An Extended Version of Faulhaber's Formula

Raphael Schumacher
Department of Mathematics
ETH Zurich
Rämistrasse 101
8092 Zurich
Switzerland
raphschu@ethz.ch

Abstract

This paper presents an extended version of the well-known Faulhaber formula, which is used to compute the sum of the m-th powers of the first n natural numbers, where m and n are two natural numbers. Our expression is analogous to Faulhaber's formula, but sums the m-th powers of the natural numbers $\leq x$ for any non-negative real number x.

1 Introduction

For two natural numbers $m, n \in \mathbb{N}_{0}$, the Faulhaber formula [1], which was found by Jacob Bernoulli around 1700, provides a very efficient way to compute the sum of the m-th powers of the first n natural numbers. It is given by

$$
\sum_{k=0}^{n} k^{m}=\frac{1}{m+1} \sum_{k=0}^{m}(-1)^{k}\binom{m+1}{k} B_{k} n^{m-k+1}
$$

where the B_{k} 's are the Bernoulli numbers.
In this paper, we will prove the analogous expression for the sum $\sum_{k=0}^{\lfloor x\rfloor} k^{m}$, where $x \in \mathbb{R}_{0}^{+}$ and $m \in \mathbb{N}_{0}$, in terms of Bernoulli polynomials $B_{k}(x)$ instead of Bernoulli numbers B_{k}. This expression is given by

Theorem 1. (extended Faulhaber formula)
For any $x \in \mathbb{R}_{0}^{+}$we have that

$$
\sum_{k=0}^{\lfloor x\rfloor} k^{m}=\frac{1}{m+1} x^{m+1}+(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=1}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k}(\{x\}) x^{m-k+1} .
$$

We have searched this version of Faulhaber's formula in the literature, but we have not found it and therefore we believe that this result is new.

2 Definitions

As usual, we denote the floor of x by $\lfloor x\rfloor$ and the fractional part of x by $\{x\}$.
Definition 2. For $k \in \mathbb{N}_{0}$ we define the k-th Bernoulli polynomial $B_{k}(x)$ via the following exponential generating function [2]:

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} \frac{B_{k}(x)}{k!} t^{k} \quad \forall t \in \mathbb{C} \text { with }|t|<2 \pi
$$

Definition 3. The k-th Bernoulli number B_{k} is defined as the value of the k-th Bernoulli polynomial $B_{k}(x)$ at $x=0$ [2], that is

$$
B_{k}:=B_{k}(0)
$$

Moreover, we get from the definition of the Bernoulli polynomials [1] that

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} t^{k} \quad \forall t \in \mathbb{C} \text { with }|t|<2 \pi
$$

3 Proof of the extended Faulhaber formula

In this section we will prove our extended version of Faulhaber's formula.
Proof. Let $m, n \in \mathbb{N}_{0}$ be two natural numbers. Starting from [1] the usual Faulhaber formula

$$
\sum_{k=0}^{n} k^{m}=\frac{1}{m+1} \sum_{k=0}^{m}(-1)^{k} B_{k}\binom{m+1}{k} n^{m-k+1}
$$

we obtain

$$
\sum_{k=0}^{n} k^{m}=(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k} B_{k}\binom{m+1}{k} n^{m-k+1}
$$

Setting here $n:=\lfloor x\rfloor=x-\{x\}$ for some $x \in \mathbb{R}_{0}^{+}$, we get

$$
\begin{aligned}
\sum_{k=0}^{\lfloor x\rfloor} k^{m} & =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k} B_{k}\binom{m+1}{k}(x-\{x\})^{m-k+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k} B_{k}\binom{m+1}{k} \sum_{l=0}^{m-k+1}(-1)^{m-k-l+1}\binom{m-k+1}{l} x^{l}\{x\}^{m-k-l+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1} B_{k}\binom{m+1}{k} \sum_{l=0}^{m-k+1}(-1)^{m-l+1}\binom{m-k+1}{l} x^{l}\{x\}^{m-k-l+1}
\end{aligned}
$$

where we have used the binomial theorem

$$
(a+b)^{n}=\sum_{l=0}^{n}\binom{n}{l} a^{l} b^{n-l}
$$

for $a:=x, b:=\{x\}$ and $n:=m-k+1$.
We now interchange the order of summation and use the binomial identity

$$
\begin{aligned}
\binom{m+1}{k}\binom{m-k+1}{l} & =\frac{(m+1)!(m-k+1)!}{k!!!(m+1-k)!(m-k-l+1)!} \\
& =\frac{(m+1)!}{k!!!(m-k-l+1)!} \\
& =\frac{(m+1)!(m-l+1)!}{k!!!(m-l+1)!(m-k-l+1)!} \\
& =\binom{m+1}{l}\binom{m-l+1}{k}
\end{aligned}
$$

to obtain that

$$
\begin{aligned}
\sum_{k=0}^{\lfloor x\rfloor} k^{m} & =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1} B_{k}\binom{m+1}{k} \sum_{l=0}^{m-k+1}(-1)^{m-l+1}\binom{m-k+1}{l} x^{l}\{x\}^{m-k-l+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1} x^{l} \sum_{k=0}^{m-l+1} B_{k}\binom{m+1}{k}\binom{m-k+1}{l}\{x\}^{m-k-l+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1} x^{l} \sum_{k=0}^{m-l+1} B_{k}\binom{m+1}{l}\binom{m-l+1}{k}\{x\}^{m-k-l+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1}\binom{m+1}{l} x^{l} \sum_{k=0}^{m-l+1} B_{k}\binom{m-l+1}{k}\{x\}^{m-k-l+1}
\end{aligned}
$$

If we use now the following explicit formula [3, Proposition 23.2, p. 86] for the Bernoulli polynomials

$$
B_{n}(x)=\sum_{k=0}^{n} B_{k}\binom{n}{k} x^{n-k}
$$

for $n:=m-l+1$ and $x:=\{x\}$, we get

$$
\begin{aligned}
\sum_{k=0}^{\lfloor x\rfloor} k^{m} & =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1}\binom{m+1}{l} x^{l} \sum_{k=0}^{m-l+1} B_{k}\binom{m-l+1}{k}\{x\}^{m-k-l+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1}\binom{m+1}{l} B_{m-l+1}(\{x\}) x^{l}
\end{aligned}
$$

In the above formula we can change variables according to $l:=m-k+1 \Longleftrightarrow k=m-l+1$ and use the symmetry of the binomial coefficients

$$
\binom{m+1}{m-k+1}=\binom{m+1}{k}
$$

to conclude that

$$
\begin{aligned}
\sum_{k=0}^{\lfloor x\rfloor} k^{m} & =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{l=0}^{m+1}(-1)^{m-l+1}\binom{m+1}{l} B_{m-l+1}(\{x\}) x^{l} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k}\binom{m+1}{m-k+1} B_{k}(\{x\}) x^{m-k+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k}(\{x\}) x^{m-k+1}
\end{aligned}
$$

Finally, if we use the fact that $B_{0}(x)=1 \forall x \in \mathbb{R}$, we get our claimed formula

$$
\sum_{k=0}^{\lfloor x\rfloor} k^{m}=\frac{1}{m+1} x^{m+1}+(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=1}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k}(\{x\}) x^{m-k+1}
$$

for all $x \in \mathbb{R}_{0}^{+}$.
Remark 4. The ordinary Faulhaber formula follows by setting $x:=n \in \mathbb{N}_{0}$ in our developed
extension, because

$$
\begin{aligned}
\sum_{k=0}^{n} k^{m} & =\sum_{k=0}^{\lfloor n\rfloor} k^{m} \\
& =\frac{1}{m+1} n^{m+1}+(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=1}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k}(\{n\}) n^{m-k+1} \\
& =\frac{1}{m+1} n^{m+1}+(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=1}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k} n^{m-k+1} \\
& =(-1)^{m} \frac{B_{m+1}}{m+1}+\frac{1}{m+1} \sum_{k=0}^{m+1}(-1)^{k}\binom{m+1}{k} B_{k} n^{m-k+1} \\
& =\frac{1}{m+1} \sum_{k=0}^{m}(-1)^{k}\binom{m+1}{k} B_{k} n^{m-k+1}
\end{aligned}
$$

where we have used that $B_{k}(\{n\})=B_{k}(0)=B_{k}$ for all $k \in \mathbb{N}_{0}$.

4 Acknowledgment

The author thanks the referee for the valuable suggestions regarding the improvement of this paper.

References

[1] Kevin J. McGown and Harold R. Parks, The generalization of Faulhaber's formula to sums of non-integral powers, J. Math. Anal. Appl. 330 (2007), 571-575.
[2] A. Bazsó, Á. Pintér, and H. M. Srivastava, A refinement of Faulhaber's theorem concerning sums of powers of natural numbers, Appl. Math. Lett. 25 (2012), 486-489.
[3] Victor Kac and Pokman Cheung, Quantum Calculus, Springer, 2002.

2010 Mathematics Subject Classification: Primary 11B68; Secondary 34M30.
Keywords: extended Faulhaber formula, floor function, sum of powers of the first few natural numbers, Bernoulli polynomial, Bernoulli number.
(Concerned with sequences A027641 and A027642.)

Received November 7 2015; revised versions received November 9 2015; March 192016. Published in Journal of Integer Sequences, April 72016.

Return to Journal of Integer Sequences home page.

