Journal of Integer Sequences, Vol. 5 (2002),
Article 02.1.4

On Partition Functions and Divisor Sums

Neville Robbins
Mathematics Department
San Francisco State University
San Francisco, CA 94132

robbins@math.stsu.edu

Abstract

Let n, r be natural numbers, with $r \geq 2$. We present convolution-type formulas for the number of partitions of n that are (1) not divisible by r; (2) coprime to r. Another result obtained is a formula for the sum of the odd divisors of n.

1 Introduction

We derive several convolution-type identities linking partition functions to divisor sums, thereby extending some prior results. In addition, we obtain a Lambert series-like identity for sums of odd divisors.

2 Preliminaries

Let $A \subset N$, the set of all natural numbers. Let $n, m, r \in N$ with $r \geq 2, m \geq 2$, m squarefree. Let $x \in C,|x|<1$.

Definition 1 Let $p_{A}(n)$ denote the number of partitions of n into parts that belong to A.
Definition 2 Let $\sigma_{A}(n)$ denote the sum of the divisors, d, of n such that $d \in A$.
Definition 3 Let $p(n)$ denote the number of partitions of n.

Definition 4 Let $q(n)$ denote the number of partitions of n into distinct parts (or into odd parts).

Definition 5 Let $q_{0}(n)$ denote the number of partitions of n into distinct odd parts (the number of self-conjugate partitions of n).

Definition 6 Let $b_{r}(n)$ denote the number of r-regular partitions of n (the number of partitions of n such that no part is a multiple of r or such that no part occurs r or more times).

Remark: Note that $b_{2}(n)=q(n)$.
Definition 7 Let $f_{m}(n)$ denote the number of partitions of n such that all parts are coprime to m.

Definition 8 Let $\sigma_{r}(n)$ denote the sum of the divisors, d, of n such that d does not divide r.

Definition 9 Let $\sigma_{m}^{*}(n)$ denote the sum of the divisors, d, of n such that d is coprime to m.

Definition 10 Let $\phi(n)$ denote Euler's totient function.
Remark: If p is prime, then $f_{p}(n)=b_{p}(n)$ and $\sigma_{p}^{*}(n)=\sigma_{p}(n)$.

$$
\begin{equation*}
\sum_{n=0}^{\infty} q(n) x^{n}=\prod_{n=1}^{\infty}\left(1+x^{n}\right) \tag{1}
\end{equation*}
$$

$\underline{\text { Proposition } 1}$ Let $f: A \rightarrow N$ be a function such that

$$
F_{A}(x)=\prod_{n \in A}\left(1-x^{n}\right)^{-f(n) / n}=1+\sum_{n=1}^{\infty} p_{A, f}(n) x^{n}
$$

and

$$
G_{A}(x)=\sum_{n \in A} \frac{f(n)}{n} x^{n}
$$

converge absolutely and represent analytic functions in the unit disc: $|x|<1$. Let $p_{A, f}(0)=1$ and

$$
f_{A}(k)=\sum\{f(d): d \mid k, d \in A\}
$$

Then

$$
n p_{A, f}(n)=\sum_{k=1}^{n} p_{A, f}(n-k) f_{A}(k)
$$

Remarks: Proposition 1 is Theorem 14.8 in [1]. If we let $A=N, f(n)=n$, then we obtain

$$
n p(n)=\sum_{k=1}^{n} p(n-k) \sigma(k)
$$

(See [1, p. 323]). If we let $A=N-2 N$ (the set of odd natural numbers) and $f(n)=n$, we obtain

$$
\begin{equation*}
n q(n)=\sum_{k=1}^{n} q(n-k) \sigma_{2}(k) \tag{2}
\end{equation*}
$$

This is given as Theorem 1 in [2], and is a special case of Theorem 1(a) below.

3 The Main Results

Theorem 1

$$
\begin{align*}
n b_{r}(n) & =\sum_{k=1}^{n} b_{r}(n-k) \sigma_{r}(k) \tag{3}\\
n f_{m}(n) & =\sum_{k=1}^{n} f_{m}(n-k) \sigma_{m}^{*}(k) \tag{4}
\end{align*}
$$

Proof: We apply Proposition 1 with $f(n)=n$. If we let $A=N-r N$ (the set of natural numbers not divisible by r) then (3) follows. If we let $A=\{n \in N:(m, n)=1\}$, then (4) follows.

Next, we present a theorem regarding odd divisors of n.
Theorem 2 Let $f: N \rightarrow N$ be a multiplicative function. Let $n=2^{k} m$, where $k \geq 0$ and m is odd. Then

$$
\begin{equation*}
\sum_{d \mid n}(-1)^{d-1} f\left(\frac{n}{d}\right)=\left\{f\left(2^{k}\right)-\sum_{j=0}^{k-1} f\left(2^{j}\right)\right\} \sum_{d \mid n, 2 \nmid d} f(d) \tag{5}
\end{equation*}
$$

Proof: If $d \mid n$, then by hypothesis, $d=2^{i} r$ where $0 \leq i \leq k, r \mid m$. Now

$$
\begin{gathered}
\sum_{d \mid n}(-1)^{d-1} f\left(\frac{n}{d}\right)=\sum_{d \mid n, 2 \nmid d} f\left(\frac{n}{d}\right)-\sum_{2|d| n} f\left(\frac{n}{d}\right) \\
=\sum_{r \mid m} f\left(2^{k} m / r\right)-\sum_{r \mid m} \sum_{i=1}^{k} f\left(2^{k-i} m / r\right)=f\left(2^{k}\right) \sum_{r \mid m} f(r)-\sum_{i=1}^{k} f\left(2^{k-i}\right) \sum_{r \mid m} f(r)
\end{gathered}
$$

$$
=\left\{f\left(2^{k}\right)-\sum_{i=1}^{k} f\left(2^{k-i}\right)\right\} \sum_{r \mid m} f(r)=\left\{f\left(2^{k}\right)-\sum_{j=0}^{k-1} f\left(2^{j}\right)\right\} \sum_{d \mid n, 2 \gamma \nmid d} f(d) .
$$

Corollary 1

$$
\begin{gather*}
\sum_{d \mid n}(-1)^{d-1} \frac{n}{d}=\sum_{d \mid n, 2 \nmid d} d \tag{6}\\
\sum_{d \mid n}(-1)^{d-1} \phi\left(\frac{n}{d}\right)=0 \tag{7}
\end{gather*}
$$

Proof: If f is multiplicative and $n=2^{k} m$, where $k \geq 0$ and m is odd, let

$$
g(f, k)=\left\{f\left(2^{k}\right)-\sum_{j=0}^{k-1} f\left(2^{j}\right)\right\}
$$

Theorem 2 may be written as:

$$
\begin{equation*}
\sum_{d \mid n}(-1)^{d-1} f\left(\frac{n}{d}\right)=g(f, k) \sum_{d \mid n, 2 \nmid d} f(d) \tag{8}
\end{equation*}
$$

Now each of the functions: $f(n)=n, f(n)=\phi(n)$ is multiplicative, so Theorem 1 applies. Furthermore,

$$
\begin{gather*}
g(n, k)=2^{k}-\sum_{j=0}^{k-1} 2^{j}=1 \tag{9}\\
g(\phi(n), k)=\phi\left(2^{k}\right)-\sum_{j=0}^{k-1} \phi\left(2^{j}\right)=0 \tag{10}
\end{gather*}
$$

We see that (6) follows from (8) and (9), and (7) follows from (8) and (10).

Theorem 3

$$
\sum_{n=1}^{\infty} \sigma_{2}(n) x^{n}=\sum_{n=1}^{\infty} \frac{n x^{n}}{1+x^{n}}
$$

First Proof:

$$
\sum_{m=1}^{\infty} \frac{m x^{m}}{1+x^{m}}=\sum_{m, k=1}^{\infty}(-1)^{k-1} m x^{k m}
$$

$$
=\sum_{n=1}^{\infty} x^{n}\left(\sum_{d \mid n}(-1)^{d-1} \frac{n}{d}=\sum_{n=1}^{\infty} \sigma_{2}(n) x^{n}\right.
$$

by (6).
Second Proof: (2) implies

$$
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} q(n-k) \sigma_{2}(k)\right) x^{n}=\sum_{n=0}^{\infty} n q(n) x^{n}
$$

so that

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} q(n) x^{n}\right)\left(\sum_{n=0}^{\infty} \sigma_{2}(n) x^{n}\right)=\sum_{n=0}^{\infty} n q(n) x^{n} \tag{11}
\end{equation*}
$$

Now (1) implies

$$
\frac{d}{d x}\left(\sum_{n=0}^{\infty} q(n) x^{n}\right)=\frac{d}{d x}\left(\prod_{n=1}^{\infty}\left(1+x^{n}\right)\right)
$$

that is,

$$
\sum_{n=1}^{\infty} n q(n) x^{n-1}=\sum_{n=1}^{\infty} n x^{n-1} \prod_{m \neq n}\left(1+x^{m}\right)
$$

hence

$$
\begin{gathered}
\sum_{n=0}^{\infty} n q(n) x^{n}=\sum_{n=0}^{\infty} \frac{n x^{n}}{1+x^{n}} \prod_{n=1}^{\infty}\left(1+x^{n}\right) \\
=\sum_{n=0}^{\infty} \frac{n x^{n}}{1+x^{n}} \sum_{n=0}^{\infty} q(n) x^{n}
\end{gathered}
$$

by (1). The conclusion now follows from (11).
Remarks: Theorem 3 may be compared to the well-known Lambert series identity:

$$
\sum_{n=1}^{\infty} \sigma(n) x^{n}=\sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}
$$

In [2], Theorem 2, part (b), we obtained an explicit formula for $\sigma_{2}(n)$ in terms of $q(n)$ and $q_{0}(n)$, namely:

$$
\sigma_{2}(n)=\sum_{k=1}^{n}(-1)^{k-1} k q_{0}(k) q(n-k)
$$

References

1. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
2. N. Robbins, Some identities connecting partition functions to other number theoretic functions, Rocky Mountain J. Math 29 (1999), 335-345.

2000 Mathematics Subject Classification: 11P81
Keywords: partitions, divisor sums, Lambert series

Received March 21, 2002; revised version received August 20, 2002. Published in Journal of Integer Sequences August 21, 2002.

Return to Journal of Integer Sequences home page.

