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Abstract

In this paper, among other results, we show that for any fixed integer l ≥ 3, there

are only finitely many perfect l-th powers all of whose digits are equal but one, except

for the trivial families 10ln when l ≥ 3 and 8 · 103n if l = 3.

1 Introduction

Obláth [6] proved that the only perfect powers all of whose digits are equal to a fixed one
a 6= 1 in decimal representation are 4, 8 and 9. This is equivalent to saying that the
diophantine equation

a
xn − 1

x− 1
= yq, in integers n ≥ 3, x ≥ 2, 1 ≤ a ≤ x, y ≥ 2, q ≥ 2 (1)
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has no solution when x = 10 and a 6= 1. Inkeri [5] extended Obláth’s result by proving
that when x ∈ {3, . . . , 10} and a 6= 1, equation (1) has the unique solution (a, x, n, y, q) =
(4, 7, 4, 40, 2). Thanks to results of Bugeaud and Mignotte [2], we now know that equation
(1) has only the following three solutions:

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202 and

183 − 1

18− 1
= 73,

when a = 1 and x ∈ {2, . . . , 10}. Gica and Panaitopol [4] studied a variant on Obláth’s
problem. Namely, they found all squares of k decimal digits having k−1 of their digits equal
to each other. They asked to solve the analogous problem for higher powers. In the first
part of this paper, we prove the following result.

Theorem 1 For a fixed integer l ≥ 3, there are only finitely many perfect l-th powers all

whose digits are equal but one, except for the trivial families 10ln for l ≥ 3 and 8 · 103n for

l = 3.

Our main tool for the proof of Theorem 1 is the following result of Corvaja and Zannier
from [3].

Theorem 2 Let f(X,Y ) = a0(X)Y d + · · · + ad(X) be a polynomial in Q[X,Y ] with d ≥ 2
such that a0(X) ∈ Q and the polynomial f(0, Y ) has no multiple root. Let i, j be integers

> 1 which are not relatively prime. If the equation f(in, y) = jm has an infinite sequence of

solutions (m,n, y) ∈ Z3 such that min{m,n, y} → ∞, then there exist h ≥ 1 and p(X) ∈
Q[X] nonconstant such that f(Xh, p(X)) is nonconstant and has only one term.

We point out that in [3], it was shown that the pair h ≥ 1 and p(X) ∈ Q[X] with
the property that f(Xh, p(X)) has only one term exists only under the hypothesis that
min{m,n} → ∞. It was not shown that p(X) is nonconstant. However, a close analysis
of the proof of the result from [3] shows that if (m,n, y) is any infinite family of integer
solutions to the equation f(in, y) = jm with min{m,n} → ∞, then an infinite subfamily
of such solutions have the property that y is in the range of the polynomial p(X); thus, if
y →∞, then p(X) cannot be a constant polynomial. Similarly, it is not specifically said in
[3] that f(Xh, p(X)) is nonconstant but this is also clear from the arguments from [3].

2 Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose that l ≥ 3 is a fixed integer. Consider a perfect l-th
power with all identical digits but one of them. Writing it first as

xl = a . . . aba . . . a(10),

it follows that we may also rewrite it as

xl = a
10n − 1

9
+ c10m, (2)
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where c = b−a. If a = 0, we then get xl = b · 10m, which easily leads to the conclusions that
m is a multiple of l, b = 1 if l 6= 3, and b ∈ {1, 8} if l = 3.

From now on, we assume that a 6= 0. We also assume that c 6= 0, otherwise we recover
Obláth’s problem. We let

f(X,Y ) =
1

c
Y l −

a

9c
(X − 1).

Since a 6= 0, the polynomial f(X,Y ) fulfills the hypothesis from Theorem 2. If (m,n, x) is
an integer solution of equation (2), then

f(10n, x) = 10m.

Thus, we may take i = j = 10 in the statement of Theorem 2. Assume that we have infinitely
many solutions for equation (2). Since the pair (a, c) can assume only finitely many values,
it follows that we may assume that (a, c) is fixed in equation (2). If m, remains bounded
over an infinity of solutions, it follows that we may assume that it is fixed. But then, the
sequence

un =
a

9
· 10n +

(

−
a

9
+ c10m

)

= A · 10n + B,

with A = a/9, and B = −a/9 + c · 10m is a binary recurrent sequence. If B 6= 0, then it
is nondegenerate, therefore it can contain only finitely many perfect l-th powers (see [7]),
which is a contradiction. If B = 0, then c · 10m = a/9. Since c is an integer and a is a digit,
we get that a = 9, c = 1, m = 0, therefore b = a + c = 10, which is a contradiction.

Since a 6= 0, min{m,n} = m. Thus, we may assume that min{m,n} → ∞. Clearly,
x → ∞ as well. By Theorem 2, it follows that there exist a positive integer h and a
nonconstant polynomial p(x) ∈ Q[X] such that f(Xh, p(X)) has only one term. Write
f(Xh, p(X)) = qXk for some nonzero rational q and positive integer k. This leads to

p(X)l = cqXk +
a

9
(Xh − 1) := r(X).

Assume k 6= h. Then

r′(X) = cqkXk−1 +
a

9
hXh−1.

Since r(0) = −a/9 6= 0, and all roots of r are of multiplicity at least l ≥ 3, it follows that all
roots of r are also among the nonzero roots of r′(X). If k > h, then these are the roots of
r1(x) = cqkXk−h+ah/9, while if h > k, then these are the roots of r2(X) = ah/9Xh−k+cqk.
In both cases, the roots of r(X) are multiple roots of r1(X) (or r2(X), respectively). However,
since ahcqk 6= 0, neither the polynomial r1(X) nor the polynomial r2(X) has multiple roots.
Thus, we get k = h, and

p(X)l = (cq + a/9)Xh − a/9.

Since a 6= 0, the above relation is impossible (again, the polynomial on the right is non-
constant since p(X) is nonconstant and does not admit multiple roots). This shows that
indeed equation (2) has only finitely many nontrivial solutions; i.e., solutions different from
xl = 10ln if l ≥ 3 and from x3 = 8 · 103n if l = 3.
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Bugeaud [1] extended Inkeri’s result from [5] to other values of the basis x. He completely
solved equation (1) for x ≤ 100 and also for x = 1000. His result includes that positive
integers of the form

aaaa . . . aa(10), abab . . . ab(10), abcabc . . . abc(10)

cannot be perfect powers except for the integers a, ab and abc, when these integers themselves
are perfect powers. Here, we will consider the problem of which perfect powers have the form

aa . . . ab . . . b(10)

when written in decimal representation, where the number of a’s and the number of b’s are
not necessarily equal. We prove the following theorems.

Theorem 3 The only squares of the form

aa . . . ab . . . b(10)

in decimal representation are the trivial infinite families 102i, 4 · 102i, 9 · 102i with i ∈ N
together with 16, 25, 36, 49, 64, 81, 144, 225, 441, 1444 and 7744.

Theorem 4 For every fixed integer l ≥ 3, there are only finitely many perfect l-th powers

of the form

aa . . . ab . . . b(10)

when written in decimal representation, except for the trivial infinite families 10ln if l ≥ 3
and 8 · 103n if l = 3.

Proof of theorem 3. Suppose that 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9 are two integers, not
necessarily equal, such that

aa . . . ab . . . b(10) = y2, (3)

where the number of a’s in equation (3) is n and the number of b’s is m. It is easy to verify
as done by Gica and Panaitopol [4] that the last 4 digits of a square are equal only when
they are equal to 0. Thus, if m > 3, then the integer b is equal 0. Hence, equation (3) yields

10m · a
10n − 1

9
= y2,

which easily leads to the conclusion that m is an even number; i.e., m = 2i for a certain
integer i ∈ N and

aa . . . a(10) = Y 2.

This last equation is Obláth’s problem for squares which is known to have only the solutions
a = 1, a = 4, a = 9 and n = 1.

We suppose now that m ≤ 3. Equation (3) can be solved using congruences for few
values of a and b but not for all values 1 ≤ a ≤ 9 and 0 ≤ b ≤ 9. So, we proceed as follows.
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• If m = 3, then equation (3) yields

103aa . . . a + 111b = y2.

Hence,
10n+3a− 103a + 999b = (3y)2. (4)

If n ≡ 0 (mod 3); i.e., if n = 3N for a some integer N , then equation (4) yields

Y 2 = X3 − 103a3 + 999a2b, (5)

where Y = 3ay and X = 10N+1a.

If n ≡ 1 (mod 3); i.e., if n = 3N + 1 for some integer N , then equation (4) yields

Y 2 = X3 − 105a3 + 99900a2b, (6)

where Y = 30ay and X = 10N+2a.

If n ≡ 2 (mod 3); i.e., if n = 3N + 2 for some integer N , then equation (4) yields

Y 2 = X3 − 107a3 + 9990000a2b, (7)

where Y = 300ay and X = 10N+3a.

For fixed values of a and b, equations (5), (6) and (7) represent elliptic curves. We used
SIMATH to find all integral points on these elliptic curves. The only solution that we found
which corresponds to an integer solution to equation (1) is x = 1444.

• If m = 2, then equation (3) yields to

10n+2a− 102a + 99b = (3y)2. (8)

The same technique used above reduces equation (8) to finding integral points on a family
of elliptic curves. We used SIMATH and found that the integer solutions that correspond to
solutions to equation (3) are x = 144 and x = 7744.

• If m = 1, then we can use the same technique as above but this is already a particular case
of Gica and Panaitopol’s results from [4]. These solutions are then 16, 25, 36, 49, 81, 225
and 441.

Proof of Theorem 4. Suppose that l ≥ 3 is a fixed integer and that 1 ≤ a ≤ 9 and
0 ≤ b ≤ 9 are two integers such that

aa . . . ab . . . b(10) = xl,

where the number of a’s is n and the number of b’s is m. It follows that we may write rewrite
this equation as

xl = a10m10n − 1

9
+ b

10m − 1

9
. (9)

Hence,

xl =
a

9
10N +

c

9
10m −

b

9
, (10)
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where N = n + m and c = b − a. We suppose that c 6= 0, otherwise we recover Obláth’s
problem. We let

f(X,Y ) =
9

c
Y l −

a

c
X +

b

c
.

If b = 0, we then get

10m · a
10n − 1

9
= xl,

which leads to the conclusion that m is a multiple of l, n = 1, a = 1 if l 6= 3, and a ∈ {1, 8}
if l = 3. We now assume that b 6= 0. The polynomial f fulfills the hypothesis of Theorem 2.
If (m,N, x) is a solution of equation (10), then

f(10N , x) = 10m.

Thus, we may take i = j = 10 in the statement of Theorem 2. Since the pair (a, b) can
assume only finitely many values, it follows that we may assume that the (a, b) is fixed in
equation (10). If m remains bounded over an infinity of solutions, it then follows that we
may assume that it is fixed. But then, the sequence

uN =
a

9
· 10N +

(

−
b

9
+

c

9
10m

)

= A · 10N + B,

where A = a/9 and B = −b/9 + (c/9)10m is a binary recurrent sequence. If B 6= 0, then
it is nondegenerate, therefore it can contain finitely many perfect powers (see again [7]),
which is a contradiction. If B = 0, then c · 10m = a/9. Since c is an integer and a is a
digit, we get that a = 9, c = 1, m = 0, so b = a + c = 10, which is a contradiction. Since
N > m, min{m,N} = m. So, we may assume that min{m,N} → ∞. It is also clear that
x → ∞. By Theorem 2, it follows that there exist a positive integer h and a nonconstant
polynomial p(x) ∈ Q[X], such that f(Xh, p(X)) is nonconstant and has only one term. Write
f(Xh, p(X)) = qXk for some nonzero rational q and positive integer k. This leads to

p(X)l =
cq

9
Xk +

a

9
Xh −

b

9
:= r(X).

Assume k 6= h. Then

r′(X) =
cqk

9
Xk−1 +

ah

9
Xh−1.

Since r(0) = −b/9 6= 0, and all roots of r are of multiplicity at least l ≥ 3, it follows that all
roots of r are also among the nonzero roots of r′(X). If k > h, then these are the roots of
r1(x) = cqkXk−h + ah, while if h > k, then these are the roots of r2(X) = ahXh−k + cqk. In
both cases, the roots of r(X) are multiple roots of r1(X) (or r2(X), respectively). However,
since ahcqk 6= 0, neither the polynomial r1(X) nor the polynomial r2(X) has multiple roots.
Thus, we get k = h, and

p(X)l =
cq + a

9
Xh −

b

9
.

Since b 6= 0, the above relation is impossible (again, the polynomial on the right is non-
constant since P (X) is nonconstant and does not admit multiple roots). This shows that
indeed equation (10) has only finitely many nontrivial solutions; i.e., solutions different from
xl = 10ln if l ≥ 3 and from x3 = 8 · 103n if l = 3.

Remark. The proofs of Theorem 1 and Theorem 4 can easily be generalized to other basis.

6



3 Acknowledgments

The first author was supported in part by a grant from NSERC. Research of F. L. was
supported in part by grants PAPIIT IN104505, SEP-CONACyT 46755 and a Guggenheim
Fellowship.

References

[1] Y. Bugeaud, On the Diophantine equation a(xn − 1)/(x− 1) = yq, in Number Theory:

Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri,

Turku, Finland, May 31-June 4, 1999 , Berlin, de Gruyter, 2001, pp. 19–24.

[2] Y. Bugeaud and M. Mignotte, On integers with identical digits,Mathematika, 46 (1999),
411–417.

[3] P. Corvaja and U. Zannier, On the diophantine equation f(am, y) = bn, Acta Arith. 94

(2000), 25–40.
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