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Abstract

Let n, r be natural numbers, with r ≥ 2. We present convolution-type formulas for the number
of partitions of n that are (1) not divisible by r; (2) coprime to r. Another result obtained
is a formula for the sum of the odd divisors of n.

1 Introduction

We derive several convolution-type identities linking partition functions to divisor sums,
thereby extending some prior results. In addition, we obtain a Lambert series-like identity
for sums of odd divisors.

2 Preliminaries

Let A ⊂ N , the set of all natural numbers. Let n, m, r ∈ N with
r ≥ 2, m ≥ 2, m squarefree. Let x ∈ C, |x| < 1.

Definition 1 Let pA(n) denote the number of partitions of n into parts that belong to A.

Definition 2 Let σA(n) denote the sum of the divisors, d , of n such that d ∈ A.

Definition 3 Let p(n) denote the number of partitions of n.
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Definition 4 Let q(n) denote the number of partitions of n into distinct parts (or into
odd parts).

Definition 5 Let q0(n) denote the number of partitions of n into distinct odd parts (the
number of self-conjugate partitions of n).

Definition 6 Let br(n) denote the number of r-regular partitions of n (the number of
partitions of n such that no part is a multiple of r or such that no part occurs r or more
times).

Remark: Note that b2(n) = q(n).

Definition 7 Let fm(n) denote the number of partitions of n such that all parts are
coprime to m.

Definition 8 Let σr(n) denote the sum of the divisors, d , of n such that d does not divide
r.

Definition 9 Let σ∗
m(n) denote the sum of the divisors, d , of n such that d is coprime to

m.

Definition 10 Let φ(n) denote Euler’s totient function.

Remark: If p is prime, then fp(n) = bp(n) and σ∗
p(n) = σp(n).

∞∑

n=0

q(n)xn =
∞∏

n=1

(1 + xn) (1)

Proposition 1 Let f : A→ N be a function such that

FA(x) =
∏

n∈A

(1− xn)−f(n)/n = 1 +
∞∑

n=1

pA,f (n)xn

and

GA(x) =
∑

n∈A

f(n)

n
xn

converge absolutely and represent analytic functions in the unit disc: |x| < 1. Let pA,f (0) = 1
and

fA(k) =
∑
{f(d) : d|k, d ∈ A} .

Then

npA,f (n) =
n∑

k=1

pA,f (n− k)fA(k) .
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Remarks: Proposition 1 is Theorem 14.8 in [1]. If we let A = N, f(n) = n, then we
obtain

np(n) =
n∑

k=1

p(n− k)σ(k) .

(See [1, p. 323]). If we let A = N − 2N (the set of odd natural numbers) and f(n) = n, we
obtain

nq(n) =
n∑

k=1

q(n− k)σ2(k) . (2)

This is given as Theorem 1 in [2], and is a special case of Theorem 1(a) below.

3 The Main Results

Theorem 1

nbr(n) =
n∑

k=1

br(n− k)σr(k) (3)

nfm(n) =
n∑

k=1

fm(n− k)σ∗
m(k) (4)

Proof: We apply Proposition 1 with f(n) = n. If we let A = N − rN (the set of natural
numbers not divisible by r) then (3) follows. If we let A = {n ∈ N : (m,n) = 1}, then (4)
follows.

Next, we present a theorem regarding odd divisors of n.

Theorem 2 Let f : N → N be a multiplicative function. Let n = 2km, where k ≥ 0 and
m is odd. Then

∑

d|n

(−1)d−1f(
n

d
) = {f(2k)−

k−1∑

j=0

f(2j)}
∑

d|n , 26 |d

f(d) . (5)

Proof: If d|n, then by hypothesis, d = 2ir where 0 ≤ i ≤ k, r|m. Now

∑

d|n

(−1)d−1f(
n

d
) =

∑

d|n , 26 |d

f(
n

d
)−

∑

2|d|n

f(
n

d
)

=
∑

r|m

f(2km/r)−
∑

r|m

k∑

i=1

f(2k−im/r) = f(2k)
∑

r|m

f(r)−
k∑

i=1

f(2k−i)
∑

r|m

f(r)
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= {f(2k)−
k∑

i=1

f(2k−i)}
∑

r|m

f(r) = {f(2k)−
k−1∑

j=0

f(2j)}
∑

d|n , 2 6 |d

f(d) .

Corollary 1

∑

d|n

(−1)d−1n

d
=

∑

d|n , 26 |d

d (6)

∑

d|n

(−1)d−1φ(
n

d
) = 0 (7)

Proof: If f is multiplicative and n = 2km, where k ≥ 0 and m is odd, let

g(f, k) = {f(2k)−
k−1∑

j=0

f(2j)}

Theorem 2 may be written as:

∑

d|n

(−1)d−1f(
n

d
) = g(f, k)

∑

d|n , 26 |d

f(d) (8)

Now each of the functions: f(n) = n, f(n) = φ(n) is multiplicative, so Theorem 1 applies.
Furthermore,

g(n, k) = 2k −
k−1∑

j=0

2j = 1 (9)

g(φ(n), k) = φ(2k)−
k−1∑

j=0

φ(2j) = 0 (10)

We see that (6) follows from (8) and (9), and (7) follows from (8) and (10).

Theorem 3

∞∑

n=1

σ2(n)xn =
∞∑

n=1

nxn

1 + xn

First Proof:

∞∑

m=1

mxm

1 + xm
=

∞∑

m,k=1

(−1)k−1mxkm
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=
∞∑

n=1

xn(
∑

d|n

(−1)d−1n

d
=

∞∑

n=1

σ2(n)xn

by (6) .

Second Proof: (2) implies

∞∑

n=0

(
n∑

k=0

q(n− k)σ2(k))x
n =

∞∑

n=0

nq(n)xn

so that

(
∞∑

n=0

q(n)xn)(
∞∑

n=0

σ2(n)xn) =
∞∑

n=0

nq(n)xn (11)

Now (1) implies

d

dx
(

∞∑

n=0

q(n)xn) =
d

dx
(
∞∏

n=1

(1 + xn))

that is,

∞∑

n=1

nq(n)xn−1 =
∞∑

n=1

nxn−1
∏

m6=n

(1 + xm)

hence

∞∑

n=0

nq(n)xn =
∞∑

n=0

nxn

1 + xn

∞∏

n=1

(1 + xn)

=
∞∑

n=0

nxn

1 + xn

∞∑

n=0

q(n)xn

by (1). The conclusion now follows from (11) .

Remarks: Theorem 3 may be compared to the well-known Lambert series identity:

∞∑

n=1

σ(n)xn =
∞∑

n=1

nxn

1− xn

In [2], Theorem 2, part (b), we obtained an explicit formula for σ2(n) in terms of q(n) and
q0(n), namely:
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σ2(n) =
n∑

k=1

(−1)k−1kq0(k)q(n− k)
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