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Abstract

We consider two families of plane partitions: totally symmetric self-complementary plane partitions (TSS-
CPPs) and cyclically symmetric transpose complement plane partitions (CSTCPPs). If T(n) and C(n) are

the numbers of such plane partitions in a 2n X 2n x 2n box, then
orda(T(n)) = ords(C(n))
for allm > 1. We also discuss various consequences, along with other results on ords(T(n)).
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1 Introduction

In his book “Proofs and Confirmations,” David Bressoud [[]] discusses the rich history of the Alternating
Sign Matrix conjecture and its proof. One of the themes of the book is the connection between alternating
sign matrices and various families of plane partitions. (Reference [[] gives a synopsis of this work.)

Pages 197-199 of [E] list ten families of plane partitions which have been extensively studied. The last
family in this list is the set of totally symmetric self-complementary plane partitions (TSSCPPs) which fit
in a 2n X 2n x 2n box. In 1994, Andrews [EI] proved that the number of such partitions is given by
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(This formula also gives the number of n x n alternating sign matrices. See [[J. The values T'(n) can be
found as sequence in [{.)

Another family mentioned by Bressoud is the set of cyclically symmetric transpose complement plane
partitions (CSTCPPs). We will let C(n) denote the number of such partitions that fit in a 2n x 2n x 2n box.
(The values C(n) make up sequence in [{.) In 1983, Mills, Robbins, and Rumsey [f] proved that
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The goal of this note is to consider arithmetic properties of, and relationships between, the two functions
T(n) and C(n). In particular, we will prove that, for all n > 1,

orda(T(n)) = ord2(C(n))

where ords(m) is the highest power of 2 dividing m. This is the gist of Section 2 below. Using this fact and

additional tools developed in Section 3, we will prove the following congruences:

1. For all n > 0,
T(n)=C(n) (mod 4).

2. For all n > 0, n not a Jacobsthal number,

T(n)=C(n) (mod 16).

(The Jacobsthal numbers {J,, } o are the numbers satisfying Jo = J1 = 1 and Jpy2 = Jpq1 +2J, for n > 0.
The values J,, make up sequence [A001045 in [E .
Indeed, if we ignore those values of n which are Jacobsthal numbers, we will prove that, for fixed k& > 1,

T(n) = C(n) (mod 2*)

for all but a finite set of values of n. Moreover, the values of n for which this congruence does not hold must
satisfy n < Jog+1. This extends earlier work of the authors [E}

The above results imply some interesting arithmetic properties of C’'(n), the number of CSTCPPs in a
2n X 2n x 2n box which are not TSSCPPs. In particular, we have

C'(n)=0 (mod 4)
for all n > 0. Moreover, we have, for fixed k£ > 1,
C'(n) =0 (mod 2%)

for all but finitely many non-Jacobsthal numbers. There does not appear to be any obvious reason why this

property should hold, nor why C’(n) behaves differently when n is a Jacobsthal number.
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2 The 2-adic Relationship Between C(n) and T'(n)

Throughout this note, we make use of the following lemma:

Lemma 2.1. For any prime p and positive integer N,

ord,(N!) =" P’“J .

p
Proof. For a proof, see [E, Theorem 2.29].

The goal of this section is to prove the following theorem:

Theorem 2.2. For alln > 1,
ordz(C(n)) = orde(T(n)).

Proof. The proof simply involves a manipulation of various sums using Lemma E Given (E), we have
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again using Lemma P.]] and ().

3 A Finiteness Result

Do

In this section, we show that there is an upper bound on the values of n for which ordz(T'(n)) = k for any

positive integer k. To do this, we use insight obtained from our work in [{]. In that paper, we studied the
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which implicitly appear in
the second-to-last line of the string of equalities in the proof of Theorem .

Definition 3.1. We define the function cp(n) := Nk#(n) - D,fé(n) for any positive integer n, so that

ordz(T(n)) = > cx(n).

k>1

Theorem 3.2. Suppose 0 < p < 2*. Then

0 if 0<pr<Jk-1
cr(pr) = pr— k-1 if Jk—1 < pp <2871
k\Pk Jk — i ’Lf 2k—1 < pr < Jk

0 if Jr < pr < 2F.

Moreover,
cx(n +2%) = cx(n) for all n,k in N.

Furthermore, if n = 2%q, + pr, then
cr(n) = cx(2" (g + 1) — pr)-

Proof. This follows from Lemmas 5.1 through 5.4 of [[]| for n which are not Jacobsthal numbers (though
in the case of Lemmas 5.2 and 5.3 of [E] one has to look inside the proof to get this stronger result), and
Theorem 4.1 of [[]] for n which are Jacobsthal numbers. (|

Since the submission of this article, the authors have found a simpler proof of Theorem 3.2, which will
appear in [ﬂ] It is clear from Theorem @ that the values of the function c¢j increase in increments of
1 beginning at Jj_;, reach a peak at 2°71, and then decrease in increments of 1 between 2*~! and Jj.
Propositions and show us that when the parities of ¢ and j are the same, the ascents for ¢; and c;
“line up” in such a way that if say j > i, ¢; is beginning one of its ascents at the same point that c; is
beginning an ascent, so that there is an interval where the two agree. Of course ¢; will reach its peak first,
so beyond that point, the two will fail to agree for some time. However, given the periodic nature of these
functions, they will realign at some later point. See the table in the Appendix for a demonstration of this
phenomenon.

We use this insight to achieve a lower bound for ords(T(n)) when n is between two Jacobsthal numbers.

k
Proposition 3.3. For 0 <: < {5 — 1-‘ ,
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Proposition allows us to show that, for a given n, the functions ¢y are equal to each other for several
values of k.

Proposition 3.4. Suppose J, < n < 2%, say n = Jy +r wherer > 0. If 0 < i < [% — 11 and 0 < r <

Jp—1-2i;
then
Ck+1—2i(n) =T.
Proof. This follows from Theorem @ and Proposition . O

A symmetric result is true when 2F < n < Jp ;.

Corollary 3.5. Suppose 2F <n < Jig+1, say n = Jpyr1 — 7 where r > 0.
If0<i < [% — ﬂ and 0 <r < Jp_1_9;, then

ck+1_2i(n) =T

Proof. This result follows directly from the fact stated in Theorem which says that, if n = 2%q, + py,
then

ce(n) = (2" (g + 1) — p)-

In our case, we replace k by k£ + 1 and note that gx11 = 0, so we have

k1 (Jr41 — 1)

= (2 = (Jpg1 — 7))

hr1(J 4 7) using [, Lemma 3.2]
r by Proposition .

cr+1(n)

O
Theorem 3.6. Let i,k € N such that 0 <1i < [% - ﬂ and k —i odd. If (J; +1) <r <2k — (J; + 1), then

ordy(T(Jk + 7)) > (Ji +1) (%) .

Proof. If r < Jx_9,—1, where 0 < i < (% — ﬂ , then by Proposition @ or Corollary ,
Chp1—2i(Je + 1) =1

Now, suppose i is such that k—i is odd and let 2j+1 =k—d. If J;+1 <7 < Jp_1, thenr £ J; = Jy_(—s) =
Jg—1-25, but r < Jipo = Jp_(x—i—2) = Jg—1-2(j—1)- Hence

ckr1(Jk+r)=ck1(Jp+r)=--- = Ck_;’_l_g(]‘_l)(z]k +r)=r.

Thus, ords(T(Ji + 7)) has j = £=2=L summands of value r, so that

ords(T(Jp +1)) > r <$> > (i + 1) (%) .



Corollary 3.7. If Jp,—1 <n < Jp,, then
m
ords(T(n)) > {EJ .

Proof. We break the proof into two cases. First, assume that m = 2k, son = Jogp_1+7 where 0 < r < 2J5x_o.
Using Theorem @ with 4 = 0 yields

ordg(T(n)) > (J() + 1)(1€ — 1) H2<r<2Jop_9—2
> k.

Ifr=1o0rr=2J5,_9— 1 then

noting that 2 =2k — 2(k — 1), so
ords(T(n)) > k.

Since k = L%J, we have our result.

Next, assume that m = 2k + 1, so n = Jox + r where 0 < r < 2J9g_1. Using Theorem with ¢ = 1
yields

ordg(T(n)) > (Jl + 1)(1€ — 1) H2<r<2Jop_1—2
> k.

Ifr=1orr=2J5,_1—1 then
cakt1(n) = cap—1(n) = --- =c3(n) =1

noting that 3 =2k +1 —2(k — 1), so
ords(T(n)) > k.

Since k = L%J, we have our result. o

Corollary 3.8. If ords(T(n)) =k with k > 1, then n < Jag41.

Proof. Suppose ords(T(n)) = k. From [[], Theorem 4.1], n is not a Jacobsthal number since ordy(T(J;)) = 0
for all i. Moreover, by Corollary , if Joj_1 < m < Jaj41, then orda(T'(n)) > j. Soif j > k, n is not between
Jaj—1 and Joj41. The largest number remaining is Jor11 — 1 and, in fact, ords (T (Jok+1 — 1)) = k. O

4 Implications

It is clear from Theorem @ that

However, much more can be said.

Theorem 4.1. For alln > 1,



Proof. Given Theorem E, it is clear that Theorem E is automatically true for those values of n for which
ordz(T(n)) > 1. Hence, we only need to focus on those n for which ordz(T'(n)) = 0.

As noted in [[I], orda(T'(n)) = 0 if and only if n is a Jacobsthal number. Via straightforward calculations
based on ([]) and ([, it can be proved that, for all m > 1,

Theorem 4.2. For all n > 1, n not a Jacobsthal number,
T(n)=C(n) (mod 16).

Proof. We need only check those values of n for which 1 < ordy(T(n)) < 2, so, from Corollary B.§, only
1<n<Js—1orl<n<20. This is straightforward using Maple and ([]) and ([}). O

One last congruential implication is noted here.

Theorem 4.3. For all positive integers k and all but finitely many n > 1, n not a Jacobsthal number,
T(n) = C(n) (mod 2%).

Proof. This is quickly proved since all that must be checked are those values of n for which 1 < ords(T'(n)) <
k — 2. Corollary B.§ implies that the only nonJacobsthal positive integers n for which ords(T'(n)) < k — 2
satisfy 1 <n < Jog41 — 1. O

Finally, we note that results analogous to Corollary @ and Theorem do not appear to hold for
primes p > 2. We have confirmed this computationally in regards to Theorem @, and have proved that the
finiteness result in Corollary @ can only hold for p = 2. In fact, we [ﬂ] have proved the following;:

Theorem 4.4. If p is a prime greater than 3, then for each nonnegative integer k there exist infinitely many

positive integers n for which ord,(A(n)) = k.

A result similar to Theorem [L.4 can be proved for p = 3, although it is a bit weaker. See [f.
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Appendix

The table below includes the values of the functions ca(n), ca(n), cs(n) and cg(n) for n between 85 and
171, which are the Jacobsthal numbers Jg and Jg. We provide this table to show the periodic nature of the
functions cx(n), and to motivate Proposition E It should be noted that, if we were to build a similar table
for values of n between Ja,;,—1 and Jay,, then we would focus attention on functions ci(n) where k is odd

rather than even.


http://www.research.att.com/~njas/sequences/

n ca(n) cq(n) cg(n) cs(n)
85 0 0 0 0
86 1 1 1 1
87 0 2 2 2
88 0 3 3 3
89 0 2 4 4
90 1 1 5 )
91 0 0 6 6
92 0 0 7 7
93 0 0 8 8
94 1 0 9 9
95 0 0 10 10
96 0 0 11 11
97 0 0 10 12
98 1 0 9 13
99 0 0 8 14

100 0 0 7 15
101 0 0 6 16
102 1 1 5 17
103 0 2 4 18
104 0 3 3 19
105 0 2 2 20
106 1 1 1 21
107 0 0 0 22
108 0 0 0 23
128 0 0 0 43
148 0 0 0 23
149 0 0 0 22
150 1 1 1 21
151 0 2 2 20
152 0 3 3 19
153 0 2 4 18
154 1 1 5 17
155 0 0 6 16
156 0 0 7 15
157 0 0 8 14
158 1 0 9 13
159 0 0 10 12
160 0 0 11 11
161 0 0 10 10
162 1 0 9 9
163 0 0 8 8
164 0 0 7 7
165 0 0 6 6
166 1 1 5 )
167 0 2 4 4
168 0 3 3 3
169 0 2 2 2
170 1 1 1 1
171 0 0 0 0




The following figure gives plots of the functions cs, ¢4, cg, cg on the same set of axes.

i (128, 43)

A_A A_A R
(85,0) (171,0)

Values of ca, ¢4, cg, s
forn =85ton =171

oncerned with sequences [A001044, [A005130) and [A05125.
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