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Abstract

For positive integers a, b and integers x, y such that S = a3+ b3 = x3+y3, we prove
that x+ y ≡ a+ b (mod 6); moreover, we give a parametric function ri → (x(ri), y(ri))
with (x(ri))

3 + (y(ri))
3 = a3 + b3 for chosen parameters ri, and we conjecture that

most such S are multiples of 18 if S is large enough. Accordingly, floating sieving

is introduced and upper bounds on the Cabtaxi numbers Ca(n) with 43 ≤ n ≤ 57,
and the Taxicab numbers Ta(n) with n = 23, 24 are given. Among them, Ta(n) with
n = 23, 24, and Ca(n) with n = 43, 44, are included in the On-Line Encyclopedia of

Integer Sequences.

1 Introduction

The n-th Taxicab number Ta(n) (respectively, the n-th Cabtaxi number Ca(n)) is the smallest
that can be expressed as a sum of two cubes of positive integers (respectively, integers) in
n ways, which are called n decompositions [1, 2]. For any positive n, Fermat proved the
existence of Ta(n), as shown in the book by Hardy and Wright [4, Theorem 412]. Clearly,
Ca(n) ≤ Ta(n) by definition. Specifically, Dardis found Ta(5) in 1994, but Ta(6) was not
determined until 14 year later. Indeed, Wilson [5] found an upper bound on Ta(6) in 1997,

Ta(6) ≤ 8, 230, 545, 258, 248, 091, 551, 205, 888
= 29 · 33 · 7 · 13 · 193 · 31 · 673 · 79 · 1093.
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Rathbun improved this upper bound in 2002 to

Ta(6) ≤ 24, 153, 319, 581, 254, 312, 065, 344
= 26 · 33 · 74 · 13 · 19 · 43 · 73 · 793 · 97 · 157.

Calude et al. [3] showed that this upper bound is Ta(6) with a probability of greater than
0.99. Finally, in 2008, Hollerbach showed that it was exactly Ta(6) [1, 2].

Clearly, the determinations of Ta(n) or Ca(n) are not trivial. Indeed, these are problems
A011541 and A047696 in the On-Line Encyclopedia of Integer Sequences, OEIS [6]. Up to
now, those known Ta(n) and Ca(n) are given in Table 1. Straightforward relations, called
magnifications, among these values; for example, Ca(3) = 23 ·Ca(2), Ca(9) = 53 ·673 ·Ca(7) =
23 ·53 ·673 ·Ca(6) are given in Fig. 1. Magnifications among the best known upper bounds on
Ta(n) and Ca(n) are described similarly by the diagrams in Figs. 13 and 14 in the Appendix.

Ta(n) Ca(n)
Ta(1) = 2 Ca(1) = 1
Ta(2) = 7 · 13 · 19 Ca(2) = 7 · 13
Ta(3) = 33 · 7 · 31 · 67 · 223 Ca(3) = 23 · 7 · 13
Ta(4) = 210 · 33 · 7 · 13 · 19 · 31 · 37 · 127 Ca(4) = 23 · 33 · 73 · 37
Ta(5) = 26 · 33 · 74 · 13 · 19 · 43 · 73 · 97 · 157 Ca(5) = 33 · 7 · 13 · 31 · 79
Ta(6) = 26 · 33 · 74 · 13 · 19 · 43 · 73 · 793 · 97 · 157 Ca(6) = 33 · 74 · 19 · 31 · 37

Ca(7) = 23 · 33 · 74 · 19 · 31 · 37
Ca(8) = 23 · 33 · 74 · 19 · 233 · 31 · 37
Ca(9) = 23 · 33 · 53 · 74 · 19 · 31 · 37 · 673
Ca(10) = 23 · 33 · 53 · 74 · 133 · 19 · 31 · 37 · 673

Table 1: Known Ta(n) and Ca(n)

Figure 1: Magnifications among Ta(n) and Ca(n)

Following the discovery of Ta(n) with 1 ≤ n ≤ 6 and Ca(n) with 1 ≤ n ≤ 10, in
2008, Boyer found upper bounds on Ta(7), . . . ,Ta(19) and Ca(11), . . . ,Ca(30) respectively
[1, 2]. As mentioned by Boyer later on his webpage, Moore improved the upper bounds on
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Ca(11),Ca(12),Ca(14), and Boyer and Wroblewski improved the upper bounds on Ta(11),
. . . ,Ta(19) and Ca(13),Ca(15), . . . ,Ca(30). Boyer also gave the upper bounds on Ta(20),
Ta(21), Ta(22) and Ca(31), . . . ,Ca(42)[2]. In this paper, the known upper bounds on Ta(n)
and Ca(n), given on Boyer’s webpage, are denoted by BTa(n) with 7 ≤ n ≤ 22, and BCa(n)
with 11 ≤ n ≤ 42, respectively. Complete decompositions of BTa(n) with 7 ≤ n ≤ 12 and
BCa(n) with 11 ≤ n ≤ 22 can be found in [2].

For given positive integers a and b, a condition for sieving integers x ≥ y to satisfy
S = a3 + b3 = x3 + y3 is given in Lemma 4. The relation x+ y ≡ a+ b (mod 6) is a crucial
condition in sieving the upper bounds on Ta(n) and Ca(n). We conjecture that Ta(n) with
n ≥ 7 and Ca(n) with n ≥ 11 are multiples of 18 (as discussed in Section 3). If S = a3+b3 is
a multiple of 18, then the introduced sieving process can be utilized to find the upper bounds
on Ta(n) and Ca(n). Based on the sieving conditions in Theorem 5, together with BTa(n)
and BCa(n) that were provided by Boyer, the sieving process is modified herein by applying
the concept of floating sieving to reduce the number of computations (Section 4). Applying
the floating sieving process, the upper bounds on Ta(23),Ta(24) and Ca(43), . . . ,Ca(57)
together with their corresponding parameters are given in Section 5. The upper bounds on
Ta(23),Ta(24),Ca(43) and Ca(44) were collected in OEIS, October 2014.

2 Magnifications

Magnification, introduced by Wilson [5] and Boyer [1], is an efficient and frequently used
technique for finding the upper bounds on Ta(n) and Ca(n), that is finding a number with
n+ 1 decompositions starting from a number with n decompositions.

2.1 Magnifications among BTa(n) and among BCa(n)

If S can be described in n ways as a sum of two cubes, S = x3
i + y3i with i = 1, 2, . . . , n,

and k is an integer, then Sk3 can be described in at least n ways as a sum of two cubes:
Sk3 = (kxi)

3 + (kyi)
3 with i = 1, . . . , n. If a value k is found such that there exists another

sum of two cubes, Sk3 = x3
n+1 + y3n+1 with (xn+1, yn+1) 6= (xi, yi) for i = 1, 2, . . . , n, then

Sk3 can be described as n+ 1 sums of two cubes, yielding an upper bound on Ta(n+ 1) or
Ca(n+ 1). Such a number k is called a splitting factor by Boyer [1].

For most values of n, the quotient BCa(n)/BCa(n− 1) or BTa(n)/BTa(n − 1) is k3 or
the product k3

1 · k3
2 (where k, k1 and k2 are primes). Starting from BTa(7) and BCa(11) on,

the quotients BTa(n)/BTa(n−1) and BCa(n)/BCa(n−1) are given in Table 2 respectively.
Some of the quotients are complicated (see below for examples). However, most of them are
in a simple form.

1. BTa(11)/BTa(10) = (23 · 53 · 132 · 173 · 31 · 37 · 972 · 1093) / (19 · 293 · 1013 · 1273)
2. BCa(11)/BCa(10) = (24 · 33 · 372 · 43 · 613) / (53 · 7 · 132 · 31 · 672)
3. BCa(13)/BCa(12) = (22 · 33 · 7 · 133 · 109 · 193) / (19 · 43 · 612 · 67)
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4. BCa(14)/BCa(13) = (24 · 19 · 313 · 43 · 612 · 67) / (33 · 7 · 133 · 109 · 193)
5. BCa(15)/BCa(14) = (33 · 7 · 133 · 733 · 109 · 193) / (24 · 19 · 313 · 43 · 612 · 67)
6. BCa(19)/BCa(18) = (53 · 113 · 37 · 43 · 612 · 673 · 1092 · 157) / (26 · 13 · 196 · 312 · 732 · 193)
7. BCa(20)/BCa(19) = (26 ·53 ·13·193 ·312 ·732 ·1033 ·193) / (113 ·37·43·612 ·673 ·1092 ·157)
8. BCa(21)/BCa(20) = (113 ·43·612 ·673 ·793 ·1092 ·157) / (26 ·53 ·13·312 ·372 ·732 ·1033 ·193)

(a) BTa(n)

n BTa(n)/BTa(n− 1)

7 1013

8 1273

9 1393

10 133 · 293
11 See 1.
12 33 · 193
13 33 · 613
14 3973

15 5033

16 23 · 6073
17 42613

18 373 · 1813
19 56 · 4573 · 5213/42613
20 42613

21 1273 · 1973
22 113 · 313 · 1033

(b) BCa(n)

n BCa(n)/BCa(n− 1) n BCa(n)/BCa(n− 1)

11 See 2. 27 56

12 193 28 73 · 133 · 973/56 · 173
13 See 3. 29 173

14 See 4. 30 56

15 See 5. 31 293

16 193 32 433

17 26 · 313/193 33 1813

18 193 34 1933

19 See 6. 35 3973 · 4573/1813 · 1933
20 See 7. 36 1813

21 See 8. 37 1013 · 2293/1813
22 373/33 38 1813

23 33 39 1633

24 173 40 1933

25 1393/173 41 2233

26 173 42 3073

Table 2: Quotients of consecutive BTa(n) and BCa(n)

The magnifications among BTa(7), . . . , BTs(22) and BCa(11), . . . ,BCa(42) can be found
in Figs. 2, 3, 4, 5 and also Figs. 13 and 14 in the Appendix.

2.2 Consecutive magnifications

If ki with 1 ≤ i ≤ h are splitting factors of S that can be described by n sums of two cubes,
such that k3

i S can be described by n + 1 sums of two cubes, then k3
1 · k3

2 · · · k3
h · S may be

described by n+h sums of two cubes, as in Example 1. The k-th known upper bounds, from
small to large, are denoted by BTa(n, k) and BCa(n, k) respectively. Some upper bounds on
Ca(n + h) may be improved by applying the magnification technique over some BCa(n, k),
although these are not the best known upper bounds when k > 1, as in Examples 2 and 3.

Example 1. Ta(6) can be described as 6 sums of two cubes; 1013 · Ta(6) and 1273 · Ta(6)
can be described as 7 sums of two cubes, and 1013 · 1273 · Ta(6) can be described as 8 sums
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of two cubes. This gives

Ta(8) ≤ BTa(8) = 1273 · BTa(7) = 1013 · 1273 · Ta(6).

When k = 23, 29, 38, 43, each k3 · Ca(10) can be described as 11 sums of two cubes, and
233 · 293 · 383 · 433 · Ca(10) can be described by 14 sums of two cubes. (see also Examples 6
and 7 in Section 4.1).

Figure 2: Magnifications among Ta(6), BTa(7) and BTa(8)

Example 2. The second and third smallest of the numbers with 9 decompositions are
denoted by BCa(9, 2) and BCa(9, 3), respectively:

BCa(9, 2) = 26 · 33 · 77 · 19 · 31 · 73 · 97 · 139,
BCa(9, 3) = 27 · 36 · 73 · 13 · 19 · 373 · 43 · 67.

The upper bounds on Ca(11) that were derived by Boyer and Moore in 2008 are

Ca(11) ≤ 133 · 173 · BCa(9, 2), and
BCa(11) ≤ 613 · BCa(9, 3)

respectively. Although BCa(9, 3) is larger than BCa(9, 2), we have

Ca(11) ≤ BCa(11) = 613 · BCa(9, 3) < 133 · 173 · BCa(9, 2).

Fig. 3 presents the magnifications among the best known bounds.

Figure 3: BCa(11),BCa(12),BCa(14) associated with BCa(9, 3)

Example 3. The fifth smallest known with 10 decompositions is

BCa(10, 5) = 29 · 33 · 74 · 134 · 193 · 61 · 109 · 193.

The upper bounds associated with BCa(10, 5) are given below:
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BCa(13) = 36 · 373 · BCa(10, 5),
BCa(15) = 36 · 373 · 733 · BCa(10, 5) = 733 · BCa(13),
BCa(16) = 36 · 193 · 373 · 733 · BCa(10, 5) = 193 · BCa(15),
BCa(17) = 26 · 36 · 313 · 373 · 733 · BCa(10, 5) = 26 · 313 · BCa(15),
BCa(18) = 26 · 36 · 193 · 313 · 373 · 733 · BCa(10, 5) = 193 · BCa(17),
BCa(20) = 26 · 36 · 56 · 313 · 373 · 733 · 1033 · BCa(10, 5) = 26 · 56 · 313 · 1033 · BCa(15),

which are summarized in Fig. 4.

In Fig. 5, the magnifications among BCa(15),BCa(16),BCa(17) and BCa(18) are dis-
played in the shape of a parallelogram. Similar situations also hold in BCa(23), BCa(24),
BCa(25) and BCa(26), as displayed in Fig. 7, and BCa(35), BCa(36), BCa(37), BCa(38), as
displayed in Fig. 9, respectively.

Figure 4: BCa(n) associated with BCa(10, 5)

Figure 5: Magnifications among BCa(15), BCa(16), BCa(17), BCa(18)

3 Parameters of decompositions

If S = a3+ b3, then a3+ b3 is called a decomposition of S as a sum of two cubes, abbreviated
as a decomposition of S. Hence Ta(n) (resp., Ca(n)) is the smallest positive integer with n
decompositions with nonnegative integral summands (or respectively integral summands).
We will show that each decomposition of S can be expressed as a parametric function; see
Theorem 5.
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3.1 Decompositions as sums of two cubes

Consider decompositions S = x3
1 + y31 = x3

2 + y32 as sums of two cubes, and observe that
(x1 + y1)− (x2 + y2) is a multiple of 6 in Table 3, and will be proved in Lemma 4.

S x1 y1 x2 y2 (x1 + y1)− (x2 + y2)
1,729 10 9 12 1 6
4,104 15 9 16 2 6
20,683 24 19 27 10 6
39,312 33 15 34 2 12
40,033 33 16 34 9 6
65,728 33 31 40 12 12
64,232 36 26 39 17 6
134,379 43 38 51 12 18
149,389 50 29 53 8 18
171,288 54 24 55 17 6

Table 3: Relations between pairs of decompositions

Lemma 4. For integers a, b, x, y with a < x and a3 + b3 = x3 + y3, then

x+ y ≡ a+ b (mod 6).

Proof. We notice that a3 − a = (a− 1)a(a+ 1) is a multiple of 6, and then a3 ≡ a (mod 6)
holds for any integer a. Hence, x+ y ≡ a+ b (mod 6).

Based on observations on known Ta(n) with n = 4, 5, 6, BTa(n) with 7 ≤ n ≤ 12, Ca(n)
with 7 ≤ n ≤ 10, and BCa(n) with 11 ≤ n ≤ 22, note that 6|(x+ y) in each decomposition
S = x3+y3 and therefore x3+y3 is a multiple of 18 because of x3+y3 = (x+y)((x+y)2−3xy).
We conjecture that Ta(n) with n ≥ 7 and Ca(n) with n ≥ 11 are all multiples of 18. This
is because when the magnification technique is used to find the upper bound on Ta(n + 1)
and Ca(n + 1) from BTa(n) and BCa(n) of multiples of 18, the one derived will also be a
multiple of 18. Section 4 introduces the sieving process that can be used to find the upper
bounds on Ta(n) and Ca(n).

3.2 Parameters of decompositions

All sums of two cubes can be expressed as a parametric function (see Theorem 5), and this
fact leads to a sieving process in Section 4.

For a given S = a3 + b3 with positive integers a ≥ b, to determine integers x ≥ y such
that S = a3+b3 = x3+y3, k = x+y is introduced and x, y must be obtained for appropriate
k (or else may have no solution).

{

x+ y = k,

x3 + y3 = S.
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Hence, x = x(k, S) and y = y(k, S) can be expressed as functions of k and S. Substituting
y = k − x into x3 + (k − x)3 = S yields 3x2 − 3kx+ (k3 − S)/k = 0 and therefore,

x = (3k +
√

(3k)2 − 4 · 3 · (k3 − S)/k)/6,

y = (3k −
√

(3k)2 − 4 · 3 · (k3 − S)/k)/6.

The necessary and sufficient condition for x and y to be positive integers is that the expression
−3k2 + 12S/k ≥ 0 inside the square root is a perfect square. Since −3k2 + 12S/k ≥ 0 and
k3 = (x+ y)3 > x3 + y3 = S, we then have 3

√
S < k ≤ 3

√
4S.

Repeating the above for k = x+ y = 6r yields x2− 6rx+12r2−S/18r = 0. Substituting
y = 6r − x yields

x = 3r +
√

−3r2 + (S/18r),

y = 3r −
√

−3r2 + (S/18r).

The necessary and sufficient condition for x and y to be positive integers is that −3r2+S/18r
is a perfect square. Moreover, 3

√

S/216 < r ≤ 3
√

S/54 because −3r2 + S/18r ≥ 0 and
(6r)3 = (x+ y)3 > x3 + y3 = S. The above is summarized as follows:

Theorem 5. If S = x3 + y3, x+ y = k and x ≥ y, then

x =
3k +

√

−sk2 + 12S/k

6
, y =

3k −
√

−3k2 + 12S/k

6
.

Moreover,

(a) x =
3k+
√

−3k2+12S/k

6
and y =

3k−
√

−3k2+12S/k

6
are positive rationals if and only if k|S,

3
√
S < k ≤ 3

√
4S, and −3r2 + 12S/k are perfect squares.

(b) When k = 6r, x = 3r+
√

−3r2 + (S/18r) and y = 3r−
√

−3r2 + (S/18r) are positive

integers if and only if 18|S, r is a divisor of S/18, 3
√

S/216 < r ≤ 3
√

S/54 and
−3r2 + (S/18r) is a perfect square.

Among the sieving conditions in Theorem 5, the condition of perfect square is most
crucial, as shown in Examples 6 and 7. The condition that r is a factor of S/18 is required
in the Sieving Process and floating sieving process. When n parameters r = r1, r2, . . . , rn
are sieved, then the parametric functions

ri → (xi, yi) = (x(ri), y(ri))

provides n decompositions of S = (x(ri))
3 + (y(ri))

3 with 1 ≤ i ≤ n.
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4 Sieving and floating sieving

Based on the parametric expression given in Theorem 5, a sieving process for upper bounds
on Ta(n) and Ca(n) is given in Section 4.1. Upper bounds on Ta(n) with n = 7, 8, 9 and
on Ca(n) with n = 11, . . . , 16, derived by this process are given in Examples 6, 7 and 8
with illustrations. To reduce computational load, the floating sieving process is introduced
in Section 4.2 with illustrations by applying the concept of floating sieving.

4.1 Sieving process

For given integers a and b, the conditions that govern the parameters given in Theorem 5
can be used to sieve for possible integers x, y that satisfy S = a3 + b3 = x3 + y3, providing a
means of exploring upper bounds on Ta(n) and Ca(n) respectively.

Sieving process

1. Input S = a3 + b3 and k, let counter = 0.
2. List all positive factors r1 < r2 < r3 · · · < rt of Sk

3/18.
3. For i = 1, · · · , t,

If 3
√

Sk3/216 < ri ≤ 3
√

Sk3/54,
If −3r2i + Sk3/18ri is a perfect square,
output ri, x(ri) = 3ri +

√

−3r2i + Sk3/18ri and y(ri) = 3ri−
√

−3r2i + Sk3/18ri.
counter ← counter + 1, i← i+ 1, return to Step 3.

otherwise i← i+ 1, return to Step 3.
Otherwise, i← i+ 1, return to Step 3.

4. Output counter.

Let S = a3 + b3. To find x, y with Sk3 = x3 + y3, the function counter gives the number
of decompositions, it is more likely to increase for prime k. If the condition 3

√

Sk3/216 <

r ≤ 3
√

Sk3/54 above is replaced by 0 < r ≤ 3
√

Sk3/54, then all integral solutions of Sk3 =
k3(a3 + b3) = x3 + y3 can be derived, yielding a sieving process for Cabtaxi numbers. In the
following examples, the sieving process is illustrated in terms of Ta(6) with k = 101, 127 and
Ca(10) with k = 23, 29, 38, 43, 127.

Example 6. For S = Ta(6) = 26 · 33 · 74 · 13 · 19 · 43 · 73 · 793 · 97 · 157 and k = 101, Sk3 has
143,360 positive factors, of the 61,440 positive factors of Sk3/18, 629 lie between 3

√

Sk3/216

and 3
√

Sk3/54, and finally −3r2+Sk3/18r is a perfect square for only 7 of them. Therefore,
7 decompositions are derived by using Theorem 5, yielding Ta(7) ≤ 1013 · Ta(6).
Example 7. For S = Ta(6) · 1013 = 26 · 33 · 74 · 13 · 19 · 43 · 73 · 793 · 97 · 1013 · 157 and
k = 127, Sk3 has 573, 440 factors, of the 245,760 positive factors of Sk3/18, 2,004 lie between
3
√

Sk3/216 and 3
√

Sk3/54, and finally −3r2+Sk3/18r is a perfect square for only 8 of them.
Therefore, 8 decompositions are derived by using Theorem 5, yielding

Ta(8) ≤ 1013 · 1273 · Ta(6).
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Notably, the numbers 101 and 127 above are primes, and counter = 9 is derived for 1013 ·
1273 · 1393 · Ta(6), which therefore has 9 decompositions, so

Ta(9) ≤ 1013 · 1273 · 1393 · Ta(6).

Example 8. For S = Ca(10), then counter = 11 is derived when k = 23, 29, 38, 43 and 46.
Moreover, each of 233 · Ca(10), 233 · 293 · Ca(10), 233 · 293 · 383 · Ca(10), and 233 · 293 · 383 ·
433 · Ca(10) have 11, 12, 13 and 14 parameters respectively. The above bounds on Ca(12),
Ca(13), Ca(14) can be improved further. Consider the prime k = 127 ≤ 23 · 29, for which
counter = 12, meaning that 1273 · Ca(10) also has 12 parameters, a better bound, so

Ca(12) ≤ 1273 · Ca(10).

Similar arguments show that

293 · 1273 · Ca(10) has 13 parameters, an upper bound of Ca(13),
293 · 433 · 1273 · Ca(10) has 14 parameters, an upper bound of Ca(14),
233 · 293 · 383 · 1273 · Ca(10) has 15 parameters, an upper bound of Ca(15),
233 · 293 · 383 · 433 · 1273 · Ca(10) has 16 parameters, an upper bound of Ca(16).

We let SCa(11), . . . , SCa(16) denote the upper bounds on Ca(11), . . . ,Ca(16) obtained by
sieving process based on Ca(10). These bounds are summarized below for reference, though
they are not as good as bounds given by Boyer. The magnifications among them are given in
Fig. 6. The same technique can also be used to derive upper bounds on Ca(43), . . . ,Ca(57)
based on BCa(42); see Theorem 11, and upper bounds on Ta(23), Ta(24) based on BTa(22)
as well; see Theorem 12.

Ca(11) ≤ BCa(11) ≤ SCa(11) = 233 · Ca(10)
= 23 · 33 · 53 · 74 · 133 · 19 · 233 · 31 · 37 · 673,

Ca(12) ≤ BCa(12) ≤ SCa(12) = 1273 · Ca(10)
= 23 · 33 · 53 · 74 · 133 · 19 · 31 · 37 · 673 · 1273,

Ca(13) ≤ BCa(13) ≤ SCa(13) = 293 · 1273 · Ca(10)
= 23 · 33 · 53 · 74 · 133 · 19 · 293 · 31 · 37 · 673 · 1273,

Ca(14) ≤ BCa(14) ≤ SCa(14) = 293 · 433 · 1273 · Ca(10)
= 23 · 33 · 53 · 74 · 133 · 19 · 293 · 31 · 37 · 433 · 673 · 1273,

Ca(15) ≤ BCa(15) ≤ SCa(15) = 23 · 193 · 233 · 293 · 1273 · Ca(10)
= 26 · 33 · 53 · 74 · 133 · 194 · 233 · 293 · 31 · 37 · 673 · 1273,

Ca(16) ≤ BCa(16) ≤ SCa(16) = 23 · 193 · 233 · 293 · 433 · 1273 · Ca(10)
= 26 · 33 · 53 · 74 · 133 · 194 · 233 · 293 · 31 · 37 · 433 · 673 · 1273.

4.2 Floating sieving process

Upper bounds for Ta(7), Ta(8), Ta(9), and for Ca(11), . . . ,Ca(16) were derived by the above
sieving process. However, the computing time that is needed for sieving increases as an
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Figure 6: Magnifications among Ca(10), SCa(11), . . . , SCa(16)

exponential function of n in both Ca(n) and Ta(n). The process is therefore modified by
considering the exponent sum of its standard factorization, rather than a value itself, and
this modified process is the called floating sieving process.

Recall that each parameter r is a divisor of S/18 as shown in Theorem 5. Let ri =
m
∏

j=1

p
βi,j

j

for primes p1 < p2 < · · · < pm with 1 ≤ i ≤ n be the standard product of prime powers of
the parameter of BCa(n), abbreviated as ri = (βi,1, βi,2, . . . , βi,m) with base (p1, p2, . . . , pm).
When a number S that can be described as n + 1 sums of two cubes, we may try S = k3 ·
BCa(n) first for a splitting factor k. Since S = k3 ·BCa(n) itself already has n decompositions
with parameters kr1, kr2, . . . , krn, the key lies in finding an additional parameter rn+1. Let

ai =
m
∑

j=1

βi,j with 1 ≤ i ≤ n be the exponent sum of ri, and let [L,U ] be an interval

that contains all ai. Based on the assumption that k is a prime, the exponent sums of
kr1, kr2, . . . , krn lie in the interval [L+1, U+1]. The exponent-sums of additional parameters
are likely in the interval [L + 1, U + 1] as well, rather than in the range of the parameter
[ 3
√

S/216, 3
√

S/54] so many and huge numbers can be avoided.

More specifically, an additional parameter rn+1 = kβm+1 ·
m
∏

i=1

pβi

i , associated with

k3 ·BCa(n) = k3 ·
m
∏

i=1

pαi

i , may satisfy the conditions 0 ≤ β1 ≤ α1− 1, 0 ≤ β2 ≤ α2− 2 (since

18 = 2 · 32 is a divisor of S), 0 ≤ βi ≤ αi/2 with 3 ≤ i ≤ m, and βm+1 = 0 or 3. Based on
a comparison with original sieving over all (β1, β2, . . . , βm+1) for 0 ≤ βi ≤ αi with i ≤ m,
and 0 ≤ βm+1 ≤ 3, only restricted values of r are sieved for, efficiently reducing the time
needed for sieving. Therefore, the number of searches will be reduced to about 1/2m+1 of
the original number, where m is the number of prime factors in the standard factorization
of BCa(n).

Floating sieving process

1. Input primes {pi} and nonnegative integers {αi} with 1 ≤ i ≤ m with (p1, p2) = (2, 3)
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(for BCa(n) =
m
∏

i=1

pαi

i ), k (for magnification S = k3 ·
m
∏

i=1

pαi

i ), and L,U (range for

scanning).
2. Input βi with i = 1, . . . ,m+1, where 0 ≤ β1 ≤ α1−1, 0 ≤ β2 ≤ α2−2, 0 ≤ βi ≤ αi/2,

i = 3, . . . ,m, and βm+1 = 0, 3. (candidates for scanning)

3. For each sequence (β1, β2, . . . , βm+1), let r = kβm+1 ·
m
∏

i=1

pβi

i , and a =
m+1
∑

i=1

βi.

4. If L ≤ a ≤ U ,
if −3r2 + S/18r is a perfect square,
output r, x(r) = 3r +

√

−3r2 + S/18r, and y = 3r −
√

−3r2 + S/18r,
return to Step 3.

otherwise, return to Step 3.
Otherwise, return to Step 3.

The choices of L, U and βi are crucial in floating sieving for upper bounds, as properly
chosen values greatly reduce the number of computations. A risk of missing searching targets
is taken; however, it is still worthwhile if performance efficiency is taken into consideration.

Example 9. Based on the floating sieving process, sets of parameters for BCa(22), BCa(30),
BCa(42) and BTa(22) are given in Tables 8–12 in the Appendix. The first rows of these
tables present the bases (p1, p2, . . . , pm). The magnifications among BCa(23), . . . ,BCa(26)
are summarized in Table 4 with the base (p1, p2, . . . , p18) = (2, 3, 5, 7, 11, 13, 17, 19, 31,
37, 43, 61, 67, 73, 79, 109, 139, 157), and the parameters for BCa(23), . . . ,BCa(26) are thus
provided.

BCa(n) additional parameters
BCa(23)

= 33 · BCa(22) r23 = (6, 7, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0)

BCa(24)
= 173 · BCa(23) r24 = (2, 2, 1, 2, 1, 1, 3, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0)

BCa(25)
= 1393 · BCa(23)

r′24 = (2, 2, 3, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0)
r25 = (4, 2, 3, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0)

BCa(26)
= 1393 · BCa(24)
= 173 · BCa(25)

139 · r24
17 · r′24
17 · r′25

Table 4: Parameters of BCa(23),BCa(24),BCa(25),BCa(26)

5 Upper bounds on Ca(43), . . . ,Ca(57), and Ta(23), Ta(24)

To find an additional parameter of an upper bound on Ca(43) starting from BCa(42) by
using sieving process, too much computations are required because BCa(42) has 29 prime

12



Figure 7: Magnifications among BCa(23), BCa(24), BCa(25), BCa(26)

factors. On the other hand, a value k can be a splitting factor of BCa(n) as well as of
BCa(n+h) simultaneously, splitting factors of BCa(30), rather than of BCa(42), tend to be
sought because BCa(30) has 19 prime factors.

First, the parameters for BCa(31),BCa(32),BCa(35),BCa(37),BCa(38), . . ., and finally
BCa(42) are obtained by a sequence of consecutive magnifications (Table 5). Then 15 split-
ting factors of BCa(30), either primes or products of two primes, are provided along with
their additional parameters, as in Table 6. Combining these 15 splitting factors of BCa(30)
and the 42 parameters for BCa(42) enables an upper bound on Ca(43) to be derived. In
addition to an upper bound on Ca(43), upper bounds on Ca(44), . . . ,Ca(57) can be derived
in terms of the magnifications

BCa(42) = Q3 · BCa(30) and k3 · BCa(42) = k3 ·Q3 · BCa(30)

with respect to specific splitting factor k of BCa(30), as in Figs. 10 and 11. A similar
technique can be used to the derive of upper bounds on Ta(23) and Ta(24) from BTa(12) as
in Section 5.3.

5.1 The set of 42 parameters of BCa(42)

The set of 30 parameters of

BCa(30) = 29 ·39 ·59 ·77 ·113 ·136 ·173 ·193 ·311 ·374 ·431 ·613 ·673 ·731 ·793 ·973 ·1093 ·1393 ·1571

is given in Table 9, which yields 30 decompositions. A sequence of magnifications of
BCa(31),BCa(32),BCa(35),BCa(37), . . . ,BCa(42), as shown in Fig. 8, follows, and Table
5 presents their corresponding additional parameters. Notably the base

(p1, p2, . . . , p29)
= (2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 43, 61, 67, 73, 79, 97,

101, 109, 139, 157, 163, 181, 193, 223, 229, 307, 397, 457).

The set of 42 parameters of BCa(42) is given in Tables 10 and 11 with bases (p1, p2, . . . , p29)
in the first rows in the Appendix.
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Figure 8: Magnifications among BCa(30),BCa(31),BCa(32),BCa(35),BCa(37), . . . ,BCa(42)

Figure 9: Magnifications among BCa(35), BCa(36), BCa(37), BCa(38)

5.2 Upper bounds on Ca(43), . . . ,Ca(57)

Upper bounds on Ca(43) can be derived by a two-step strategy as follows:

1. Find a sequence of magnifications of BCa(30), . . . ,BCa(42) (Table 5).
2. Find 15 splitting factors of BCa(30) by floating sieving (Table 6),

starting from BCa(30), and then upper bounds on Ca(44), . . . ,Ca(55) are derived in a se-
quence of magnifications.

Floating sieving process is used to find splitting factors k of BCa(30) with additional

parameter R. Let BCa(30) =
19
∏

i=1

pαi

i , and the corresponding 30 parameters of ri be
19
∏

j=1

p
βi,j

j .

Additional parameter R = kβ20 ·
19
∏

i=1

pβi

i , whose possible βi, i = 1, . . . , 19 are summarized in

Table 7, with β20 = 0 or 3, can be found in the following.
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BCa(n) additional parameters

BCa(31)
= 293 · BCa(30) r31 = (2, 2, 3, 2, 1, 2, 1, 1, 3, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

BCa(32)
= 433 · BCa(31) r32 = (2, 3, 5, 2, 1, 2, 1, 1, 3, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

BCa(35)
= 3973 · 4573 · BCa(32)

r33 = (2, 2, 9, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0)
r34 = (2, 5, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1)
r35 = (4, 2, 7, 3, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

BCa(37)
= 1013 · 2293 · BCa(35)

r36 = (4, 2, 3, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)
r37 = (6, 3, 3, 5, 1, 2, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

BCa(38)
= 1813 · BCa(37) r38 = (2, 5, 5, 3, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1)

BCa(39)
= 1633 · BCa(38) r39 = (2, 2, 3, 5, 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 1, 0, 0, 1)

BCa(40)
= 1933 · BCa(39) r40 = (2, 2, 3, 2, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1)

BCa(41)
= 2233 · BCa(40) r41 = (6, 3, 3, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1)

BCa(42)
= 3073 · BCa(41) r42 = (2, 3, 3, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 3, 1, 1)

Table 5: Magnifications of BCa(30) and their additional parameters

The exponent-sums
19
∑

j=1

βi,j , 1 ≤ i ≤ 30, of the set of 30 parameters

ri =
19
∏

j=1

p
βi,j

j of BCa(30) lie in the interval [21, 30]. Set L = 22 and U = 31. Floating sieving

is performed using possible values of β1, . . . , β19 that are shown in Table 7, and β20 = 0 or 3.

Calculate r = kβ20 ·
19
∏

i=1

pβi

i whenever 22 ≤
20
∑

i=1

βi ≤ 31. Moreover, if −3r2 + k3 ·BCa(30)/18r

is a perfect square, then this r is an additional parameter, denoted by R, of k3 ·BCa(30). It
follows that 15 splitting factors in the form of a prime or a product of two primes of BCa(30),
together with their additional parameters are given in Table 6 with the base

(p1, p2, . . . , p22)
= (2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 61, 67, 73, 79, 97, 109, 139, 157, 503, 1307)

We then show that upper bound on Ca(43) can be derived from a sequence of magni-
fications BCa(30),BCa(31),BCa(32),BCa(35),BCa(36),BCa(38), . . . ,BCa(42). Let ri, i =
1, . . . , 42, be the set of parameters of BCa(42) and let

Q = 29 · 43 · (397 · 457) · 181 · (101 · 229) · 163 · 193 · 223 · 307
= 29 · 43 · 101 · 163 · 181 · 193 · 223 · 229 · 307 · 397 · 457,

as presented in Fig. 10. Then the magnification BCa(42) = Q3 · BCa(30) holds. If kj is
a splitting factor of BCa(30), relative prime with Q, and k3

j · BCa(30) has an additional
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i splitting factors ki additional parameters R
1 487 (4,5,3,2,1,2,1,0,0,1,1,0,1,1,0,1,1,1,1,0,0,0)
2 503 (2,2,3,1,1,2,1,0,0,0,1,0,1,1,0,1,1,1,1,0,3,0)
3 2 · 607 (11,2,3,2,1,2,1,1,0,1,1,0,0,1,1,1,1,1,1,1,0,0)
4 1307 (2,2,3,2,1,2,1,1,0,0,1,0,1,0,0,1,0,1,1,0,0,3)
5 31 · 103 (2,3,3,3,3,2,1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0)
6 3559 (2,7,3,3,1,2,1,1,0,1,1,0,1,1,1,1,1,1,1,0,0,0)
7 4057 (2,2,5,2,1,2,1,0,0,0,2,0,1,1,1,1,1,1,1,1,0,0)
8 4261 (4,2,3,3,1,2,1,1,0,0,2,1,1,1,0,1,1,1,1,1,0,0)
9 4339 (4,2,3,2,1,2,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0,0)
10 4957 (2,5,3,2,1,2,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,0)
11 23 · 283 (2,3,3,1,1,2,1,1,3,0,2,1,1,1,0,1,1,1,1,0,0,0)
12 6661 (2,2,3,2,1,2,1,1,0,1,2,1,1,1,1,1,1,1,1,0,0,0)
13 7489 (2,2,3,2,1,1,1,1,0,0,2,0,1,1,1,1,1,1,1,0,0,0)
14 8353 (4,3,3,3,1,2,1,1,0,0,2,0,1,1,1,1,1,1,1,0,0,0)
15 9043 (2,2,3,2,1,2,1,1,0,1,2,0,1,1,0,1,1,1,1,1,0,0)

Table 6: Splitting factors of BCa(30) and corresponding additional parameters

pi 2 3 5 7 11 13 17 19 31 37 43 61 67 73 79 97 109 139 157
αi 9 9 9 7 3 6 3 3 1 4 1 3 3 1 3 3 3 3 1

2 2 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
4 3 5 1 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1

βi 6 5 9 2 4 2 3 3
8 7 3

5

Table 7: Possible βi for parameter r of BCa(30)

parameter Rj, then a set of 43 parameters of k3
j ·BCa(42) = Q3 · k3

j ·BCa(30) is given below:

kj · ri, i = 1, . . . , 42, because of k3
j · BCa(42) , and

Q ·Rj, because of Q3 · (k3
j · BCa(30)).

Hence, the set of 43 parameters of k3
j ·BCa(42) and an upper bound of Ca(43) are obtained.

Example 10. For k1 = 487, all parameters ri with i = 1, . . . , 42 of BCa(42) are relative
prime to 487. The magnification BCa(42) = Q3 · BCa(30) holds. Further let

S = 4873 · BCa(42), and

R = 24 · 35 · 53 · 72 · 11 · 132 · 17 · 31 · 37 · 61 · 67 · 79 · 97 · 109 · 139 · 4870,
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then R is an additional parameter of 4873 · BCa(30). Clearly, the 42 parameters of S are
487 · ri, i = 1, . . . , 42, because S = 4873 · BCa(42), and an additional parameter r43 = Q ·R,
because S = Q3 · (4873 ·BCa(30)). Notice that r43 differs from each of 487 · ri, i = 1, . . . , 42.
Therefore, 4873 ·BCa(42) has 43 parameters, so 4873 ·BCa(42) is an upper bound on Ca(43),
denoted by SCa(43).

Upper bounds on Ca(n) with 44 ≤ n ≤ 57 can be similarly derived, and are denoted by
SCa(n) with 44 ≤ n ≤ 57, respectively.

Figure 10: Magnifications among BCa(30), 4873 × BCa(30), BCa(42), SCa(43)

Figure 11: SCa(n) with 43 ≤ n ≤ 57 derived from BCa(30) by magnifications

Figure 12: Magnifications among BCa(42), SCa(43), . . . , SCa(57)

The above mentioned upper bounds are summarized in Theorem 11. Among them,
SCa(43) and SCa(44) were included in OEIS, August 2014.
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Theorem 11.

Ca(43) ≤ SCa(43) = 4873 · BCa(42)
Ca(44) ≤ SCa(44) = 5033 · SCa(43)
Ca(45) ≤ SCa(45) = (2 · 607)3 · SCa(44)
Ca(46) ≤ SCa(46) = 13073 · SCa(45)
Ca(47) ≤ SCa(47) = (31 · 103)3 · SCa(46)
Ca(48) ≤ SCa(48) = 35593 · SCa(47)
Ca(49) ≤ SCa(49) = 40573 · SCa(48)
Ca(50) ≤ SCa(50) = 42613 · SCa(49)
Ca(51) ≤ SCa(51) = 43393 · SCa(50)
Ca(52) ≤ SCa(52) = 49573 · SCa(51)
Ca(53) ≤ SCa(53) = (23 · 283)3 · SCa(52)
Ca(54) ≤ SCa(54) = 66613 · SCa(53)
Ca(55) ≤ SCa(55) = 74893 · SCa(54)
Ca(56) ≤ SCa(56) = 83533 · SCa(55)
Ca(57) ≤ SCa(57) = 90433 · SCa(56)

Remark: As pointed by Boyer that 673 is a splitting factor for
BCa(30) which is missing in Table 6, we confirm that

r = 22 · 32 · 53 · 73 · 11 · 132 · 17 · 19 · 37 · 61 · 673 · 79 · 97 · 109 · 139 · 6730

is its additional parameter. As a consequence, SCa(45), . . . , SCa(57) in Theorem 11 can be
improved easily by shifting the splitting factors properly.

5.3 Upper bounds on Ta(23) and Ta(24)

The strategy that was used in Section 5.2 can be applied to search for upper bounds on Ta(23)
and Ta(24) in terms of two splitting factors of BTa(12) and a sequence of magnifications
BTa(12), . . . ,BTa(16), BTa(19), BTa(21) and BTa(22) in the order.

By floating sieving, 47, 627(= 97×491) and 91, 037(= 59×1543) are two splitting factors
of BTa(12) with additional parameters

R1 = 22 · 3 · 5 · 7 · 132 · 17 · 19 · 73 · 79 · 970 · 109 · 139 · 4913,
R2 = 22 · 3 · 5 · 72 · 132 · 17 · 19 · 593 · 79 · 97 · 109 · 139 · 157 · 15430

respectively. Let

Q′ = (3 · 61) · 397 · 503 · (2 · 607) · (52 · 37 · 181 · 457 · 521) · 4261 · (127 · 197) · (11 · 31 · 103)
= 2 · 3 · 52 · 11 · 31 · 37 · 61 · 103 · 127 · 181 · 197 · 397 · 457 · 503 · 521 · 607 · 4261.

The magnification BTa(22) = Q′3 · BTa(12) holds. Then

(97 · 491)3 · BTa(22) = (97 · 491)3 ·Q′3 · BTa(12)
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has 22 parameters, which are 97 · 491 · ri, i = 1, . . . , 22, where r1, . . . , r22 are the parameters
of BTa(22) as shown in Table 12, together with an additional parameter

Q′ · R1 = 23 · 32 · 53 · 7 · 11 · 132 · 171 · 191 · 31 · 37 · 61 · 73 · 79 · 103 · 109 · 127 · 139 · 181 · 197
·397 · 457 · 4913 · 503 · 521 · 607 · 4261,

which differs from the previous 22 parameters, so (97 · 491)3 · BTa(22) has 23 parameters,
and (97 · 491)3 · BTa(22) gives an upper bound on Ta(23), denoted by STa(23),

STa(23) = (97 · 491)3 · BTa(22).

Similarly,
STa(24) = (59 · 1543)3 · STa(23)

is an upper bound on Ta(24). Theorem 12 summarizes the above results. Both upper bounds
STa(23) and STa(24) were included in OEIS, October 2014.

Theorem 12.

Ta(23) ≤ STa(23) = 973 · 4913 · BTa(22),
Ta(24) ≤ STa(24) = 593 · 15433 · STa(23).
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Figure 13: Magnifications among Ta(5), Ta(6), BTa(7), . . . ,BTa(22), STa(23), STa(24)
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Figure 14: Magnifications among BCa(19),BCa(21) . . . ,BCa(42), SCa(43), . . . , SCa(57)
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2 3 5 7 11 13 19 31 37 43 61 67 73 79 109 157 ai
r1 2 1 1 0 3 1 1 1 1 0 1 1 0 1 1 0 15
r2 2 1 1 1 1 1 1 0 2 0 1 0 1 1 1 0 14
r3 2 1 1 1 1 1 1 1 2 0 1 1 0 0 1 1 15
r4 2 1 1 1 1 1 3 0 1 0 1 1 1 0 1 0 15
r5 2 1 1 1 1 3 1 0 2 1 1 1 0 1 0 0 16
r6 2 1 1 2 1 1 1 0 0 0 1 1 0 1 1 0 13
r7 2 1 1 2 1 1 1 0 1 1 1 1 0 1 1 0 15
r8 2 1 1 2 1 1 1 1 1 0 1 0 0 1 1 1 15
r9 2 1 1 4 1 3 1 0 0 0 1 1 0 1 1 0 17
r10 2 1 3 1 1 1 1 0 1 1 1 1 0 1 0 1 16
r11 2 2 1 0 1 1 1 0 2 0 1 1 0 1 1 1 15
r12 2 2 1 2 1 1 1 0 1 1 1 1 1 1 0 0 16
r13 2 4 1 1 1 1 0 1 2 0 1 1 0 1 1 0 17
r14 4 1 1 1 3 1 1 0 1 0 0 1 0 1 1 1 17
r15 4 1 1 2 1 0 1 1 2 0 1 1 0 1 1 0 17
r16 4 2 1 1 1 0 1 0 1 1 1 1 0 3 0 0 17
r17 4 2 1 1 1 1 1 0 1 1 1 1 0 1 1 0 17
r18 4 2 1 2 1 0 1 0 2 0 0 1 1 1 1 0 17
r19 6 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 18
r20 6 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 18
r21 8 1 1 2 1 1 1 0 2 0 1 0 0 1 1 0 20
r22 8 1 3 1 1 1 1 0 1 0 1 1 0 1 1 0 21

Table 8: 22 parameters for BCa(22)
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2 3 5 7 11 13 17 19 31 37 43 61 67 73 79 97 109 139 157
r1 2 2 3 1 3 2 1 1 1 1 0 1 1 0 1 1 1 1 0
r2 2 2 3 2 1 2 1 1 0 2 0 1 0 1 1 1 1 1 0
r3 2 2 3 2 1 2 1 1 1 2 0 1 1 0 0 1 1 1 1
r4 2 2 3 2 1 2 1 3 0 1 0 1 1 1 0 1 1 1 0
r5 2 2 3 2 1 4 1 1 0 2 1 1 1 0 1 1 0 1 0
r6 2 2 3 3 1 2 1 1 0 0 0 1 1 0 1 1 1 1 0
r7 2 2 3 3 1 2 1 1 0 1 1 1 1 0 1 1 1 1 0
r8 2 2 3 3 1 2 1 1 1 1 0 1 0 0 1 1 1 1 1
r9 2 2 3 3 1 2 3 1 0 1 0 1 1 0 1 1 1 1 0
r10 2 2 3 5 1 4 1 1 0 0 0 1 1 0 1 1 1 1 0
r11 2 2 5 2 1 2 1 1 0 1 1 1 1 0 1 1 0 1 1
r12 2 2 5 3 1 2 1 1 1 1 1 1 1 0 1 1 1 0 0
r13 2 3 3 1 1 2 1 1 0 2 0 1 1 0 1 1 1 1 1
r14 2 3 3 3 1 2 1 1 0 1 0 1 1 1 1 0 1 1 1
r15 2 3 3 3 1 2 1 1 0 1 1 1 1 1 1 1 0 1 0
r16 2 3 9 1 1 1 1 1 0 2 1 1 0 0 1 1 1 0 0
r17 2 5 3 2 1 2 1 0 1 2 0 1 1 0 1 1 1 1 0
r18 2 2 3 2 1 0 1 1 0 2 0 1 1 0 1 3 1 1 0
r19 4 2 3 2 3 2 1 1 0 1 0 0 1 0 1 1 1 1 1
r20 4 2 3 3 1 1 1 1 1 2 0 1 1 0 1 1 1 1 0
r21 4 2 5 2 1 2 1 1 0 1 1 1 1 1 1 1 1 0 0
r22 4 3 3 2 1 1 1 1 0 1 1 1 1 0 3 1 0 1 0
r23 4 3 3 2 1 2 1 1 0 1 1 1 1 0 1 1 1 1 0
r24 4 3 3 3 1 1 1 1 0 2 0 0 1 1 1 1 1 1 0
r25 6 2 3 2 1 2 1 1 0 1 0 1 1 1 1 1 1 1 0
r26 6 2 3 2 1 2 1 1 1 1 1 0 1 0 1 1 1 1 0
r27 6 7 3 2 1 2 1 1 1 1 0 0 1 0 1 1 1 1 0
r28 8 2 3 0 1 4 1 1 0 1 0 1 1 1 1 0 1 1 0
r29 8 2 3 3 1 2 1 1 0 2 0 1 0 0 1 1 1 1 0
r30 8 2 5 2 1 2 1 1 0 1 0 1 1 0 1 1 1 1 0

Table 9: 30 parameters for BCa(30)

23



2 3 5 7 11 13 17 19 29 31 37 43 61 67 73 79 97 101 109 139 157 163 181 193 223 229 307 397 457

r1 2 2 3 1 3 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r2 2 2 3 2 1 2 1 1 1 0 2 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r3 2 2 3 2 1 2 1 1 1 1 2 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
r4 2 2 3 2 1 2 1 3 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1
r5 2 2 3 2 1 4 1 1 1 0 2 2 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1
r6 2 2 3 3 1 2 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r7 2 2 3 3 1 2 1 1 1 0 1 2 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r8 2 2 3 3 1 2 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r9 2 2 3 3 1 2 3 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r10 2 2 3 5 1 4 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r11 2 2 5 2 1 2 1 1 1 0 1 2 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
r12 2 2 5 3 1 2 1 1 1 1 1 2 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1
r13 2 3 3 1 1 2 1 1 1 0 2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r14 2 3 3 3 1 2 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
r15 2 3 3 3 1 2 1 1 1 0 1 2 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
r16 2 3 9 1 1 1 1 1 1 0 2 2 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1
r17 2 5 3 2 1 2 1 0 1 1 2 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r18 4 2 3 2 3 2 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r19 4 2 3 3 1 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r20 4 2 5 2 1 2 1 1 1 0 1 2 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
r21 4 3 3 2 1 1 1 1 1 0 1 2 1 1 0 3 1 1 0 1 0 1 1 1 1 1 1 1 1
r22 4 3 3 2 1 2 1 1 1 0 1 2 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

Table 10: 42 parameters for BCa(42) (part a)
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2 3 5 7 11 13 17 19 29 31 37 43 61 67 73 79 97 101 109 139 157 163 181 193 223 229 307 397 457

r23 4 3 3 3 1 1 1 1 1 0 2 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r24 6 2 3 2 1 2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r25 6 2 3 2 1 2 1 1 1 1 1 2 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r26 6 7 3 2 1 2 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r27 8 2 3 0 1 4 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
r28 8 2 3 3 1 2 1 1 1 0 2 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r29 8 2 5 2 1 2 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r30 2 2 3 2 1 0 1 1 1 0 2 1 1 1 0 1 3 1 1 1 0 1 1 1 1 1 1 1 1
r31 2 2 3 2 1 2 1 1 3 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r32 2 3 5 2 1 2 1 1 3 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
r33 2 2 9 2 1 2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
r34 2 5 3 1 1 2 1 1 1 1 1 2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
r35 4 2 7 3 1 2 1 1 1 1 2 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0
r36 4 2 3 0 1 2 1 1 1 0 1 1 1 1 0 1 1 3 1 1 1 1 1 1 1 0 1 1 1
r37 6 3 3 5 1 2 1 1 1 0 2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1
r38 2 5 5 3 1 2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1
r39 2 2 3 5 1 2 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 3 0 1 1 1 1 0 1
r40 2 2 3 2 1 2 1 1 1 0 1 2 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1
r41 6 3 3 2 1 2 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
r42 2 3 3 2 1 2 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 3 1 1

Table 11: 42 parameters for BCa(42) (part b)
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2 3 5 7 11 13 17 19 31 37 43 61 73 79 97 103 109 127 139 157 181 197 397 457 503 521 607

r1 3 2 9 1 1 2 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1
r2 3 2 3 1 1 4 1 1 1 2 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1
r3 3 3 7 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 3 1
r4 3 3 3 0 1 2 1 1 1 2 1 1 0 1 1 1 0 0 1 0 1 3 1 1 1 1 1
r5 3 3 3 2 3 2 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
r6 3 2 3 1 1 0 1 1 1 2 0 1 0 1 3 1 1 1 1 0 1 1 1 1 1 1 1
r7 3 2 3 0 1 2 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 3 1 1
r8 3 2 3 1 1 2 1 1 2 2 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
r9 3 2 5 2 1 2 1 1 2 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1
r10 3 3 3 0 1 2 1 1 1 2 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r11 3 2 3 2 1 2 3 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
r12 3 3 3 2 1 2 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
r13 3 5 3 0 1 2 1 1 2 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
r14 3 5 3 1 1 2 1 0 2 2 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
r15 3 5 5 2 1 2 1 1 2 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
r16 5 3 3 1 1 1 1 1 1 1 1 1 0 3 1 1 0 1 1 0 1 1 1 1 1 1 1
r17 5 2 5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
r18 5 2 3 2 1 1 1 1 2 2 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
r19 5 2 3 2 1 2 1 1 1 2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r20 7 7 3 1 1 2 1 1 2 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
r21 9 2 5 1 1 2 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
r22 11 2 3 1 1 2 1 1 2 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 12: 22 parameters for BTa(22)
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