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Abstract

For a fixed integer m ≥ 2, we say that a partition n = p1 + p2 + · · · + pk of a
natural number n is m-non-squashing if p1 ≥ 1 and (m − 1)(p1 + · · · + pj−1) ≤ pj for
2 ≤ j ≤ k. In this paper we give a new bijective proof that the number of m-non-
squashing partitions of n is equal to the number of m-ary partitions of n. Moreover,
we prove a similar result for a certain restricted m-non-squashing partition function
c(n) which is a natural generalization of the function which enumerates non-squashing
partitions into distinct parts (originally introduced by Sloane and the second author).
Finally, we prove that for each integer r ≥ 2,

c(mr+1n)− c(mrn) ≡ 0 (mod mr−1/dr−2),

where d = gcd(2, m).
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1. Introduction

We begin with the following motivation. Suppose we have a number of boxes each labeled
by a positive integer. A box labeled i weighs i pounds and can support a total weight of
bi/(m − 1)c pounds where m is some fixed integer greater than 1. We wish to build single
stacks of boxes in such a way that no box will be squashed by the weight of the boxes above
it. Let bm(n) denote the number of different ways to build such a single stack of boxes where
the total weight of all the boxes in the stack is exactly n pounds.
For the sake of precision, let us say that a partition of a natural number n,

n = p1 + p2 + · · ·+ pk, (1)

is m-non-squashing if

p1 ≥ 1 and (m− 1)(p1 + p2 + · · ·+ pj−1) ≤ pj, 2 ≤ j ≤ k. (2)

If the boxes in a stack are labeled (from the top) p1, p2, . . . , pk, the stack will not collapse if
and only if the corresponding partition is m-non-squashing.
Hirschhorn and Sellers [1] discovered the following connection between m-non-squashing

partitions of n and m-ary partitions of n, that is, partitions of n into powers of m.

Theorem 1.1. The number bm(n) of m-non-squashing partitions of n is equal to the number

of m-ary partitions of n.

An alternative proof of this result is given in [5], and still another proof is given in Sec-
tion 2 below. (See A000123, A005704, A005705, A005706 and A018819 in Sloane’s Online
Encyclopedia of Integer Sequences [4] for sequences of values of bm(n) for 2 ≤ m ≤ 5.)
In this paper we shall study a restrictedm-non-squashing partition function cm(n), which

is the number of m-non-squashing partitions of n such that a partition (1) satisfying (2) also
satisfies

(m− 1)p1 < p2 if k ≥ 2. (3)

(Note that, throughout this work, we will write c(n) for cm(n) whenever the context is un-
derstood.) In particular, c2(n) = b(n), the number of non-squashing partitions into distinct
parts, recently studied by Sloane and Sellers [5] in connection with a certain box-stacking
problem, and also studied subsequently by Rødseth, Sellers, and Courtright [3]. (See A088567
for the values of c2(n).)
As an example, we have c3(18) = 9 with the following stacks being allowed:

18

1

17

2

16

3

15

4

14

1

3

14

5

13

1

4

13

1

5

12

Corresponding to the stacks

1

2

15

6

12

2

4

12

2

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000123
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005704
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005705
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A005706
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A018819
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A088567


we have three more 3-non-squashing partitions of 18 which do not satisfy the restriction
2p1 < p2. Thus b3(18) = 12.
In Section 2 we give a bijective proof of the following result.

Theorem 1.2. The number c(n) of restricted m-non-squashing partitions of n is equal to

the number of partitions of n into powers of m such that either all parts are equal to 1 or,

if the largest part has size mi > 1, then there is at least one part of size mi−1 present in the

partition.

Theorem 1.2 is a natural generalization of the m = 2 result which was proven by Sloane
and Sellers [5, Corollary 3]. Indeed, our motivation in this paper began with the desire
to naturally generalize the work in [5] on a certain restricted family of 2-non-squashing
partitions of n. (See A090678 for additional information on c2(n) modulo 2.)
An immediate consequence of Theorem 1.2 is that the generating function F (q) =

∑∞

n=0 c(n)q
n is explicitly given by

F (q) =
1

1− q
+

∞
∑

i=1

q(m+1)mi−1

∏i
j=0(1− qmj)

; (4)

cf. Section 2. It follows that F (q) satisfies the functional equation

F (q) =
1

1− q
F (qm)−

qm

1− qm
. (5)

Since c(n) can be viewed as a restricted m-ary partition function, and since a number of
congruence properties are well-known for other restricted m-ary partition functions [2], we
decided to search for similar congruence properties satisfied by c(n). This proved to be a
fruitful endeavour as the following result was discovered.

Theorem 1.3. For each integer r ≥ 2 and all n ≥ 1,

c(mr+1n)− c(mrn) ≡ 0 (mod mr−1/dr−2),

where d = gcd(2,m).

Theorem 1.3 is an immediate consequence of the much more precise Theorem 3.1 in Section 3,
where we study arithmetic properties of c(n) by exploiting the functional equation (5) and
by adapting tools developed in [2, 3].

2. A bijection

Let Ak(n) denote the set of m-non-squashing partitions (p1, . . . , pk) of n into exactly k
parts pi satisfying (1) and (2), and let Bk(n) denote the set of m-ary partitions (ε1, . . . , εk)
of n with largest part mk−1, that is

n = ε1m
k−1 + ε2m

k−2 + · · ·+ εk (6)
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with
ε1 ≥ 1 and ε2, . . . , εk ≥ 0. (7)

For (p1, . . . , pk) ∈ Zk, let ψ(p1, . . . , pk) = (ε1, . . . , εk), where

εj = pj − (m− 1)

j−1
∑

i=1

pi, j = 1, 2, . . . , k, (8)

and where, as usual, an empty sum is taken as zero. We may alternatively write (8) as

M







p1
...
pk






=







ε1
...
εk






,

where

M =















1 0 . . . 0 0
1−m 1 . . . 0 0
1−m 1−m . . . 0 0
...

...
...

...
1−m 1−m . . . 1−m 1















.

We see that M ∈ SLk(Z), the multiplicative group of k × k matrices with entries in Z and
determinant +1.
We have

k
∑

j=1

εjm
k−j = (mk−1,mk−2, . . . , 1)







ε1
...
εk







= (mk−1,mk−2, . . . , 1)M







p1
...
pk







= (1, 1, . . . , 1)







p1
...
pk







= p1 + p2 + · · ·+ pk,

so that (1) is satisfied if and only if (6) is true. By (8), we have that (2) holds if and only
if (7) holds. Hence (p1, . . . , pk) ∈ Ak(n) if and only if (ε1, . . . , εk) ∈ Bk(n). Since M is
invertible, it follows (with a slight abuse of notation) that

ψ : Ak(n) −→ Bk(n) (9)

is invertible and, therefore, is a bijection.
In particular, we have

|Ak(n)| = |Bk(n)|,

which may be stated as follows.
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Theorem 2.1. The number of m-non-squashing partitions of n into exactly k parts is equal

to the number of m-ary partitions of n with largest part mk−1.

Moreover,
∣

∣

∣

∣

∣

k
⋃

i=1

Ai(n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

i=1

Bi(n)

∣

∣

∣

∣

∣

,

that is, the number of m-non-squashing partitions of n in at most k parts is equal to the
number bm,k(n) of m-ary partitions of n where the largest part is at most m

k−1.
We also have

∣

∣

∣

∣

∣

⋃

k≥1

Ak(n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋃

k≥1

Bk(n)

∣

∣

∣

∣

∣

,

which proves Theorem 1.1.
Furthermore, when (p1, . . . , pk) and (ε1, . . . , εk) are related by (8), then (3) is satisfied if

and only if ε2 ≥ 1, and Theorem 1.2 follows.
Using the interpretation of c(n) as the number of restricted m-ary partitions of n, we

have, putting c(0) = 1,

F (q) =
∞
∑

n=0

c(n)qn

= 1 +
∑

ε1≥1

qε1 +
∞
∑

k=2

∑

ε1,ε2≥1

ε3,...,εk≥0

qε1mk−1+ε2mk−2+···+εk

=
1

1− q
+

∞
∑

k=2

qmk−1

1− qmk−1
·

qmk−2

1− qmk−2
·

1

1− qmk−3
· · ·

1

1− q
,

and (4) follows.

3. Arithmetic properties of c(n)

In this section we use properties of the generating function

F (q) =
∞
∑

n=0

c(n)qn

to study c(n). The closed form (4) for F (q) will not be of any direct use to us. Our method
is strongly dependent upon the generating function having a reasonably simple functional
equation. In the present case we have the nice functional equation (5), which we shall
repeatedly use in the form

F (q)− 1 =
1

1− q
F (qm)−

1

1− qm
. (10)
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3.1. Statement of main result

We shall prove the following theorem from which Theorem 1.3 immediately follows.

Theorem 3.1. We have

∞
∑

n=1

(c(mn)− c(n)) qn =
q

1− q
(F (q)− 1) , (11)

∞
∑

n=1

(

c(m2n)− c(mn)
)

qn =
mq

(1− q)2
(F (q)− 1) +

(m− 1)q

(1− q)2
, (12)

∞
∑

n=1

(

c(m3n)− c(m2n)
)

qn =

(

−
1
2
(m3 −m2)q

(1− q)2
+

m3q

(1− q)3

)

(F (q)− 1) (13)

+

(

−
1
2
(m3 − 3m2 + 2m)q

(1− q)2
+
(m3 −m2)q

(1− q)3

)

,

and more generally for r ≥ 3,

2r−2

∞
∑

n=1

(

c(mr+1n)− c(mrn)
)

qn (14)

=

(

r
∑

i=1

µr,iq

(1− q)i+1

)

(F (q)− 1) +

(

r
∑

i=1

λr,iq

(1− q)i+1

)

,

where µr,i and λr,i are integers satisfying

µr,i ≡ λr,i ≡ 0 (mod mr−1+(i2−i)/2). (15)

In Section 3.2 we state the necessary auxiliaries for the proof of Theorem 3.1, but postpone
the technical details. In Section 3.3 we prove Theorem 3.1. In Section 3.4 we demonstrate
the technical details necessary to prove the auxiliary results in Section 3.2.

3.2. Auxiliaries

The power series in this paper are elements of Z[[q]], the ring of formal power series in q
with coefficients in Z. We define a Z-linear operator

U : Z[[q]] −→ Z[[q]]

by

U
∑

n

a(n)qn =
∑

n

a(mn)qn.

Notice that if f(q), g(q) ∈ Z[[q]], then

U (f(q)g(qm)) = (Uf(q)) g(q). (16)
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Let
hi = hi(q) =

q

(1− q)i+1
for i ≥ 0. (17)

Then

hi =
∞
∑

n=1

(

n+ i− 1

i

)

qn, (18)

so that

Uhr =
∞
∑

n=1

(

mn+ r − 1

r

)

qn. (19)

Simple calculations show that

Uh0 = h0, (20)

Uh1 = mh1, (21)

Uh2 = −
1
2
m(m− 1)h1 +m

2h2.

We shall recursively define functions Hr and Lr. The motivation for these definitions will
become clear in the following section. First, let

H0 = h0 and Hi+1 = U
( 1

1− q
Hi

)

, i ≥ 0. (22)

We find

H1 = mh1, (23)

H2 = −
1
2
m2(m− 1)h1 +m

3h2.

We have similar results for each r ≥ 2, as shown by the following lemma.

Lemma 3.1. For r ≥ 2 there exist integers µr,i such that

2r−2Hr =
r
∑

i=1

µr,ihi, (24)

where

µr,i ≡ 0 (mod mr−1+(i2−i)/2) for 1 ≤ i ≤ r. (25)

Second, we define

L0 = 0 and Li+1 = Hi+1 − (UHi)
1

1− q
+ ULi, i ≥ 0. (26)

Then

L1 = (m− 1)h1,

L2 = −
1
2
m(m− 1)(m− 2)h1 +m

2(m− 1)h2. (27)
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Lemma 3.2. For r ≥ 2 there exist integers λr,i such that

2r−2Lr =
r
∑

i=1

λr,ihi, (28)

where

λr,i ≡ 0 (mod mr−1+(i2−i)/2) for 1 ≤ i ≤ r.

3.3. Proof of Theorem 3.1

With the results of the previous section in hand, it is straightforward to prove Theo-
rem 3.1. We start by applying the operator U to the functional equation (10). Using (16)
we get

UF (q)− 1 =
1

1− q
F (q)−

1

1− q
,

so that
UF (q)− F (q) =

q

1− q
(F (q)− 1) ,

which is (11).
Using (10) we further obtain

UF (q)− F (q) =
q

1− q

(

1

1− q
F (qm)−

1

1− qm

)

= h1F (q
m)− h0

1

1− qm
.

Application of U gives, by (20) and (21),

U2F (q)− UF (q) = mh1F (q)− h0
1

1− q

= mh1 (F (q)− 1) + (m− 1)h1,

which proves (12). Repeating this process once more, we get (13).
More generally, we claim that

U r+1F (q)− U rF (q) = Hr (F (q)− 1) + Lr for r ≥ 0. (29)

This follows by induction on r. The identity is true for r = 0. Suppose that it holds for
some r ≥ 0. Then, by (10),

U r+1F (q)− U rF (q) = Hr

(

1

1− q
F (qm)−

1

1− qm

)

+ Lr

=

(

1

1− q
Hr

)

F (qm)−Hr
1

1− qm
+ Lr.
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Application of U now gives, using (22), (16), and (26),

U r+2F (q)− U r+1F (q) = Hr+1F (q)− (UHr)
1

1− q
+ ULr

= Hr+1 (F (q)− 1) + Lr+1.

This proves our claim.
For r ≥ 2, we multiply (29) by 2r−2, and apply Lemma 3.1 to 2r−2Hr and Lemma 3.2 to

2r−2Lr. Then we get (14) with the congruences (15) satisfied. This completes the proof of
Theorem 3.1.

3.4. Technical details

In this section we prove Lemmas 3.1 and 3.2. For this, we shall need a few properties of
binomial coefficients. It is well known that the abelian group of all polynomials of degree at
most r in n with complex coefficients, and which map integers to integers, is free with basis
{
(

n+i−1
i

)

| i = 0, 1, . . . , r}. Moreover, the subgroup consisting of those polynomials which

also map 0 to 0, is free with basis {
(

n+i−1
i

)

| i = 1, . . . , r}. In particular, the following lemma
holds.

Lemma 3.3. For each positive integer r there exist unique integers αr,i, such that for all n,

(

mn+ r − 1

r

)

=
r
∑

i=1

αr,i

(

n+ i− 1

i

)

. (30)

Comparing the coefficients of nr in (30), we get

αr,r = mr, (31)

and comparing the coefficients of nr−1, we get

αr,r−1 = −
1
2
(r − 1)(m− 1)mr−1. (32)

It follows from Lemma 3.3, (18), and (19) that

Uhr =
r
∑

i=1

αr,ihi for r ≥ 1. (33)

We now turn to Lemma 3.1. We prove a slightly more precise result, which we shall need
in our proof of Lemma 3.2. Notice that the set {h0, h1, . . .} is linearly independent over Z
(and over C), so the integers κr,i in Lemma 3.4 below are uniquely determined by r and i
(and m). The same remark applies, of course, to other linear combinations of the hi.

Lemma 3.4. For 1 ≤ i ≤ r there exist integers κr,i such that

Hr =
r
∑

i=1

κr,ihi, (34)

where

2r−iκr,i ≡ 0 (mod mr+(i2−i)/2). (35)
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Remark. Let r ≥ 2. Notice that (35) for i = 1 implies 2r−2κr,1 ≡ 0 (mod m
r−1). Thus, by

setting µr,i = 2
r−2κr,i, Lemma 3.4 gives us Lemma 3.1.

Note. In the following we set κr,i = 0 if i = 0 or if i > r. These values of κ trivially
satisfy (35).

Proof. We use induction on r. By (23), the lemma is true for r = 1. Suppose that for
some r > 1, we have

Hr−1 =
r−1
∑

i=1

κr−1,ihi, (36)

where the κr−1,i are integers satisfying

2r−1−iκr−1,i ≡ 0 (mod mr−1+(i2−i)/2), i = 1, 2, . . . , r − 1. (37)

Then, by (22), (36), and (17),

Hr = U

(

1

1− q
Hr−1

)

= U
r−1
∑

i=1

κr−1,ihi+1 =
r
∑

j=1

κr−1,j−1Uhj,

and, by (33),

Hr =
r
∑

j=1

κr−1,j−1

j
∑

i=1

αj,ihi =
r
∑

i=1

r
∑

j=i

αj,iκr−1,j−1hi,

so that (34) holds with

κr,i =
r
∑

j=i

αj,iκr−1,j−1,

and all the κr,i are integers.
Moreover, for 1 ≤ i ≤ r we have

2r−iκr,i =
r
∑

j=i

2j−iαj,i · 2
r−jκr−1,j−1. (38)

By (37),

2r−jκr−1,j−1 ≡ 0 (mod mr+(i2−i)/2) for j ≥ i+ 2,

so that, by (38), (31), (32), and (37),

2r−iκr,i ≡ αi,i · 2
r−iκr−1,i−1 + 2αi+1,i · 2

r−1−iκr−1,i

≡ mi · 2r−iκr−1,i−1 − i(m− 1)mi · 2r−1−iκr−1,i

≡ 0 (mod mr+(i2−i)/2).

Incidentally, we have κr,r = m(r2+r)/2.
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Next we consider the term UHr appearing in the definition (26). We have, by (23) and
(21),

UH1 = m2h1.

Similarly we find
UH2 = −

1
2
m3(m− 1)(m+ 1)h1 +m

5h2.

Lemma 3.5. For 1 ≤ i ≤ r there exist integers νr,i such that

2r−1UHr =
r
∑

i=1

νr,ihi, (39)

where

νr,i ≡ 0 (mod mr+(i2+i)/2). (40)

Proof. For r ≥ 1, we have by Lemma 3.4 and (33),

2r−1UHr = 2
r−1

r
∑

j=1

κr,jUhj = 2
r−1

r
∑

j=1

κr,j

j
∑

i=1

αj,ihi

= 2r−1

r
∑

i=1

r
∑

j=i

αj,iκr,jhi,

so that (39) is satisfied by setting

νr,i = 2
r−1

r
∑

j=i

αj,iκr,j.

Then all the νr,i are integers.
Moreover, by (35),

2r−1κr,j ≡ 0 (mod mr+(i2+i)/2) for j ≥ i+ 1.

Hence, using (31) and (35),

νr,i ≡ 2
r−1αi,iκr,i ≡ mi · 2r−1κr,i ≡ 0 (mod mr+(i2+i)/2).

Finally, we prove Lemma 3.2. Again we use induction on r. By (27), the lemma is true
for r = 2. Suppose that for some r ≥ 3 there are integers λr−1,j such that

2r−3Lr−1 =
r−1
∑

j=1

λr−1,jhj,

where
λr−1,j ≡ 0 (mod mr−2+(j2−j)/2). (41)
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Then

U
(

2r−3Lr−1

)

=
r−1
∑

j=1

λr−1,jUhj =
r−1
∑

j=1

λr−1,j

j
∑

i=1

αj,ihi

=
r−1
∑

i=1

r−1
∑

j=i

αj,iλr−1,jhi.

Hence,

2r−2Lr = 2
r−2Hr − 2

r−2(UHr−1)
1

1− q
+ 2r−2ULr−1 by (26)

=
r
∑

i=1

µr,ihi −
r−1
∑

j=1

νr−1,jhj+1 + 2
r−2ULr−1 by (24) and (39)

=
r
∑

i=1

µr,ihi −
r
∑

i=2

νr−1,i−1hi + 2
r−1
∑

i=1

r−1
∑

j=i

αj,iλr−1,jhi.

Thus, (28) holds with

λr,i = µr,i − νr−1,i−1 + 2
r−1
∑

j=i

αj,iλr−1,j , (42)

where νr−1,0 = 0. In particular we have, by (25) and (40),

λr,r = µr,r − νr−1,r−1 ≡ 0 (mod mr−1+(r2−r)/2),

and, for 1 ≤ i ≤ r − 1,

λr−1,j ≡ 0 (mod mr−1+(i2−i)/2) for j ≥ i+ 1.

Hence, using (42), (25), (40), (31), and (41), we have

λr,i = µr,i − νr−1,i−1 + 2αi,iλr−1,i ≡ 0 (mod mr−1+(i2−i)/2).

This completes the proof of Lemma 3.2.

As in the case of Lemma 3.1 and Lemma 3.4, we can state a more precise form of
Lemma 3.2. While we used the more precise Lemma 3.4 in the proof of Lemma 3.5 on our
way towards the proof of Lemma 3.2, there is no such reason to sharpen Lemma 3.2.

4. Closing remarks

It is interesting to note that the results above provide a general framework for proving
a number of similar identities. Indeed, thanks to the bijection given in (9), we now have
the means to prove an infinite family of similar partition results. For, if instead of (3) we
restrict (2) in another way, we get a different type of restricted m-non-squashing partition.
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Then, by (9), we can prove that the number of such partitions of n is equal to the number
of suitably restricted m-ary partitions of n.
Once we have established that a certain restricted m-non-squashing partition function is

equal to a suitably restricted m-ary partition function, it will most likely be straightforward
to find a closed form for the corresponding generating function G(q) (similar to (4) above).
If a functional equation relating G(q) and G(qm) (similar to (5) above) can then be found,
then one can use the method utilized in this paper to prove arithmetic properties for the
restricted m-non-squashing partition function in question.
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