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Abstract

Kovič, and implicitly Ufnarovski and Åhlander, defined a notion of arithmetic par-

tial derivative. We generalize the definition for rational numbers and study several

arithmetic partial differential equations of the first and second order. For some equa-

tions, we give a complete solution, and for others, we extend previously known results.

For example, we determine under which conditions two consecutive partial derivations

are commutative.

1 Introduction

Let the symbols Z, Q, and R have their ordinary meaning. We also write N = {0, 1, 2, . . . },
Z+ = {1, 2, 3, . . . }, and P for the set of primes.

Let a ∈ Q \ {0}. There exists a unique sequence of integers (with only finitely many
nonzero terms)

(νp(a))p∈P
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such that

a = (sgn a)
∏

p∈P

pνp(a), (1)

where sgn denotes the sign function. If νp(a) 6= 0, we say that a is divisible by p. We use
the notation p | a (respectively, p ∤ a) when a is divisible by p (respectively, a is not divisible
by p). The formula (1) is also valid for a = 0 as we define νp(0) = 0 for all p ∈ P.

We define the arithmetic derivative of a ∈ Q \ {0} by

a′ = a
∑

p∈P

νp(a)

p
=

∑

p∈P

a′p,

where

a′p =
νp(a)

p
a

is the arithmetic partial derivative of a with respect to p. In particular, (±1)′ = (±1)′p = 0
for all p ∈ P. We also set 0′ = 0 and 0′p = 0 for all p ∈ P. Further, we define the second

arithmetic partial derivative of a ∈ Q with respect to p ∈ P and q ∈ P to be

a′′pq = (a′p)
′

q.

If a ∈ Q \ {0}, there are unique α ∈ Z and ã ∈ Q \ {0} such that

a = ãpα (2)

and p ∤ ã; in fact, α = νp(a). Then
a′p = ãαpα−1.

For the second partial derivative,

a′′pp = ãα(α− 1)pα−2

if and only if p ∤ α.
The starting point for the present study was set by Barbeau [1], who defined the arith-

metic derivative for a ∈ N. Ufnarovski and Åhlander [6] generalized this concept for a ∈ Q.
Among other things, they solved certain arithmetic differential equations. The present au-
thors and Mattila [3] studied whether the arithmetic derivative can be defined on a non-
unique factorization domain. Mistri and Pandey [5] defined the derivative of an ideal (“ideal
derivative”) on a number ring and studied its connections with the arithmetic derivative.
Among other things, they solved certain ideal differential equations.

According to our knowledge, the idea of the arithmetic partial derivative is due to
Kovič [4] for a ∈ Z+; yet it was already implicitly used by Ufnarovski and Åhlander. Our
definition extends this notion to the set of rational numbers.

The question when

a′′pq = a′′qp (3)

2



arises. Kovič gave a sufficient condition for a ∈ Z+ to satisfy this. In Section 4, we will solve
the arithmetic partial differential equation x′′

pq = x′′
qp, obtaining a necessary and sufficient

condition for a ∈ Q to satisfy (3). We will also solve several other partial differential
equations: x′

p = axn (n ∈ Z) in Sections 2 and 3, and, extending Kovič’s results, the
equations x′

p = x′
q, x

′′
pq = x′′

qp, x
′′
pp = x, and x′′

pp + x′′
qq = x in Section 4. In Section 5, we

will discuss some examples. We will complete our paper by investigating the cardinality and
density of solution sets in Section 6 and by making a few concluding remarks in Section 7.

2 The equation x′p = a

Given p ∈ P and a ∈ Q, we consider the equation

x′

p = a, (4)

where x ∈ Q is unknown. For a = 0, this holds if and only if νp(x) = 0, i.e., p ∤ x.
Assuming that a 6= 0, we factorize a = ãpα as in (2). Because νp(ã) = 0, we have

(ãx)′p = ãx′

p.

So, the equation

x′

p = pα (5)

is equivalent to
(ãx)′p = a.

We can therefore solve (4) by solving (5) and multiplying the solution by ã.
Let

x = x̃pξ, (6)

where
ξ ∈ Z, p ∤ x̃ ∈ Q \ {0}.

Then (5) is equivalent to
x̃ξpξ−1 = pα.

Here ξ 6= 0, since otherwise 0 = pα. Therefore,

x̃ =
pα−ξ+1

ξ
(7)

under the condition

p ∤ x̃. (8)

This condition is satisfied if and only if

ξ = βpα−ξ+1, (9)
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where

p ∤ β ∈ Z \ {0}. (10)

We determine the applicable values of ξ. Since ξ ∈ Z, (10) implies that α− ξ + 1 ≥ 0, i.e.,

ξ ≤ α + 1.

Case 1. α ≥ 0. We study (7) under (8).
Subcase 1a. 1 ≤ ξ ≤ α. We go through all possible values of ξ by writing

ξ = α− i, i = 0, 1, . . . , α− 1;

then (9) reads

α− i = βpi+1. (11)

(Actually β ∈ Z+ there, but we also want to cover the case α < 0.) We therefore obtain

x = x̃pξ =
pα−ξ+1

ξ
pξ =

pα−(α−i)+1

α− i
pα−i =

pα+1

α− i
. (12)

Given i ∈ {0, 1, . . . , α − 1}, this is a solution of (5) if and only if i satisfies (11). Denoting
by d ‖ m that d | m and gcd (m,m/d) = 1, we rewrite (11) as

pi+1 ‖ (α− i).

Subcase 1b. ξ = α + 1. Then x̃ = 1/ξ satisfies (8) if and only if p ∤ ξ. Thus,

x = x̃pα+1 =
pα+1

α + 1

is a solution of (5) if and only if p ∤ (α + 1).
Subcase 1c. ξ ≤ −1. Then γ = −ξ ≥ 1, and

x̃ =
pα−ξ+1

ξ
= −pα+γ+1

γ
.

Clearly, pα+γ+1 > γ, and thus pα+γ+1 ∤ γ. Therefore, p | x̃, and no new solution is obtained.

Case 2. α < 0. For ξ ≤ α, we proceed as in Subcase 1a. Again, (8) holds if and only if
(9) is satisfied. In order to go through all possible values of ξ, we write

ξ = α− i, i = 0, 1, 2, . . . ;

then (11) is equivalent to (9). Given i ∈ N, (12) is a solution if and only if i satisfies (11).
There are only finitely many such i’s, because pi+1 ∦ (α− i) when i is large. For ξ = α + 1,
proceed as in Subcase 1b.

We summarize the above reasoning in the following theorem.
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Theorem 1. Let p ∈ P and α ∈ Z. We write I0 = {0, 1, . . . , α − 1} for α > 0, I0 = ∅ for

α = 0, and I0 = N for α < 0. Let also

I =
{

i ∈ I0 : pi+1 ‖ (α− i)
}

.

Then

x =
pα+1

α− i
(13)

is a solution of

x′

p = pα

for each i ∈ I. If p ∤ (α + 1), then also

x =
pα+1

α + 1
(14)

is a solution. All solutions are obtained in this way. In particular (α = 0), the only solution

of x′
p = 1 is x = p. The equation

x′

p = 0

holds if and only if p ∤ x.

Next, let us take a closer look at I. In the following, we assume that α > 0. A simple
modification applies to α < 0. The case α = 0 does not require any further work.

Let

α = np+ r, 0 ≤ r < p. (15)

Then the solution candidates (13) are

x =
pnp+r+1

np+ r − i
, i = 0, 1, . . . , np+ r − 1.

To study the validity of (11), we write

i = mp+ k,

where m = 0, 1, . . . , n. If m < n, then k = 0, 1, . . . , p − 1, and if m = n, then k =
0, 1, . . . , r − 1. (So, here m and k are variables while p, n, and r are constants.) Now

α− i = np+ r − (mp+ k) = (n−m)p+ r − k.

By (11), p must divide (n−m)p+ r − k. Hence, r = k, and

α− i = (n−m)p.

It is convenient to replace β with h in (11); then

(n−m)p = hpmp+r+1. (16)
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Since h ∈ Z+, m = n cannot hold; Thus, m < n, and the candidates are of the form

x =
pnp+r+1

(n−m)p
=

pnp+r+1

hpmp+r+1
=

p(n−m)p

h
.

They are solutions if and only if m and h satisfy (16), i.e.,

n−m = hpmp+r. (17)

It turns out that the cases m = 0 and m = n − 1 are easy to solve, but the case
1 ≤ m ≤ n− 2 is remarkably more difficult. Namely, if m = 0, then (17) implies that pr | n
and pr+1 ∤ n. Then h = n/pr, and

x =
1

h
pnp =

pr

n
pnp =

pα

n

is a solution. In the case of r = 0, we can eliminate n by writing

x =
pnp

n
=

pnp+1

np
=

pα+1

α
.

For m = n − 1, (17) implies that hp(n−1)p+r = 1, which is impossible unless n = 1, r = 0,
and h = 1. Then α = p, see Example 17.

If 1 ≤ m ≤ n− 2, it seems difficult to find explicit solutions in general. In this paper, we
only note that, if n < pp and m > 0, then

hpmp = h(pp)m ≥ pp > n.

Hence (17) does not hold, and no solution is obtained.
We also record that the candidate (14),

x =
pnp+r+1

np+ r + 1
,

is a solution if and only if p ∤ (np+ r + 1), i.e., r 6= p− 1.
Including the case α < 0, we now obtain the following summary.

Theorem 2. Let p ∈ P and α ∈ Z \ {0}. Express α as in (15). If h ∈ Z \ {0} and m ∈ Z
satisfy (17) and

h > 0 and 0 ≤ m ≤ n− 1 for α > 0, (18)

h < 0 and m ≥ 0 for α < 0,

then

x =
p(n−m)p

h
(19)

is a solution of

x′

p = pα.

If r 6= p− 1, then also

x =
pα+1

α + 1
(20)

is a solution. All solutions are obtained in this way.
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3 The equation x′p = axn

Given p ∈ P, a ∈ Q, and n ∈ Z, we now study the equation

x′

p = axn.

If n ≥ 1, then it has a trivial solution x = 0. We have already settled the cases a = 0 and
n = 0 in Theorem 1. Next, we consider the case n = 1.

Theorem 3. Let p ∈ P and a ∈ Q. The equation

x′

p = ax

has a nontrivial solution if and only if ap ∈ Z. Then all nontrivial solutions are of the form

x = cpap,

where p ∤ c ∈ Q \ {0}. Conversely, all numbers of this form are nontrivial solutions.

Proof. Let x = x̃pξ be as in (6). Then

x′

p = ax ⇐⇒ x̃ξpξ−1 = ax̃pξ ⇐⇒ ξ = ap,

and the theorem follows (as we write c = x̃).

Corollary 4. Let p1, p2, . . . , pm ∈ P be different, and let a1, a2, . . . , am ∈ Q. The system of

equations

x′

p1
= a1x, x′

p2
= a2x, . . . , x′

pm
= amx

has a nontrivial solution if and only if a1p1, a2p2, . . . , ampm ∈ Z. All nontrivial solutions are
then of the form

x = cpa1p11 pa2p22 · · · pampm
m ,

where p1, p2, . . . , pm ∤ c ∈ Q \ {0}. Conversely, all numbers of this form are nontrivial

solutions.

Proof. The claim follows by induction.

We tackle the remaining values of n in the following theorem. Therein “nontrivial” is
relevant only for n ≥ 2 because x = 0 is not a solution whenever n ≤ −1.

Theorem 5. Let p ∈ P, a ∈ Q \ {0}, and n ∈ Z \ {0, 1}. The equation

x′

p = axn (21)

has a nontrivial solution if and only if the following conditions are satisfied:

(i) There is ξ ∈ Z \ {0} such that

νp(ξ) = νp(a) + (n− 1)ξ + 1 (22)
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and

νq(ξ)− νq(a)

n− 1
∈ Z (23)

for all q ∈ P \ {p}.
(ii) For odd n, sgn ξ = sgn a.

Then all nontrivial solutions are of the form

x =
( ξ

ap

)
1

n−1

, (24)

where ξ satisfies (i) and (ii). Conversely, all numbers of this form are nontrivial solutions.

Proof. To solve (21), we write again x = x̃pξ as in (6). Then ξ 6= 0 because x = x̃ is not a
solution. Since

x′

p = axn ⇐⇒ x̃ξpξ−1 = ax̃npnξ ⇐⇒ ξ = ax̃n−1p(n−1)ξ+1,

the equation

ξ = ax̃n−1p(n−1)ξ+1 (25)

is equivalent to (21).
If ξ satisfies (i) and (ii), our task is to find x̃ satisfying (25), i.e.,

x̃n−1 =
ξ

ap(n−1)ξ+1
=: y.

By (i), (n− 1) | νq(y) for all q ∈ P. By (ii), y > 0 if n is odd. Therefore,

x̃ = y
1

n−1 ∈ Q \ {0},

and

x = x̃pξ =
( ξ

ap(n−1)ξ+1

)
1

n−1

pξ =
( ξ

ap

)
1

n−1

is a nontrivial solution of (21).
Conversely, if x satisfies (21), then (25) holds. Hence,

νp(ξ) = νp(a) + (n− 1)ξ + 1,

i.e., (22) follows. For q ∈ P \ {p},

νq(ξ) = νq(a) + (n− 1)νq(x̃),

and

νq(x̃) =
νq(ξ)− νq(a)

n− 1
.

Since νq(x̃) ∈ Z, (23) follows. If n is odd, then x̃n−1 > 0. Hence, by (25), ξ and a have the
same signs, which verifies (ii).
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Corollary 6. Let p ∈ P, p ∤ a ∈ Q \ {0}, and n ∈ Z \ {0, 1}. The equation

x′

p = axn

has a nontrivial solution if and only if n = 2. The solution is

x = − 1

ap
. (26)

Proof. By Theorem 5,

x =
( ξ

ap

)
1

n−1

, (27)

where ξ ∈ Z \ {0} satisfies (i) and (ii). Let

ξ = ξ̃pγ, (28)

where

γ ∈ N, p ∤ ξ̃ ∈ Z \ {0}. (29)

Then (22) reduces to
γ = (n− 1)ξ̃pγ + 1

or, equivalently,

ξ̃ =
γ − 1

(n− 1)pγ
.

To complete the proof, we study which values of γ apply.

Case 1. γ = 0. Then ξ̃ = −(n − 1)−1 ∈ Z if and only if n − 1 = ±1. Since n 6= 0, 1,
necessarily n = 2. Hence, ξ̃ = −1 implying also ξ = −1. To check (23), now

νq(ξ)− νq(a)

n− 1
=

0− νq(a)

2− 1
= −νq(a) ∈ Z

for all q ∈ P.

Case 2. γ = 1. Then ξ̃ = 0, contradicting (29).

Case 3. γ ≥ 2. Then
|n− 1|pγ ≥ pγ > γ − 1 > 0,

so 0 < |ξ̃| < 1, again contradicting (29).

Substituting n = 2 and ξ = −1 in (27) yields (26).

Corollary 7. Let p ∈ P \ {2} and n ∈ Z \ {0, 1}. The equation

x′

p = pxn
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has a nontrivial solution if and only if n = 2 or n = −1. The solution is

x = − 2

p2

in the first-mentioned case and

x = p (30)

in the second one. For p = 2, only (30) holds.

Proof. With the above notation, (22) reads γ = 1 + (n− 1)ξ̃pγ + 1, i.e.,

ξ̃ =
γ − 2

(n− 1)pγ
.

Case 1. γ = 0. Then ξ̃ = −2(n − 1)−1 ∈ Z if and only if n − 1 = ±1 or n − 1 = ±2.
Since n 6= 0, 1, necessarily n = 2, n = 3, or n = −1. We have ξ̃ = −2 (for p 6= 2), ξ̃ = −1,
and ξ̃ = 1, respectively. Further, ξ = ξ̃. The validity of (23) is easily verified. However, (ii)
in Theorem 5 is violated for n = 3.

Case 2. γ = 1. Then

ξ̃ = − 1

(n− 1)p
/∈ Z.

Case 3. γ = 2. As Case 2 in the previous proof.

Case 4. γ ≥ 3. As Case 3 in the previous proof.

Thus, n = 2, ξ = −2 (for p 6= 2), and n = −1, ξ = 1 remain. Substituting them in (24)
yields the claims of the corollary.

4 Equations involving x′p and x′q or their derivatives

In this section, we extend Kovič’s results from x ∈ Z+ to x ∈ Q (and revise some of them).
We begin by [4, Proposition 34].

Theorem 8. Let p, q ∈ P, p 6= q. All nontrivial solutions of

x′

p = x′

q (31)

are of the form

x = cpkpqkq,

where

k ∈ Z, p, q ∤ c ∈ Q \ {0}.
Conversely, all numbers of this form are nontrivial solutions.
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Proof. Let

x = x̃pξqη, (32)

where
ξ, η ∈ Z, p, q ∤ x̃ ∈ Q \ {0}.

Then (31) is equivalent to
x̃ξpξ−1qη = x̃ηpξqη−1,

i.e.,

ξq = ηp. (33)

Hence, p | ξ, implying that ξ = kp for some k ∈ Z \ {0}. Similarly, η = hq for some
h ∈ Z \ {0}. Because kpq = hqp by (33), we have h = k, and the theorem follows (as we
write c = x̃).

Corollary 9. Let p1, p2, . . . , pm ∈ P be different. Then all nontrivial solutions of

x′

p1
= x′

p2
= · · · = x′

pm

are of the form

x = cpkp11 pkp22 · · · pkpmm ,

where k ∈ Z and p1, p2, . . . , pm ∤ c ∈ Q \ {0}. Conversely, all numbers of this form are

nontrivial solutions.

Proof. The claim follows by induction.

Let p, q ∈ P. Kovič [4, Proposition 33] proved for a ∈ Z+ that if gcd (νp(a), q) =
gcd (νq(a), p) = 1, then

a′′pq = a′′qp. (34)

We next show for a ∈ Q that (34) holds if and only if

νq(νp(a))νp(a) = νp(νq(a))νq(a).

Theorem 10. Let p, q ∈ P, p 6= q. All nontrivial solutions of

x′′

pq = x′′

qp (35)

are of the form

x = cphqk,

where

h, k ∈ Z, p, q ∤ c ∈ Q \ {0}
and

hνq(h) = kνp(k).

Conversely, all numbers of this form are nontrivial solutions.
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Proof. Let x be as in (32) and

ξ = ξ̃pαqβ, η = η̃pγqδ,

where
α, β, γ, δ ∈ N, p, q ∤ ξ̃, η̃ ∈ Z \ {0}.

Then
x′

p = x̃ξpξ−1qη = x̃ξ̃pαqβpξ−1qη = x̃ξ̃pξ+α−1qη+β

and

x′′

pq = x̃ξ̃(η + β)pξ+α−1qη+β−1 = x̃ξ̃(η̃pγqδ + β)pξ+α−1qη+β−1 =

x̃ξ̃η̃pξ+α+γ−1qη+β+δ−1 + x̃ξ̃βpξ+α−1qη+β−1,

and similarly
x′′

qp = x̃ξ̃η̃pξ+α+γ−1qη+β+δ−1 + x̃η̃γpξ+γ−1qη+δ−1.

Therefore, (35) holds if and only if

ξ̃βpξ+α−1qη+β−1 = η̃γpξ+γ−1qη+δ−1.

Substituting ξ̃ = ξp−αq−β and η̃ = ηp−γq−δ, we obtain

ξβ = ηγ,

and the theorem follows (as we write c = x̃, h = ξ, k = η, νq(h) = β, νp(k) = γ).

Next, we extend [4, Proposition 35(i)]. (In this proposition, n = ppkc should actually
read n = ppc.)

Theorem 11. Let p ∈ P. All nontrivial solutions of

x′′

pp = x (36)

are of the form

x = cp±p, (37)

where p ∤ c ∈ Q \ {0}. Conversely, all numbers of this form are nontrivial solutions.

Proof. Let x = x̃pξ as in (6). Also, let ξ = ξ̃pγ as in (28). Then

x′

p = x̃ξpξ−1 = x̃ξ̃pξ+γ−1

and

x′′

pp = x̃ξ̃(ξ + γ − 1)pξ+γ−2 = xp−ξ ξ̃(ξ̃pγ + γ − 1)pξ+γ−2 = xξ̃pγ−2(ξ̃pγ + γ − 1). (38)

Therefore, (36) is equivalent to

ξ̃pγ(ξ̃pγ + γ − 1) = p2 (39)
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(or x = 0). Since ξ̃ | p2 but p ∤ ξ̃, necessarily ξ̃ = ±1 and (39) reduces to

pγ[pγ ± (γ − 1)] = p2.

If γ = 0, then 1 ∓ 1 = p2, which is impossible. If γ = 2, then p = 0 or p =
√
2, which is

again impossible. If γ ≥ 3, then p3 | p2; this is also impossible. But γ = 1 works, giving us
ξ = ±p. Writing c = x̃, we obtain (37).

Let p, q ∈ P, p 6= q. According to Kovič [4, Proposition 35(iii)], the only integer solutions
of x′′

pp + x′′
qq = x are x = cpp and x = cqq, where gcd (c, pq) = 1. We extend this theorem

to Q, discovering that other integer solutions also exist. The question about the complete
solution, however, remains open.

Theorem 12. Let p, q ∈ P, p 6= q. If

x ∈ {cp±p, cq±q, cp±pq, cpq±q},

where p, q ∤ c ∈ Q, then

x′′

pp + x′′

qq = x.

Proof. A simple calculation.

Finally, we extend [4, Proposition 35(ii)]. (The proof of this proposition is incorrect in
[4]. For example, (epe−1c)′p = e(e− 1)pe−2c is not generally valid because e may be divisible
by p.)

Theorem 13. Let p ∈ P, α ∈ Z+, and c ∈ Q. If α ≥ p and p ∤ c or c = 0, then x = cpα

satisfies

|x′′

pp| ≥ |x|.

Proof. Omitting the trivial case, we assume that c 6= 0. If p ∤ α, then α ≥ p implies α ≥ p+1,
and

|x′′

pp| = |c|α(α− 1)pα−2 ≥ |c|(p+ 1)ppα−2 > |c|pα = |x|.
If p | α, we write α = α̃pγ where γ, α ∈ Z+ and p ∤ α̃. Then

x′

p = cαpα−1 = cα̃pγpα−1 = cα̃pγ+α−1

and

x′′

pp = cα̃(γ + α− 1)pγ+α−2 = cαp−γ(γ + α− 1)pγ+α−2 =

cα(γ + α− 1)pα−2 = α(γ + α− 1)p−2x.

Since
α(γ + α− 1)p−2 ≥ p(1 + p− 1)p−2 = 1,

the theorem follows.
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5 Examples

Example 14. x′
p = a, where p ∤ a ∈ Q \ {0}.

In (2), ã = a and α = 0. The only solution of (5) is x = p by (14). Therefore, the only
solution is

x = ap.

Example 15. x′
p = p (α = 1, n = 0, r = 1).

There is no m satisfying (18). If p 6= 2, then r 6= p− 1. So, by (20),

x =
p2

2
.

If p = 2, then r = p− 1, and there is no solution.

Example 16. x′
p = p−1 (α = n = −1, r = p− 1).

The condition (17) implies that −1−m = hp(m+1)p−1. Writing h = −k, where k ∈ Z+, this
reads

1 +m = kp(m+1)p−1.

But
kp(m+1)p−1 ≥ 2(m+1)·2−1 = 22m+1 > 2m+ 1 ≥ m+ 1

for all m ∈ N, meaning that there is no solution of type (19). Neither does (20) apply
because r = p− 1. Thus, there is no solution.

Example 17. x′
p = pp (α = p, n = 1, r = 0).

The only m satisfying (18) is m = 0. Then h = 1 in (17) and

x = pp

by (19). Since r 6= p− 1, also

x =
pp+1

p+ 1

applies by (20).

Example 18. x′
p = p−p (α = −p, n = −1, r = 0).

By (17),
−1−m = hp−mp.

If m = 0, then h = −1. If m > 0, the right-hand side is not an integer (since p ∤ h), while
the left-hand side is an integer. Therefore, only m = 0 and h = −1 satisfy (17). Further,
(19) gives

x = −p−p.

Because r 6= p− 1, we have another solution

x =
p1−p

1− p

by (20).
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Example 19. x′
2 = 226 (p = 2, α = 26, n = 13, r = 0).

The condition (17) is now equivalent to

13−m = 22mh.

If m = 0, then h = 13. If m = 1, then h = 3. If m ≥ 2, then 22m > 13 − m; hence
22m ∤ (13−m) for 2 ≤ m ≤ 12, implying that a suitable h does not exist. So, by (19),

x =
226

13
and x =

224

3
.

Again r 6= p− 1, and (20) yields the third solution

x =
227

27
.

Example 20. x′
2 = 2−22 (p = 2, α = −22, n = −11, r = 0).

Now (17) reads
−11−m = 22mh.

If m = 0, then h = −11. If m = 1, then h = −3. Proceeding as above, we see that no m ≥ 2
works, and we obtain three solutions

x = −2−22

11
, x = −2−24

3
, x = −2−21

21
.

Example 21. (Due to Jori Mäntysalo.) x′
2 = 22058 (p = 2, α = 2058, n = 1029, r = 0).

Computer experiments suggest m = 0, m = 1, and m = 5. Then, respectively, h = 1029,
h = 257, and h = 1, giving us three solutions of type (19). Also, (20) applies. All in all, we
have four solutions

x =
22058

1029
, x =

22056

257
, x = 22048, x =

22059

2059
.

Example 22. x′
p = −pxn, n ∈ Z \ {0}.

If n = 1, then, by Theorem 3, x = cp−p2 where p ∤ c ∈ Q. To obtain nontrivial solutions in
the case of n 6= 1, we see as in the proof of Corollary 7 that necessarily n = 2, n = 3, or
n = −1; then ξ̃ = −2 (for p 6= 2), ξ̃ = −1, and ξ̃ = 1, respectively. Further, ξ = ξ̃. Again
(23) holds, but now (ii) in Theorem 5 is violated for n = −1. Thus, the nontrivial solution
is, for n = 3,

x =
( −1

−p2

)
1

2

=
1

p

and, for n = 2, p 6= 2,

x =
−2

−p2
=

2

p2
.
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Example 23. x′
p = p−1xn, n ∈ Z \ {0}.

If n = 1, then, again by Theorem 3,
x = cp,

where p ∤ c ∈ Q. If n 6= 1, we have, by applying (22) and using the notation of the proof of
Corollary 6,

γ = −1 + (n− 1)ξ + 1 = (n− 1)ξ̃pγ.

As in that proof, we see that no γ ∈ N works. Consequently, there is only the trivial solution
for n ≥ 2 and no solution for n ≤ −1.

Example 24. x′
p = p1−(n−1)p2xn, n ∈ Z \ {0, 1}.

By (22),
γ = 1− (n− 1)p2 + (n− 1)ξ + 1 = 2− (n− 1)p2 + (n− 1)ξ̃pγ,

i.e.,

ξ̃ =
γ + (n− 1)p2 − 2

(n− 1)pγ
.

We proceed as in the proof of Corollary 7.

Case 1. γ = 0. Again, ξ̃ ∈ Z if and only if n− 1 = ±1 or n− 1 = ±2; hence necessarily
n = 2, n = 3, or n = −1. We have ξ̃ = p2 − 2 (for p 6= 2) and ξ̃ = p2 ∓ 1, respectively. Also
ξ = ξ̃. But δ = νq(p

2 ∓ 1) is odd for at least one q ∈ P \ {p}. (If not, then p2 ∓ 1 = b2 for
some b ∈ Z, so (b− p)(b+ p) = ∓1, implying a contradiction.) Then

νq(ξ)− νq(a)

n− 1
=

νq(p
2 ± 1)− νq(p

1−(n−1)p2)

±2
= ±δ

2
/∈ Z,

violating (23). So, only the subcase n = 2, p 6= 2, ξ = p2 − 2 remains, which yields

x =
( ξ

ap

)
1

n−1

=
p2 − 2

p1−(2−1)p2p
= (p2 − 2)pp

2−2.

Case 2. γ = 1. Then

ξ̃ =
1 + (n− 1)p2 − 2

(n− 1)p
= p− 1

(n− 1)p
/∈ Z.

Case 3. γ = 2. Then

ξ̃ =
2 + (n− 1)p2 − 2

(n− 1)p2
= 1;

so ξ = p2. Since (23) is satisfied, we obtain

x =
( p2

p1−(n−1)p2p

)
1

n−1

= pp
2

.
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Case 4. γ ≥ 3. Then

|ξ̃| = |γ + (n− 1)p2 − 2|
|n− 1|pγ ≤ |n− 1|p2 + γ

|n− 1|pγ ≤ p2 + γ

pγ
=

1

pγ−2
+

γ

pγ
≤ 1

p
+

3

p3
≤ 1

2
+

3

8
< 1.

Thus, x = pp
2

is a nontrivial solution for all n 6= 0, 1. Also (p2−2)pp
2−2 is such a solution

for n = 2, p 6= 2. These are the only nontrivial solutions.

Example 25. x′′
pp = px.

By (38), an equivalent condition is that x = 0 or

ξ̃pγ(ξ̃pγ + γ − 1) = p3.

As in the proof of Theorem 11, this reduces to

pγ[pγ ± (γ − 1)] = ±p3.

It is easy to see that no γ ∈ N applies. So, there are no other solutions than the trivial one.

Example 26. x′′
pp = 0.

By (38), this is equivalent to x = 0 or ξ̃ = 0 (accepted here) or ξ̃pγ + γ − 1 = 0. It is easy
to see that γ = 0 and γ = 1 apply; the first case gives us ξ̃ = 1 and the second one ξ̃ = 0.
So, x = 0 or ξ = 0 or ξ = p, which implies that x = cpd, where p ∤ c and d ∈ {0, 1}.

6 Notes on solution sets

Examples 14–21 and further computer experiments encourage us to state the following con-
jecture.

Conjecture 27. Let p ∈ P and a ∈ Q \ {0}. The equation

x′

p = a

has at most four solutions if p = 2, and at most two solutions otherwise.

What about the number of solutions of x′
p = axn? The case n = 1 is easy.

Theorem 28. Let p ∈ P and a ∈ Q. The number of nontrivial solutions of the equation

x′

p = ax

is either zero or infinite.

Proof. Apply Theorem 3.
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The case n ≥ 2 is difficult. Because we have not done thorough computer experiments, we
only record the following speculation.

Conjecture 29. Let p ∈ P, a ∈ Q \ {0}, and n ∈ Z \ {0, 1}. The equation

x′

p = axn

has only finitely many solutions.

Our last topic concerns the density of infinite solution sets. We begin by verifying two
auxiliary results.

Lemma 30. Let r, s ∈ P, r 6= s. The set

T = {±rmsn : m,n ∈ Z} (40)

is dense in Q.

Proof. An equivalent claim is that the set

{rmsn : m,n ∈ Z}

is dense in Q+. By taking logarithms of the elements of this set, we get another equivalent
claim stating that the set

{m ln r + n ln s : m,n ∈ Z}
is dense in R. This, is turn, is equivalent to the density of

T ′ =
{

m+ n
ln s

ln r
: m,n ∈ Z

}

.

Because ln s/ ln r is irrational, T ′ is dense in R by Dirichlet’s theorem [2, Theorem 1.23].

Lemma 31. Let p, q ∈ P, p 6= q. The sets

Sp = {c ∈ Q \ {0} : p ∤ c}

and

Spq = {c ∈ Q \ {0} : p, q ∤ c}
are dense in Q.

Proof. For r, s ∈ P \ {p, q}, r 6= s, let T be as in (40). Since T ⊂ Spq ⊂ Sp, the claim follows
from Lemma 30.

Theorem 32. Let p, q ∈ P, p 6= q, and a ∈ Q, ap ∈ Z. The solution sets of the equations

x′

p = ax, x′

p = x′

q, x′′

pq = x′′

qp, x′′

pp = x, and x′′

pp + x′′

qq = x

are dense in Q.

Proof. Apply Theorems 3, 8, 10, 11, 12 and Lemma 31.
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In fact, we can say more about the second and third equations.

Theorem 33. Let p, q ∈ P, p 6= q. The solution sets of the equations

x′

p = x′

q = 0, x′′

pq = x′′

qp = 0, x′′

pp = 0, and x′′

pp + x′′

qq = 0

are dense in Q.

Proof. The set Spq, which is dense by Lemma 31, is contained in the solution set of each
equation.

This theorem raises the following

Conjecture 34. Let p, q ∈ P, p 6= q, and a ∈ Q. The solution sets of the equations

x′′

pq = x′′

qp = a, x′′

pp = a, and x′′

pp + x′′

qq = a

are dense in Q.

7 Concluding remarks

Ufnarovski and Åhlander [6] studied certain arithmetic differential equations. For example,
they proved [6, Corollary 3] that if the equation

x′ = a (x ∈ Z+, a ∈ Z+ \ {1})

has a solution, then it has infinitely many solutions. The equation x′
p = a (x ∈ Q, a ∈

Q \ {0}), in contrast to that, has always only finitely many solutions, as we saw in the proof
of Theorem 1. For another example, they showed [6, Theorem 6] that

x′ = x (x ∈ Z+)

if and only if x = pp for some p ∈ P. A special case of Theorem 3 gives a somewhat parallel
result, stating that xp = x (x ∈ Z+) if and only x = cpp where p ∤ c ∈ Z+.

Kovič [4] studied certain arithmetic partial differential equations. We pursued this topic
a few steps further, yet there is still much work to do with both arithmetic derivative and
arithmetic partial derivatives. Connections between different derivations are of special in-
terest. For example, the logarithmic derivative of a ∈ Q \ {0} defined [6, p. 13] by

ld a =
a′

a

can also be expressed as

ld a =
∑

p∈P

a′p
a
.
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