Note on Total Positivity for a Class of Recursive Matrices

Liang Zhao and Fengyao Yan
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024
P. R. China
light0617@mail.dlut.edu.cn
yanfengyao@mail.dlut.edu.cn

Abstract

In this note, we study the total positivity of a class of infinite recursive matrices that depend on three infinite sets of independent variables and on an integer parameter. We give a simple algebraic proof and provide a few examples.

1 Introduction

A (finite or infinite) matrix M is said to be totally positive ($T P$) if its minors of all orders are nonnegative. Total positivity is a powerful concept that arises frequently in various branches of mathematics, statistics, probability, mechanics, economics, and computer science [4, 10]. The totally positive matrices play an important role in the theory of total positivity $[1,5,8,9,10]$. Recently, Chen et al. [6, 7] presented some sufficient conditions for the total positivity of Riordan arrays and recursive matrices. Brenti [4] introduced a class of recursive matrices that depend on three infinite sets of independent variables and on an integer parameter. More precisely, let the infinite matrix $M=\left[M_{n, k}\right]_{n, k \geq 0}$ be defined by

$$
\begin{equation*}
M_{0,0}=1, \quad M_{n, k}=z_{n} M_{n-t, k-1}+y_{n} M_{n-1-t, k-1}+x_{n} M_{n-1, k} \tag{1}
\end{equation*}
$$

for $n+k \geq 1$, where $t \in \mathbb{N}, M_{n, k}=0$ if either $n<0$ or $k<0$, and $\left(x_{n}\right)_{n \geq 0},\left(y_{n}\right)_{n \geq 0}$, and $\left(z_{n}\right)_{n \geq 0}$ are nonnegative sequences. Brenti [4] associated a planar network with the matrix and used its planarity to prove the total positivity of M.

Theorem 1 ([4, Theorem 4.3]). Let $M=\left[M_{n, k}\right]_{n, k \geq 0}$ be defined by (1). Then M is TP.
In this note we give a simple algebraic proof of Theorem 1. With the method of our proof, the total positivity of many recursive matrices can be easily proved, and a few examples are provided in Section 3.

2 Proof of Theorem 1

We first review some basic facts about $T P$ matrices.
Lemma 2 ([11, Proposition 1.6]). Assume A is a nonsingular totally positive matrix. Then so is $J A^{-1} J$, where J is the diagonal matrix with diagonal entries alternately 1 and -1 .

An operation that preserves total positivity is the following form of iteration. Let $A=$ $\left[a_{i j}\right]_{i, j=1}^{n}$ be an $n \times n$ matrix. Define the matrix $B=\left[b_{i j}\right]_{i, j=1}^{n}$ by $b_{1 j}=a_{1 j}, j=1, \ldots, n$, and for $i \geq 2, b_{i j}=\sum_{k=1}^{n} b_{i-1, k} a_{k j}, j=1, \ldots, n$. Pinkus [11] showed that if A is $T P$, then B is also TP. Actually, this result can be generalized to infinite matrices when $A=\left[a_{i, j}\right]_{i, j \geq 0}$ is an upper triangular matrix. It is clear that $B=\left[b_{i, j}\right]_{i, j \geq 0}$ is $T P$ if and only if its leading principal submatrices $\left[b_{i, j}\right]_{0 \leq i, j \leq n}$ are all TP $\left[6\right.$, Lemma 2.1], and $\left[b_{i, j}\right]_{0 \leq i, j \leq n}$ is obtained directly from $\left[a_{i, j}\right]_{0 \leq i, j \leq n}$. Then we have the following.
Lemma 3. Let $A^{T}=\left[\alpha_{1}, \alpha_{2}, \ldots\right]$ be an infinite upper triangular matrix, where for $j \geq 1, \alpha_{j}$ denotes the infinite column vector. Define the matrix $B^{T}=\left[\beta_{1}, \beta_{2}, \ldots\right]$ by $\beta_{1}=\alpha_{1}$, and for $i \geq 2, \beta_{i}^{T}=\beta_{i-1}^{T} A$. If A is $T P$, then so is B.

To prove Theorem 1, we construct two matrices

$$
A=\left[a_{i j}\right]_{i \geq 0, j \geq 0}=\left[\begin{array}{cccccc}
0 & 1 & x_{1} & x_{1} x_{2} & x_{1} x_{2} x_{3} & \cdots \\
& z_{0} & y_{1}+x_{1} z_{0} & x_{2}\left(y_{1}+x_{1} z_{0}\right) & x_{2} x_{3}\left(y_{1}+x_{1} z_{0}\right) & \\
& & z_{1} & y_{2}+x_{2} z_{1} & x_{3}\left(y_{2}+x_{2} z_{1}\right) & \\
& & & z_{2} & y_{3}+x_{3} z_{2} & \\
& & & & z_{3} & \\
& & & & & \ddots
\end{array}\right]
$$

and

$$
I_{t}=\left[\begin{array}{cc}
1 & O \\
O & U
\end{array}\right]
$$

where $U=\left[\delta_{i+t, j}\right]_{i, j \geq 0}$ and $\delta_{i, j}$ is the Kronecker delta, i.e.,

$$
\delta_{i, j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Clearly, $I_{0}=I$ and $I_{t} A$ is the matrix obtained from A by removing rows of A from the second row to the $(t+1)$ th row. Applying Lemma 3 to the matrix $I_{t} A$, we get $B=[O, \widetilde{B}]$, where $\widetilde{B}=\left[b_{i, j}\right]_{i \geq 0, j \geq 0}$.

Proof of Theorem 1. We first show that $M=\widetilde{B}^{T}$. For $n=0$, it is readily verified that $b_{0, k}=M_{k, 0}$. For $n \geq 1$, we have

$$
\begin{aligned}
b_{n, k}= & \prod_{i=t+2}^{k} x_{i}\left(y_{t+1}+x_{t+1} z_{t}\right) b_{n-1,0}+\prod_{i=t+3}^{k} x_{i}\left(y_{t+2}+x_{t+2} z_{t+1}\right) b_{n-1,1} \\
& +\cdots+\left(y_{k}+x_{k} z_{k-1}\right) b_{n-1, k-t-1}+z_{k} b_{n-1, k-t} \\
= & x_{k} b_{n, k-1}+y_{k} b_{n-1, k-t-1}+z_{k} b_{n-1, k-t} .
\end{aligned}
$$

Thus $M=\widetilde{B}^{T}$.
By the definition of $T P$ and the fact that $I_{t} A$ is a submatrix of A, it suffices to show that A is $T P$. Let

$$
X=\left[\begin{array}{cccccc}
1 & 0 & & & & \\
& 1 & x_{1} & & & \\
& & 1 & x_{2} & & \\
& & & 1 & x_{3} & \\
& & & & 1 & \ddots \\
& & & & & \ddots
\end{array}\right], Y=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& z_{0} & y_{1} & & & \\
& & z_{1} & y_{2} & & \\
& & & z_{2} & y_{3} & \\
& & & & z_{3} & \ddots \\
& & & & & \ddots
\end{array}\right]
$$

It is obvious that X and Y are $T P$. Note that by column operations, we can turn A into Y. Thus A has a factorization of the form

$$
A=Y J X^{-1} J
$$

where J is defined in Lemma 2, which implies that $J X^{-1} J$ is $T P$. It is known that the product of two $T P$ matrices is still $T P$ by the classic Cauchy-Binet formula. Thus A is $T P$. This completes the proof.

3 Applications

In this section we consider some examples for different t. A basic example for case $t=0$ and $t=1$ is the Delannoy square and the Delannoy triangle [12, A008288]. Many properties and applications of Delannoy numbers have been discussed $[2,3,13,15]$. The Delannoy numbers $d_{n, k}$ are defined as the numbers of lattice paths from $(0,0)$ to (n, k) with steps $(1,0),(0,1)$, and $(1,1)$. It is well known that the Delannoy numbers satisfy the recursion

$$
d_{n, k}=d_{n, k-1}+d_{n-1, k-1}+d_{n-1, k} .
$$

Brenti [4] showed that the Delannoy square

$$
D=\left[d_{n, k}\right]_{n, k \geq 0}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 5 & 7 & \\
1 & 5 & 13 & 25 & \\
1 & 7 & 25 & 63 & \\
\vdots & & & & \ddots
\end{array}\right]
$$

is $T P$. Let $d(n, k)=d_{n-k, k}$ denote the corresponding Delannoy triangle $\bar{D}=[d(n, k)]_{n, k \geq 0}$, i.e.,

$$
\bar{D}=\left[\begin{array}{ccccc}
1 & & & & \\
1 & 1 & & & \\
1 & 3 & 1 & & \\
1 & 5 & 5 & 1 & \\
\vdots & & & & \ddots
\end{array}\right]
$$

Then the entries in \bar{D} satisfy the recurrence relation

$$
d(n+1, k+1)=d(n, k)+d(n-1, k)+d(n, k+1)
$$

Wang and Yang [14] showed that \bar{D} is $T P$.
With the method of our proof, applying Lemma 3 to the matrices

$$
\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & \cdots \\
& 1 & 2 & 2 & 2 & \\
& & 1 & 2 & 2 & \\
& & & 1 & 2 & \\
& & & & 1 & \\
& & & & & \ddots
\end{array}\right] \text { and }\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & \cdots \\
& 0 & 1 & 2 & 2 & \\
& & 0 & 1 & 2 & \\
& & & 0 & 1 & \\
& & & & 0 & \\
& & & & & \ddots
\end{array}\right]
$$

we get

$$
\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & \cdots \\
0 & 1 & 3 & 5 & 7 & \\
0 & 1 & 5 & 13 & 25 & \\
0 & 1 & 7 & 25 & 63 & \\
0 & 1 & 9 & 41 & 129 & \\
\vdots & & & & & \ddots
\end{array}\right] \text { and }\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & \cdots \\
& 0 & 1 & 3 & 5 & \\
& & 0 & 1 & 5 & \\
& & & 0 & 1 & \\
& & & & 0 & \\
& & & & & \ddots
\end{array}\right] .
$$

Then the total positivity of the Delannoy square and the Delannoy triangle immediately follows.

An example for case $t=2$ is the Harer-Zagier numbers $g(n, k)$ [12, A035309], which count the number of ways to glue all edges of a $2 n$-gon pairwise, so as to produce a surface of given genus k. The first three columns of $G=[g(n, k)]_{n, k \geq 0}$ (for $\left.k=0,1,2\right)$ are respectively the Catalan numbers [12, A000108], A002802, and A006298. The entries of G satisfy the recursion

$$
\begin{equation*}
(n+2) g(n+1, k)=(4 n+2) g(n, k)+\left(4 n^{3}-n\right) g(n-1, k-1), \tag{2}
\end{equation*}
$$

where $g(n, k)=0$ if either $n<0$ or $k<0, g(0,0)=1$, and $g(0, k)=0$. So,

$$
G=\left[\begin{array}{ccccc}
1 & & & & \\
1 & & & & \\
2 & 1 & & & \\
5 & 10 & & & \\
14 & 70 & 21 & & \\
42 & 420 & 483 & & \\
132 & 2310 & 6468 & 1485 & \\
\vdots & & & & \ddots
\end{array}\right]
$$

Using Lemma 3 with

$$
A=\left[\begin{array}{cccccccc}
0 & 1 & 1 & 2 & 5 & 14 & 42 & \cdots \\
& & & 1 & \frac{5}{2} & 7 & 21 & \\
& & & & \frac{15}{2} & 21 & 63 & \\
& & & & & 21 & 63 & \\
& & & & & & 42 & \\
& & & & & & & \ddots
\end{array}\right]
$$

we get

$$
B=\left[\begin{array}{cccccccc}
0 & 1 & 1 & 2 & 5 & 14 & 42 & \cdots \\
& & & 1 & 10 & 70 & 420 & \\
& & & & & 21 & 483 & \\
& & & & & & & \ddots
\end{array}\right]
$$

Then we have the following.
Corollary 4. Let $G=[g(n, k)]_{n, k \geq 0}$ be defined by (2). Then G is TP.

4 Acknowledgments

The authors thank the anonymous referees for their careful reading and valuable suggestions.

References

[1] T. Ando, Total positive matrices, Linear Algebra Appl. 90 (1987), 165-219.
[2] C. Banderier and S. Schwer, Why Delannoy numbers?, J. Statist. Plann. Inference 135 (2005), 40-54.
[3] P. Barry, On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Seq. 9 (2006), Article 06.2.4.
[4] F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), 175-218.
[5] F. Brenti, The applications of total positivity to combinatorics, and conversely, in Total Positivity and Its Applications, in Math. Appl., Vol. 359, Kluwer, 1996, pp. 451-473.
[6] X. Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, Linear Algebra Appl. 471 (2015), 383-393.
[7] X. Chen, H. Liang, and Y. Wang, Total positivity of Riordan arrays, European J. Combin. 46 (2015), 68-74.
[8] S. M. Fallat and C. R. Johnson, Totally Nonnegative Matrices, Princeton University Press, 2011.
[9] M. Gasca and J. M. Peña, Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992), 25-44.
[10] S. Karlin, Total Positivity, Vol. 1, Stanford University Press, 1968.
[11] A. Pinkus, Totally Positive Matrices, Cambridge University Press, 2010.
[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[13] R. A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003), Article 03.1.5.
[14] Y. Wang and A. L. B. Yang, Total positivity of some symmetric triangular and square arrays, in preparation.
[15] S.-L. Yang, S.-N. Zheng, S.-P. Yuan, and T.-X. He, Schröder matrix as inverse of Delannoy matrix, Linear Algebra Appl. 439 (2013), 3605-3614.

2010 Mathematics Subject Classification: Primary 05A20; Secondary 15A45, 15B36.
Keywords: totally positive matrix, recursive matrix.
(Concerned with sequences $\underline{A 000108}, \underline{A 002802}, \underline{A 006298}, \underline{A 008288}$, and A035309.)

Received August 17 2015; revised versions received April 11 2016; June 4 2016; July 22016. Published in Journal of Integer Sequences, July 52016.

Return to Journal of Integer Sequences home page.

