i. e., the coefficient of $z^{n} v^{k}$ is the number trees with n internal nodes and k returns. Then we find the equation

$$
F(z, v)=1+z T^{t-1}(z) v F(z, v)
$$

Since $z T^{t-1}(z)=\frac{T(z)-1}{T(z)}$, this leads to the explicit form

$$
F(z, v)=\frac{1}{1-v \frac{T(z)-1}{T(z)}}
$$

Therefore

$$
\left[v^{k}\right] F(z, v)=\left(\frac{T(z)-1}{T(z)}\right)^{k}=\left(\frac{u}{1+u}\right)^{k}
$$

Furthermore

$$
\begin{aligned}
{\left[z^{n}\right]\left[v^{k}\right] F(z, v) } & =\left[z^{n}\right]\left(\frac{u}{1+u}\right)^{k} \\
& =\frac{1}{2 \pi i} \oint \frac{d z}{z^{n+1}}\left(\frac{u}{1+u}\right)^{k} \\
& =\frac{1}{2 \pi i} \oint \frac{d u(1+u-t u)(1+u)^{t(n+1)}}{u^{n+1}(1+u)^{t+1}}\left(\frac{u}{1+u}\right)^{k} \\
& =\left[u^{n-k}\right](1+u-t u)(1+u)^{t n-1-k} \\
& =\binom{t n-1-k}{n-k}-(t-1)\binom{t n-1-k}{n-1-k} \\
& =\frac{k}{n}\binom{t n-1-k}{n-k}
\end{aligned}
$$

Division by a_{n} gives the probability that a random tree of size n has k returns:

$$
p_{k}(n)=k \frac{\binom{t n-1-k}{n-k}}{\binom{t n}{n-1}} \rightarrow \frac{k(t-1)^{2}}{t^{k+1}}, \quad \text { fixed } k, \quad n \rightarrow \infty
$$

In order to compute the d-th (factorial) moment, we evaluate

$$
\left.\frac{\partial^{d}}{\partial v^{d}} F(z, v)\right|_{v=1}=d!T(z)(T(z)-1)^{d}=d!(1+u) u^{d}
$$

Furthermore,

$$
\begin{aligned}
{\left.\left[z^{n}\right] \frac{\partial^{d}}{\partial v^{d}} F(z, v)\right|_{v=1} } & =\left[u^{n-d}\right] d!(1+u-t u)(1+u)^{t n} \\
& =d!\binom{t n}{n-d}-d!(t-1)\binom{t n}{n-1-d}=\frac{(t d+1) d!}{n-d}\binom{t n}{n-1-d}
\end{aligned}
$$

For the expected value, we consider $d=1$ and divide by a_{n}, with the result

$$
\frac{(t+1) n}{n(t-1)+2} \sim \frac{t+1}{t-1}
$$

The second factorial moment is obtained via $d=2$, with the result

$$
\frac{2(2 t+1) n(n-1)}{(t n-n+3)(t n-n+2)} \sim \frac{2(2 t+1)}{(t-1)^{2}} .
$$

This leads to the variance:

$$
2 \frac{n(t-1)(n-1)(t n+1)}{(t n-n+3)(t n-n+2)^{2}} \sim \frac{2 t}{(t-1)^{2}} .
$$

This section reproved and extended the results of [2] on the number of returns. Note that the quantity $\frac{k(t-1)^{2}}{t^{k+1}}$ is $\mathbb{P}\{Y=k+1\}$, where Y is a random variable, distributed according to the negative binomial distribution for $r=2$ and $p=\frac{t-1}{t}$.

3 The number of hills on t-ary trees

Let $G(z, v)$ be the generating function with respect to the size (variable z) and the number of hills (variable v). Then we find the recursion

$$
G(z, v)=1+z T^{t-1}(z) G(z, v)+z(v-1) G(z, v)
$$

Since $z T^{t-1}(z)=1-1 / T(z)$, we find the explicit solution

$$
G(z, v)=\frac{T(z)}{1-(v-1) z T(z)}=\sum_{k \geq 0}(v-1)^{k} z^{k} T^{k+1}(z)
$$

By d-fold differentation, followed by setting $v=1$, we get the generating function of the d-th factorial moments (apart from normalization):

$$
d!z^{d} T^{d+1}(z)
$$

Furthermore,

$$
\begin{aligned}
{\left[z^{n}\right] d!z^{d} T^{d+1}(z) } & =\frac{d!}{2 \pi i} \oint \frac{d z}{z^{n+1-d}} T^{d+1}(z) \\
& =\frac{d!}{2 \pi i} \oint \frac{d u(1+u-t u)(1+u)^{t(n-d)+d}}{u^{n+1-d}} \\
& =d!\left[u^{n-d}\right](1+u-t u)(1+u)^{t(n-d)+d} \\
& =d!\binom{t n-(t-1) d}{n-d}-d!(t-1)\binom{t n-(t-1) d}{n-1-d} \\
& =\frac{(d+1)!}{n-d}\binom{t n-(t-1) d}{n-1-d} .
\end{aligned}
$$

For $d=1$, this leads to the expected value:

$$
\frac{n}{\binom{t n}{n-1}} \frac{2}{n-1}\binom{t n-t+1}{n-2}=\frac{2(t n-t+1)!(t n-n+1)!}{t(t n-1)!(t n-n-t+3)!} \rightarrow \frac{2(t-1)^{t-2}}{t^{t-1}} .
$$

The variance evaluates to

$$
\frac{n}{\binom{t n}{n-1}} \frac{6}{n-2}\binom{t n-2 t+2}{n-3}+\frac{2(t n-t+1)!(t n-n+1)!}{t(t n-1)!(t n-n-t+3)!}-\left[\frac{2(t n-t+1)!(t n-n+1)!}{t(t n-1)!(t n-n-t+3)!}\right]^{2}
$$

which we do not attempt to simplify any further.
Writing

$$
G(z, v)=\sum_{n, k} g_{n, k} z^{n} v^{k}
$$

it is possible to derive an explicit form for the coefficients $g_{n, k}$, but they are not as nice as the corresponding quantities in the previous section:

$$
\begin{aligned}
G(z, v) & =\sum_{k \geq 0}(v-1)^{k} z^{k} T^{k+1}(z) \\
& =\sum_{n \geq 0} z^{n} \sum_{k \geq 0}(v-1)^{k} \frac{k+1}{n-k}\binom{t n-(t-1) k}{n-1-k} \\
& =\sum_{n \geq 0} z^{n} \sum_{k \geq 0} \sum_{0 \leq j \leq k}\binom{k}{j} v^{j}(-1)^{k-j} \frac{k+1}{n-k}\binom{t n-(t-1) k}{n-1-k} .
\end{aligned}
$$

This leads to

$$
g_{n, j}=\sum_{j \leq k \leq n}\binom{k}{j}(-1)^{k-j} \frac{k+1}{n-k}\binom{t n-(t-1) k}{n-1-k} .
$$

The limiting distribution of $g_{n, j} / a_{n}$, for j fixed, must thus be determined in a different way.

We need a crash course in asymptotic tree enumeration here; all this can be found in Flajolet and Sedgewick's book [3], but compare also an older paper by Meir and Moon [4], in particular the notion of simply generated families of trees. The procedure that we describe here is closely related to the discussion in [3, Section IX-3], where very similar parameters were analyzed.

We start from $u=z \phi(u)$, with $\phi(u)=(1+u)^{t}$. The quantity τ is determined via the equation $\phi(\tau)=\tau \phi^{\prime}(\tau)$. In our case this leads to $\tau=\frac{1}{t-1}$. Then there is the quantity $\rho=\frac{\tau}{\phi(\tau)}$, which here evaluates to

$$
\rho=\frac{(t-1)^{t-1}}{t^{t}}
$$

Then one knows by general principles that the function $u(z)$ has a square-root singularity around $z=\rho$, with the local expansion

$$
u \sim \tau-\sqrt{\frac{2 \tau}{\rho \phi^{\prime \prime}(\tau)}} \sqrt{1-z / \rho}
$$

This is here

$$
T(z)=1+u \sim \frac{t}{t-1}-\sqrt{\frac{2 t}{(t-1)^{3}}} \sqrt{1-z / \rho}
$$

This expansion will now be used inside of $G(z, v)$, with the result (Maple):

$$
G(z, v) \sim a-\frac{\sqrt{2} t^{2 t-3 / 2}}{(t-1)^{3 / 2}\left(t^{t-1}+(t-1)^{t-2}-(t-1)^{t-2} v\right)^{2}} \sqrt{1-z / \rho}
$$

with a being an unimportant constant. Note that

$$
\left.\frac{\sqrt{2} t^{2 t-3 / 2}}{(t-1)^{3 / 2}\left(t^{t-1}+(t-1)^{t-2}-(t-1)^{t-2} v\right)^{2}}\right|_{v=1}=\sqrt{\frac{2 t}{(t-1)^{3}}} .
$$

Thus, the limiting distribution is given by the probability generating function

$$
\frac{t^{2 t-2}}{\left(t^{t-1}+(t-1)^{t-2}-(t-1)^{t-2} v\right)^{2}}=\frac{\frac{t^{2 t-2}}{\left(t^{t-1}+(t-1)^{t-2}\right)^{2}}}{\left(1-\frac{(t-1)^{t-2}}{t^{t-1}+(t-1)^{t-2}} v\right)^{2}} .
$$

The coefficient of v^{k} in it given by

$$
(k+1) \frac{t^{2 t-2}(t-1)^{(t-2) k}}{\left(t^{t-1}+(t-1)^{t-2}\right)^{k+2}}
$$

which is $\mathbb{P}\{Y=k+2\}$, for a random variable Y, which follows the negative binomial distribution with parameters $r=2$ and $p=\frac{t^{t-1}}{t^{t-1}+(t-1)^{t-2}}$, as conjectured in [2].

4 Acknowledgment

Thanks are due to Stephan Wagner for stimulating feedback.

References

[1] C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lattice paths, Theoret. Comput. Sci. 281 (2002), 37-80.
[2] N. T. Cameron and J. E. McLeod, Returns and hills on generalized Dyck paths, J. Integer Sequences 19 (2016), Article 16.6.1.
[3] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
[4] A. Meir and J. W. Moon, On the altitudes of nodes in random trees, Canad. J. Math. 30 (1978), 997-1015.

2010 Mathematics Subject Classification: Primary 05A15, 05A16; Secondary 60C05.
Keywords: t-ary trees, Dyck paths, generating functions, negative binomial distribution, asymptotic tree enumeration.
(Concerned with sequences $\underline{A 001764}, \underline{A 006013}, \underline{A 006629}, \underline{A 006630}$, and A006631.)

Received June 27 2016; revised versions received August 26 2016; August 27 2016. Published in Journal of Integer Sequences, August 292016.

Return to Journal of Integer Sequences home page.

