Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1

Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations

Mark A. Shattuck and Carl G. Wagner
Mathematics Department
University of Tennessee
Knoxville, TN 37996-1300
USA
shattuck@math.utk.edu

wagner@math.utk.edu

Abstract

We examine the parity of some statistics on lattice paths and Laguerre configurations, giving both algebraic and combinatorial treatments. For the former, we evaluate q-generating functions at $q=-1$; for the latter, we define appropriate parity-changing involutions on the associated structures. In addition, we furnish combinatorial proofs for a couple of related recurrences.

1 Introduction

To establish the familiar result that a finite nonempty set has equally many subsets of odd and of even cardinality it suffices either to set $q=-1$ in the generating function

$$
\begin{equation*}
\sum_{S \subseteq[n]} q^{|S|}=\sum_{k=0}^{n}\binom{n}{k} q^{k}=(1+q)^{n}, \tag{1.1}
\end{equation*}
$$

where $[n]:=\{1, \ldots, n\}$, or to observe that the map

$$
S \mapsto \begin{cases}S \cup\{1\}, & \text { if } 1 \notin S ; \tag{1.2}\\ S-\{1\}, & \text { if } 1 \in S\end{cases}
$$

is a parity changing involution of $2^{[n]}$.

With this simple example as a model, we analyze the parity of a well known statistic on lattice paths, as well as two statistics on what Garsia and Remmel [3] call Laguerre configurations, i.e., distributions of labeled balls to unlabeled, contents-ordered boxes. These statistics have in common the fact that their generating functions all involve q-binomial coefficients.

In \S, we evaluate such coefficients and their sums, known as Galois numbers, when $q=-1$, giving both algebraic and bijective proofs. We also give a bijective proof of a recurrence for Galois numbers, furnishing an elementary alternative to Goldman and Rota's proof by the method of linear functionals 囲. In \oint 包 we carry out a similar evaluation of the two types of q-Lah numbers that arise as generating functions for the aforementioned Laguerre configuration statistics. In addition, we supply a combinatorial proof of a recurrence for sums of Lah numbers.

The notational conventions of this paper are as follows: $\mathbb{N}:=\{0,1,2, \ldots\}, \mathbb{P}:=\{1,2, \ldots\}$, $[0]:=\varnothing$, and $[n]:=\{1, \ldots, n\}$ for $n \in \mathbb{P}$. If q is an indeterminate, then $0_{q}:=0$, $n_{q}:=1+q+\cdots+q^{n-1}$ if $n \in \mathbb{P}, 0_{q}^{!}:=1, n_{q}^{!}:=1_{q} 2_{q} \cdots n_{q}$ if $n \in \mathbb{P}$, and

$$
\binom{n}{k}_{q}:= \begin{cases}\frac{n!}{n_{\dot{q}}^{!}(n-k)!}, & \text { if } 0 \leq k \leq n \tag{1.3}\\ 0, & \text { if } k<0 \text { or } 0 \leq n<k\end{cases}
$$

Our notation in (1.3) for the q-binomial coefficient, which agrees with Knuth's [5, has the advantage over the traditional notation $\left[\begin{array}{l}n \\ k\end{array}\right]$ that it can be used to reflect particular values of the parameter q.

2 A Statistic on Lattice Paths

Let $\Lambda(n, k)$ denote the set of (minimal) lattice paths from (0,0) to $(k, n-k$), where $0 \leqslant k \leqslant n$. Each $\lambda \in \Lambda(n, k)$ corresponds to a sequential arrangement $t_{1} \cdots t_{n}$ of the multiset $\left\{1^{k}, 2^{n-k}\right\}$, with 1 representing a horizontal and 2 a vertical step. Hence, $|\Lambda(n, k)|=\binom{n}{k}$. Moreover, since the area $\alpha(\lambda)$ subtended by λ is equal to the number of inversions in the corresponding word (i.e., the number of ordered pairs (i, j) with $1 \leqslant i<j \leqslant n$ such that $t_{i}>t_{j}$), and since the q-binomial coefficient is the generating function for the statistic that records the number of inversions in such words [10, Prop. 1.3.17], it follows that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda(n, k)} q^{\alpha(\lambda)}=\binom{n}{k}_{q} \tag{2.1}
\end{equation*}
$$

a result that Berman and Fryer [1] p. 218] attribute to Polya. With

$$
\begin{equation*}
\Lambda(n):=\bigcup_{0 \leqslant k \leqslant n} \Lambda(n, k), \tag{2.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda(n)} q^{\alpha(\lambda)}=G_{q}(n):=\sum_{k=0}^{n}\binom{n}{k}_{q} \tag{2.3}
\end{equation*}
$$

Let $\Lambda_{r}(n):=\{\lambda \in \Lambda(n): \alpha(\lambda) \equiv r(\bmod 2)\}$, and let $\Lambda_{r}(n, k):=\Lambda(n, k) \cap \Lambda_{r}(n)$. Clearly,

$$
\begin{equation*}
\binom{n}{k}_{-1}=\left|\Lambda_{0}(n, k)\right|-\left|\Lambda_{1}(n, k)\right| \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{-1}(n)=\left|\Lambda_{0}(n)\right|-\left|\Lambda_{1}(n)\right| . \tag{2.5}
\end{equation*}
$$

In evaluating (2.4) and (2.5) we shall employ several alternative characterizations of $\binom{n}{k}_{q}$, namely, the recurrence

$$
\begin{equation*}
\binom{n}{k}_{q}=\binom{n-1}{k-1}_{q}+q^{k}\binom{n-1}{k}_{q}, \quad \forall n, k \in \mathbb{P} \tag{2.6}
\end{equation*}
$$

with $\binom{n}{0}_{q}=\delta_{n, 0}$ and $\binom{0}{k}_{q}=\delta_{k, 0}, \forall n, k \in \mathbb{N}$, the generating function

$$
\begin{equation*}
\sum_{n \geqslant 0}\binom{n}{k}_{q} x^{n}=\frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)}, \quad \forall k \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

and the summation formula

$$
\begin{equation*}
\binom{n}{k}_{q}=\sum_{\substack{d_{0}+d_{1}+\cdots+d_{k}=n-k \\ d_{i} \in \mathbb{N}}} q^{d_{1}+2 d_{2}+\cdots+k d_{k}} \tag{2.8}
\end{equation*}
$$

See [11, pp. 201-202] for further details.
Setting $q=-1$ in (2.7) and treating separately the even and odd cases for k yields
Theorem 2.1. If $0 \leqslant k \leqslant n$, then

$$
\binom{n}{k}_{-1}= \begin{cases}0, & \text { if } n \text { is even and } k \text { is odd } \tag{2.9}\\ \binom{\lfloor n / 2\rfloor}{\lfloor k / 2\rfloor}, & \text { otherwise } .\end{cases}
$$

A straightforward application of (2.9) yields
Corollary 2.1.1. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
G_{-1}(n)=2^{\lceil n / 2\rceil} \tag{2.10}
\end{equation*}
$$

The above results are well known and apparently very old. But the following bijective proofs of (2.9) and (2.10), which convey a more visceral understanding of these formulas, are, so far as we know, new.

Bijective proofs of Theorem 2.1 and Corollary 2.1.1.

As above, we represent a lattice path $\lambda \in \Lambda(n)$ by a word $t_{1} t_{2} \cdots t_{n}$ in the alphabet $\{1,2\}$, recalling that $\alpha(\lambda)$ is equal to the number of inversions in this word, which we also denote by $\alpha(\lambda)$. By (2.5), formula (2.10) asserts that

$$
\begin{equation*}
\left|\Lambda_{0}(n)\right|-\left|\Lambda_{1}(n)\right|=2^{\lceil n / 2\rceil} . \tag{2.11}
\end{equation*}
$$

Our strategy for proving (2.11) is to identify a subset $\Lambda_{0}^{+}(n)$ of $\Lambda_{0}(n)$ having cardinality $2^{\lceil n / 2\rceil}$, along with an α-parity changing involution of $\Lambda(n)-\Lambda_{0}^{+}(n)$. Let $\Lambda_{0}^{+}(n)$ comprise those words $\lambda=t_{1} t_{2} \cdots t_{n}$ such that for $i=1,2, \ldots,\lfloor n / 2\rfloor$,

$$
\begin{equation*}
t_{2 i-1} t_{2 i}=11 \text { or } 22 . \tag{2.12}
\end{equation*}
$$

Clearly, $\Lambda_{0}^{+}(n) \subseteq \Lambda_{0}(n)$ and $\left|\Lambda_{0}^{+}(n)\right|=2^{\lceil n / 2\rceil}$. If $\lambda \in \Lambda(n)-\Lambda_{0}^{+}(n)$, let i_{0} be the smallest index for which (2.12) fails to hold and let λ^{\prime} be the result of switching $t_{2 i_{0}-1}$ and $t_{2 i_{0}}$ in λ. The map $\lambda \mapsto \lambda^{\prime}$ is clearly an α-parity changing involution of $\Lambda(n)-\Lambda_{0}^{+}(n)$, which proves (2.11) and hence (2.10).

By (2.4), formula (2.9) asserts that

$$
\left|\Lambda_{0}(n, k)\right|-\left|\Lambda_{1}(n, k)\right|= \begin{cases}0, & \text { if } n \text { is even and } k \text { is odd; } \tag{2.13}\\ \binom{\lfloor n / 2\rfloor}{\lfloor k / 2\rfloor}, & \text { otherwise. }\end{cases}
$$

To show (2.13), let $\Lambda_{0}^{+}(n, k)=\Lambda_{0}^{+}(n) \cap \Lambda(n, k)$. The cardinality of $\Lambda_{0}^{+}(n, k)$ is given by the right-hand side of (2.13), and the restriction of the above map to $\Lambda(n, k)-\Lambda_{0}^{+}(n, k)$ is again an involution and inherits the parity changing property. This proves (2.13), and hence (2.9).

In tabulating the numbers $\binom{n}{k}_{-1}$ it is of course more efficient to use the recurrence

$$
\begin{equation*}
\binom{n}{k}_{-1}=\binom{n-1}{k-1}_{-1}+(-1)^{k}\binom{n-1}{k}_{-1}, \tag{2.14}
\end{equation*}
$$

representing the case $q=-1$ of (2.6).
Comparison of (2.9) with an evaluation of $\binom{n}{k}_{-1}$ based on (2.8) yields a pair of interesting identities.

Corollary 2.1.2. If $1 \leqslant m \leqslant\lfloor n / 2\rfloor$, then

$$
\begin{equation*}
\sum_{j=0}^{n-2 m}(-1)^{j}\binom{m+j-1}{m-1}\binom{n-m-j}{m}=\binom{\lfloor n / 2\rfloor}{ m} \tag{2.15}
\end{equation*}
$$

and if $0 \leqslant m \leqslant\lfloor(n-1) / 2\rfloor$, then

$$
\sum_{j=0}^{n-2 m-1}(-1)^{j}\binom{m+j}{m}\binom{n-m-j-1}{m}= \begin{cases}0, & \text { if } n \text { is even } \tag{2.16}\\ \binom{\lfloor n / 2\rfloor}{ m}, & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Setting $q=-1$ and $k=2 m$ in (2.8) yields

$$
\begin{aligned}
\binom{n}{2 m}_{-1} & \sum_{d_{0}+d_{1}+\cdots+d_{2 m}=n-2 m}(-1)^{d_{1}+d_{3}+\cdots+d_{2 m-1}} \\
& =\sum_{\left(j=d_{1}+d_{3}+\cdots+d_{2 m-1}\right)} \sum_{j=0}^{n-2 m}(-1)^{j}\binom{m+j-1}{m-1}\binom{n-m-j}{m},
\end{aligned}
$$

which implies (2.15) by (2.9), upon independently choosing the d_{i} 's of even index, which sum to $n-2 m-j$. Setting $k=2 m+1$ yields

$$
\begin{aligned}
\binom{n}{2 m+1}_{-1} & =\sum_{d_{0}+d_{1}+\cdots+d_{2 m+1}=n-2 m-1}(-1)^{d_{1}+d_{3}+\cdots+d_{2 m+1}} \\
& =\sum_{\left(j=d_{1}+d_{3}+\cdots+d_{2 m+1}\right)} \sum_{j=0}^{n-2 m-1}(-1)^{j}\binom{m+j}{m}\binom{n-m-j-1}{m},
\end{aligned}
$$

which implies (2.16) by (2.9).
Corollary 2.1.1 above can also be proved by induction from the case $q=-1$ of the following recurrence for $G_{q}(n)$:

Theorem 2.2. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
G_{q}(n+1)=2 G_{q}(n)+\left(q^{n}-1\right) G_{q}(n-1), \tag{2.17}
\end{equation*}
$$

where $G_{q}(0)=1$ and $G_{q}(1)=2$.
Proof. Let $a(n, i):=|\{\lambda \in \Lambda(n): \alpha(\lambda)=i\}|$, where $n \in \mathbb{N}$ and $a(n, i):=0$ if $i<0$. Showing (2.17) is equivalent to showing that

$$
\begin{align*}
a(n+1, i) & =2 a(n, i)+a(n-1, i-n)-a(n-1, i) \\
& =a(n, i)+(a(n, i)-a(n-1, i))+a(n-1, i-n) \tag{2.18}
\end{align*}
$$

for all $i \in \mathbb{N}$. As above, we represent a lattice path $\lambda \in \Lambda(n+1)$ by a word $t_{1} t_{2} \cdots t_{n+1}$ in the alphabet $\{1,2\}$, recalling that $\alpha(\lambda)$ is equal to the number of inversions in this word.

The term $a(n+1, i)$ thus counts all words of length $n+1$ with i inversions. The term $a(n, i)$ counts the subclass of such words for which $t_{n+1}=2$. The term $a(n, i)-a(n-1, i)$ counts the subclass of such words for which $t_{1}=t_{n+1}=1$. For deletion of t_{1} is a bijection from this subclass to the class of words $u_{1} u_{2} \cdots u_{n}$ with i inversions and $u_{n}=1$, and there are clearly $a(n, i)-a(n-1, i)$ words of the latter type. Finally, the term $a(n-1, i-n)$ counts the subclass of words for which $t_{1}=2$ and $t_{n+1}=1$. For deletion of t_{1} and t_{n+1} is a bijection from this subclass to the class of words $v_{1} v_{2} \cdots v_{n-1}$ with $i-n$ inversions (both classes being empty if $i<n$).

The above proof provides an elementary alternative to Goldman and Rota's proof of (2.17) using the method of linear functionals 国.

3 Two Statistics on Laguerre Configurations

Let $\mathcal{L}(n, k)$ denote the set of distributions of n balls, labeled $1,2, \ldots, n$, among k unlabeled, contents-ordered boxes, with no box left empty. Garsia and Remmel [3] term such distributions Laguerre configurations. If $L(n, k):=|\mathcal{L}(n, k)|$, then $L(n, 0)=\delta_{n, 0}, \forall n \in \mathbb{N}$, $L(n, k)=0$ if $0 \leqslant n<k$, and

$$
\begin{equation*}
L(n, k)=\frac{n!}{k!}\binom{n-1}{k-1}, \quad 1 \leqslant k \leqslant n \tag{3.1}
\end{equation*}
$$

The numbers $L(n, k)$ are called Lah numbers, after Ivo Lah [6], who introduced them as the connection constants in the polynomial identities

$$
\begin{equation*}
x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n} L(n, k) x(x-1) \cdots(x-k+1), \quad \forall n \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

From (3.1) it follows that

$$
\begin{equation*}
\sum_{n \geqslant k} L(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(\frac{x}{1-x}\right)^{k}, \quad \forall k \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

The Lah numbers also satisfy the recurrence relations

$$
\begin{equation*}
L(n, k)=L(n-1, k-1)+(n+k-1) L(n-1, k), \quad \forall n, k \in \mathbb{P} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L(n, k)=\frac{n}{k} L(n-1, k-1)+n L(n-1, k), \quad \forall n, k \in \mathbb{P} . \tag{3.5}
\end{equation*}
$$

The set $\mathcal{L}(n):=\bigcup_{k} \mathcal{L}(n, k)$ comprises all distributions of n balls, labeled $1,2, \ldots, n$, among n unlabeled, contents-ordered boxes. If $L(n):=|\mathcal{L}(n)|$, it follows from (B.3) that

$$
\begin{equation*}
\sum_{n \geqslant 0} L(n) \frac{x^{n}}{n!}=e^{x /(1-x)} \tag{3.6}
\end{equation*}
$$

and differentiating (3.6) yields [7, p. 171], [日, A000262]
Theorem 3.1. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
L(n+1)=(2 n+1) L(n)-\left(n^{2}-n\right) L(n-1) \tag{3.7}
\end{equation*}
$$

where $L(0)=L(1)=1$.
Combinatorial proof of Theorem 3.1.
We'll argue that the cardinality of $\mathcal{L}(n+1)$ is given by the right-hand side of (3.7) when $n \geqslant 1$. Let us represent members of $\mathcal{L}(m)$ by partitions of $[m]$ in which the elements of each block are ordered. As there are clearly $L(n)$ members of $\mathcal{L}(n+1)$ in which the singleton
$\{n+1\}$ occurs, we need only show that the members of $\mathcal{L}(n+1)$ in which the singleton $\{n+1\}$ doesn't occur number $2 n L(n)-n(n-1) L(n-1)$.

Suppose $\lambda \in \mathcal{L}(n)$ and consider the $2 n$ members of $\mathcal{L}(n+1)$ gotten from λ by inserting $n+1$ either directly before or directly after an element of $[n]$ within λ. Then $2 n L(n)$ double counts members of $\mathcal{L}(n+1)$ for which $n+1$ is neither first nor last in its block and counts once all other members of $\mathcal{L}(n+1)$ for which $n+1$ goes in a block with at least one element of $[n]$. But there are $n(n-1) L(n-1)$ configurations of the former type as seen upon choosing an element j of $[n]$ to directly follow $n+1$ and then inserting $n+1, j$ directly after an element of $[n]-\{j\}$ in a Laguerre configuration of the set $[n]-\{j\}$.

In what follows, we consider two statistics on Laguerre configurations.

3.1 The Statistic i

Given a distribution $\delta \in \mathcal{L}(n, k)$, let us represent the ordered contents of each box by a word in $[n]$, and then arrange these words in a sequence W_{1}, \ldots, W_{k} in decreasing order of their least elements. Replacing the commas in this sequence by zeros and counting inversions in the resulting single word yields the value $i(\delta)$, i.e.,

$$
\begin{equation*}
i(\delta)=\text { the number of inversions in } W_{1} 0 W_{2} 0 \cdots 0 W_{k-1} 0 W_{k} \tag{3.8}
\end{equation*}
$$

As an illustration, for the distribution $\delta \in \mathcal{L}(9,4)$ given by

$$
\begin{equation*}
\lfloor 3,4,9\rfloor\lfloor 8,1\rfloor\lfloor 2,6\rfloor\lfloor 7,5\rfloor, \tag{3.9}
\end{equation*}
$$

we have $i(\delta)=35$, the number of inversions in the word 750349026081 .
The statistic i is due to Garsia and Remmel [3], who show that the generating function

$$
\begin{equation*}
L_{q}(n, k):=\sum_{\delta \in \mathcal{L}(n, k)} q^{i(\delta)}=q^{k(k-1)} \frac{n!}{k_{q}^{!}}\binom{n-1}{k-1}_{q}, \quad 1 \leqslant k \leqslant n \tag{3.10}
\end{equation*}
$$

Generalizing (3.4), the q-Lah number $L_{q}(n, k)$ satisfies the recurrence

$$
\begin{equation*}
L_{q}(n, k)=q^{n+k-2} L_{q}(n-1, k-1)+(n+k-1)_{q} L_{q}(n-1, k), \forall n, k \in \mathbb{P} . \tag{3.11}
\end{equation*}
$$

Garsia and Remmel also show that

$$
\begin{equation*}
x_{q}(x+1)_{q} \cdots(x+n-1)_{q}=\sum_{k=1}^{n} L_{q}(n, k) x_{q}(x-1)_{q} \cdots(x-k+1)_{q} \tag{3.12}
\end{equation*}
$$

where $x_{q}:=\left(q^{x}-1\right) /(q-1)$. It seems not to have been noted that (3.12) is equivalent to

$$
\begin{equation*}
x\left(q x+1_{q}\right) \cdots\left(q^{n-1} x+(n-1)_{q}\right)=\sum_{k=1}^{n} L_{q}(n, k) x\left(\frac{x-1_{q}}{q}\right) \cdots\left(\frac{x-(k-1)_{q}}{q^{k-1}}\right) \tag{3.13}
\end{equation*}
$$

which generalizes (3.2).

Theorem 3.2. If $1 \leq k \leq n$, then

$$
\begin{equation*}
L_{-1}(n, k)=\delta_{n, k} . \tag{3.14}
\end{equation*}
$$

Proof. Formula (3.14) is an immediate consequence of (3.10) and (2.9), upon considering even and odd cases for n, as $j_{-1}=0$ if j is even (cf. [8]). For a bijective proof of (3.14), first note that $L_{-1}(n, k)=\left|\mathcal{L}_{0}(n, k)\right|-\left|\mathcal{L}_{1}(n, k)\right|$, where $\mathcal{L}_{r}(n, k):=\{\delta \in \mathcal{L}(n, k): i(\delta) \equiv r(\bmod 2)\}$. Now $\mathcal{L}(n, n)$ consists of a single distribution δ, with $i(\delta)=n(n-1)=$ the number of inversions in $n 0(n-1) 0 \cdots 0201$, whence $\left|\mathcal{L}_{0}(n, n)\right|=1$ and $\left|\mathcal{L}_{1}(n, n)\right|=0$. If $1 \leqslant k<n$ and $\delta \in \mathcal{L}(n, k)$ gives rise to the sequence W_{1}, \ldots, W_{k}, then locate the leftmost word W_{i} containing at least two letters and interchange its first two letters. The resulting map is a parity changing involution of $\mathcal{L}(n, k)$, whence $\left|\mathcal{L}_{0}(n, k)\right|-\left|\mathcal{L}_{1}(n, k)\right|=0$.

Remark. Note that $\mathcal{L}(n, 1)=\mathcal{S}_{n}$, the set of permutations of $[n]$, and so (3.10) is a generalization of the well known result that

$$
\begin{equation*}
\sum_{\pi \in \mathcal{S}_{n}} q^{i(\pi)}=n_{q}^{!} \tag{3.15}
\end{equation*}
$$

and (3.14) a generalization of the fact that among the permutations of $[n]$, if $n \geqslant 2$, there are as many with an odd number of inversions as there are with an even number of inversions.

3.2 The Statistic \tilde{w}

As above, given $\delta \in \mathcal{L}(n, k)$, we represent the ordered contents of each box by a word in $[n]$. Now, however, we arrange these words in a sequence W_{1}, \ldots, W_{k} in increasing order of their initial elements, defining $\tilde{w}(\delta)$ by the formula

$$
\begin{equation*}
\tilde{w}(\delta)=\sum_{i=1}^{k}(i-1)\left(\left|W_{i}\right|-1\right) \tag{3.16}
\end{equation*}
$$

where $\left|W_{i}\right|$ denotes the length of the word W_{i}. As an illustration, for the distribution $\delta \in \mathcal{L}(9,4)$ given above by (B.9), we have $W_{1}, W_{2}, W_{3}, W_{4}=26,349,75,81$ and $\tilde{w}(\delta)=7$. The statistic \tilde{w} is an analogue of a now well known partition statistic first introduced by Carlitz [2] (see also [1]]).

Theorem 3.3. The generating function

$$
\begin{equation*}
\tilde{L}_{q}(n, k):=\sum_{\delta \in \mathcal{L}(n, k)} q^{\tilde{w}(\delta)}=\frac{n!}{k!}\binom{n-1}{k-1}_{q}, \quad 1 \leqslant k \leqslant n . \tag{3.17}
\end{equation*}
$$

Proof. In running through $\delta \in \mathcal{L}(n, k)$, we are running through all sequences of words W_{1}, \ldots, W_{k} whose initial elements form an increasing sequence, and such that $\left|W_{i}\right|=n_{i}$, with $\sum n_{i}=n$. For fixed such n_{1}, \ldots, n_{k}, there are $\binom{n}{k}(n-k)$! such sequences, $\binom{n}{k}$ being the
number of ways to choose and place the initial elements, and $(n-k)$! the number of ways to place the remaining elements. By (3.16) and (2.8), it follows that

$$
\begin{aligned}
\sum_{\delta \in \mathcal{L}(n, k)} q^{\tilde{w}(\delta)} & =\binom{n}{k}(n-k)!\sum_{\substack{n_{1}+\cdots+n_{k}=n \\
n_{i} \in \mathbb{P}}} q^{0\left(n_{1}-1\right)+1\left(n_{2}-1\right)+\cdots+(k-1)\left(n_{k}-1\right)} \\
& =\frac{n!}{k!}\binom{n-1}{k-1}_{q}
\end{aligned}
$$

From (3.17) and (2.7), it follows that

$$
\begin{equation*}
\sum_{n \geqslant k} \tilde{L}_{q}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!} \frac{x^{k}}{\prod_{0 \leqslant j \leqslant k-1}\left(1-q^{j} x\right)}, \quad \forall k \in \mathbb{N} \tag{3.18}
\end{equation*}
$$

which generalizes (3.3). The q-Lah number $\tilde{L}_{q}(n, k)$ also satisfies the recurrence

$$
\begin{equation*}
\tilde{L}_{q}(n, k)=\frac{n}{k} \tilde{L}_{q}(n-1, k-1)+n q^{k-1} \tilde{L}_{q}(n-1, k) \tag{3.19}
\end{equation*}
$$

which generalizes (3.5).
Theorem 3.4. If $1 \leq k \leq n$, then

$$
\tilde{L}_{-1}(n, k)= \begin{cases}0, & \text { if } n \text { is odd and } k \text { is even; } \tag{3.20}\\ \frac{n!}{k!}(\lfloor(n-1) / 2\rfloor), & \text { otherwise. }\end{cases}
$$

Proof. This follows immediately from (3.17) and (2.9), but the following bijective proof yields a deeper insight into this result: with $\mathcal{L}_{r}(n, k):=\{\delta \in \mathcal{L}(n, k): \tilde{w}(\delta) \equiv r(\bmod 2)\}$, we have $\tilde{L}_{-1}(n, k)=\left|\mathcal{L}_{0}(n, k)\right|-\left|\mathcal{L}_{1}(n, k)\right|$. To prove (3.20) it thus suffices to identify a subset $\mathcal{L}_{0}^{+}(n, k)$ of $\mathcal{L}_{0}(n, k)$ such that

$$
\left|\mathcal{L}_{0}^{+}(n, k)\right|= \begin{cases}0, & \text { if } n \text { is odd and } k \text { is even; } \tag{3.21}\\ \frac{n!}{k!\lfloor(n-1) / 2\rfloor}\lfloor & \text { otherwise },\end{cases}
$$

along with a parity changing involution of $\mathcal{L}(n, k)-\mathcal{L}_{0}^{+}(n, k)$.
The set $\mathcal{L}_{0}^{+}(n, k)$ consists of those distributions whose associated sequences $W_{1}, W_{2}, \ldots, W_{k}$ satisfy

$$
\begin{equation*}
\left|W_{2 i-1}\right| \text { is odd and }\left|W_{2 i}\right|=1,1 \leqslant i \leqslant\lfloor k / 2\rfloor . \tag{3.22}
\end{equation*}
$$

Clearly, $\mathcal{L}_{0}^{+}(n, k)=\varnothing$ if n is odd and k is even. In the remaining cases, the factor $n!/ k!$ arises as the product $\binom{n}{k}(n-k)!$, just as it does in the proof of Theorem 3.3, and

$$
\begin{align*}
& \binom{\lfloor(n-1) / 2\rfloor}{\lfloor(k-1) / 2\rfloor}=\mid\left\{\left(n_{1}, \ldots, n_{k}\right): \sum n_{i}=n, n_{2 i-1}\right. \text { is odd, } \\
& \left.\qquad \text { and } n_{2 i}=1,1 \leqslant i \leqslant\lfloor k / 2\rfloor\right\} \mid, \tag{3.23}
\end{align*}
$$

upon halving compositions of an integer whose parts are all even.
Suppose now that $\delta \in \mathcal{L}(n, k)-\mathcal{L}_{0}^{+}(n, k)$ is associated with the sequence W_{1}, \ldots, W_{k} and that i_{0} is the smallest index for which (3.22) fails to hold. If $\left|W_{2 i_{0}-1}\right|$ is even, take the last member of $W_{2 i_{0}-1}$ and place it at the end of $W_{2 i_{0}}$. If $\left|W_{2 i_{0}-1}\right|$ is odd, whence $\left|W_{2 i_{0}}\right| \geqslant 2$, take the last member of $W_{2 i_{0}}$ and place it at the end of $W_{2 i_{0}-1}$. The resulting map is a parity changing involution of $\mathcal{L}(n, k)-\mathcal{L}_{0}^{+}(n, k)$.

In tabulating the numbers $\tilde{L}_{-1}(n, k)$ it is of course more efficient to use the recurrence

$$
\begin{equation*}
\tilde{L}_{-1}(n, k)=\frac{n}{k} \tilde{L}_{-1}(n-1, k-1)+(-1)^{k-1} n \tilde{L}_{-1}(n-1, k), \tag{3.24}
\end{equation*}
$$

representing the case $q=-1$ of (3.19). This yields the following table for $0 \leqslant k \leqslant n \leqslant 8$:
Table 3.1: The numbers $\tilde{L}_{-1}(n, k)$ for $0 \leqslant k \leqslant n \leqslant 8$.

	$k=0$	1	2	3	4	5	6	7	8
$n=0$	1								
1	0	1							
2	0	2	1						
3	0	6	0	1					
4	0	24	12	4	1				
5	0	120	0	40	0	1			
6	0	720	360	240	60	6	1		
7	0	5040	0	2520	0	126	0	1	
8	0	40320	20160	20160	5040	1008	168	8	1

The row sums of Table 3.1 correspond to the quantities $\tilde{L}_{-1}(n)[日, ~ A 089656]$, where

$$
\begin{equation*}
\tilde{L}_{q}(n):=\sum_{\delta \in \mathcal{L}(n)} q^{\tilde{w}(\delta)}=\sum_{k} \tilde{L}_{q}(n, k) . \tag{3.25}
\end{equation*}
$$

We have been unable to find a simple closed form or recurrence for $\tilde{L}_{-1}(n)$. However, using the case $q=-1$ of formula (3.18), it is straightforward to show that

$$
\begin{equation*}
\sum_{n \geqslant 0} \tilde{L}_{-1}(n) \frac{x^{n}}{n!}=\cosh \frac{x}{\sqrt{1-x^{2}}}+\frac{\sqrt{1-x^{2}}}{1-x} \sinh \frac{x}{\sqrt{1-x^{2}}} \tag{3.26}
\end{equation*}
$$

The values of $\tilde{L}_{-1}(n)$ for $0 \leqslant n \leqslant 10$ are as follows: $1,1,3,7,41,161,1387,7687,86865$, 623233, 8682131.

4 Some Concluding Remarks

Reductions from q-binomial coefficients to ordinary binomial coefficients similar to those seen when $q=-1$ occur with higher roots of unity. For example, substituting $q=\rho=\frac{-1+\sqrt{3} i}{2}$, a
third root of unity, and $q=i$, a fourth root of unity, into (2.7) and considering cases for k $\bmod 3$ and $\bmod 4$ yields

Theorem 4.1. If $0 \leq k \leq n$, then

$$
\binom{n}{k}_{\rho}= \begin{cases}\binom{\lfloor n / 3\rfloor}{\lfloor k / 3\rfloor}, & \text { if } n \equiv k(\bmod 3) \text { or } k \equiv 0(\bmod 3) \tag{4.1}\\ -\rho^{2}\binom{\lfloor n / 3\rfloor}{\lfloor k / 3\rfloor}, & \text { if } n \equiv 2(\bmod 3) \text { and } k \equiv 1(\bmod 3) \\ 0, & \text { otherwise } .\end{cases}
$$

and
Theorem 4.2. If $0 \leq k \leq n$, then

$$
\binom{n}{k}_{i}= \begin{cases}\binom{\lfloor n / 4\rfloor}{\lfloor k / 4\rfloor}, & \text { if } n \equiv k(\bmod 4) \text { or } k \equiv 0(\bmod 4) \tag{4.2}\\ i\binom{\lfloor n / 4\rfloor}{\lfloor k / 4\rfloor}, & \text { if } n \equiv 3(\bmod 4) \text { and } k \equiv 1,2(\bmod 4) ; \\ (1+i)\binom{\lfloor n / 4\rfloor}{\lfloor k / 4\rfloor}, & \text { if } n \equiv 2(\bmod 4) \text { and } k \equiv 1(\bmod 4) ; \\ 0, & \text { otherwise. }\end{cases}
$$

Bijective proof of Theorem 4.1.

We modify the combinatorial argument used to establish (2.9). Instead of pairing members of $\Lambda(n, k)$ of opposite α-parity, we partition a portion of $\Lambda(n, k)$ into tripletons each of whose members have different α values mod 3. Each such tripleton contributes 0 towards the sum $\binom{n}{k} \rho_{\rho}=\sum_{\lambda \in \Lambda(n, k)} \rho^{\alpha(\lambda)}$ since $1+\rho+\rho^{2}=0$.

As before, we represent lattice paths by words in $\{1,2\}$. Let $\Lambda^{\prime}(n, k)$ consist of those words $\lambda=t_{1} t_{2} \cdots t_{n}$ in $\Lambda(n, k)$ satisfying

$$
\begin{equation*}
t_{3 i-2}=t_{3 i-1}=t_{3 i}, \quad 1 \leqslant i \leqslant\lfloor n / 3\rfloor . \tag{4.3}
\end{equation*}
$$

In all cases, the right-hand side of (4.1) above gives the net contribution of $\Lambda^{\prime}(n, k)$ towards $\binom{n}{k}_{\rho}$; note that members of $\Lambda^{\prime}(n, k)$ may end in either 12 or 21 if $n \equiv 2(\bmod 3)$ and $k \equiv 1$ $(\bmod 3)$, hence the $1+\rho=-\rho^{2}$ factor in this case.

Suppose now that $\lambda=t_{1} t_{2} \cdots t_{n} \in \Lambda(n, k)-\Lambda^{\prime}(n, k)$, with i_{0} the smallest i for which (4.3) fails to hold. Group the three members of $\Lambda(n, k)-\Lambda^{\prime}(n, k)$ gotten by circularly permuting $t_{3 i_{0}-2}, t_{3 i_{0}-1}$, and $t_{3 i_{0}}$ within $\lambda=t_{1} t_{2} \cdots t_{n}$, leaving the rest of λ undisturbed. Note that these three members of $\Lambda(n, k)-\Lambda^{\prime}(n, k)$ have different α values mod 3, which establishes (4.1).

A similar proof, which involves partitioning members of $\Lambda(n, k)$ according to their inv values $\bmod 4$, applies to (4.2), the details of which we leave as an exercise for interested readers.

If $m \in \mathbb{P}$ and $\omega=e^{2 \pi i / m}$, a primitive $m^{\text {th }}$ root of unity, examining (2.7) when $q=\omega$ reveals that $\binom{n}{k}_{\omega}$ is of the form $\beta\binom{\lfloor n / m\rfloor}{\lfloor k / m\rfloor}$ for all n and k, where β is some complex number depending on the values of n and k mod m. Even though β can in general be expressed in terms of symmetric functions of certain $m^{t h}$ roots of unity, there does not appear to be a simple closed form for $\binom{n}{k}_{\omega}$ which generalizes (2.9), (4.1), and (4.2). Some particular cases are easily ascertained. For example, when m divides n, we have from (2.7),

$$
\binom{n}{k}_{\omega}= \begin{cases}\binom{n / m}{k / m}, & \text { if } m \text { divides } k \tag{4.4}\\ 0, & \text { otherwise }\end{cases}
$$

When m is a prime, the combinatorial argument used for (4.1) readily generalizes to (4.4).

References

[1] G. Berman and K. Fryer, Introduction to Combinatorics, Academic Press, 1972.
[2] L. Carlitz, Combinatorial analysis notes, Duke University (1968).
[3] A. Garsia and J. Remmel, A combinatorial interpretation of q-derangement and q Laguerre numbers, Europ. J. Combinatorics 1 (1980), 47-59.
[4] J. Goldman and G.-C. Rota, The number of subspaces of a vector space, in: W. Tutte, ed., Recent Progress in Combinatorics, Academic Press (1969), 75-83.
[5] D. Knuth, Two notes on notation, Amer. Math. Monthly 99 (1992), 403-422.
[6] I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitteilungsbl. Math. Statist. 7 (1955), 203-212.
[7] T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in: Proc. Symp. Pure Math., Vol. 19, American Mathematical Society (1971), 167-176.
[8] M. Schork, Fermionic relatives of Stirling and Lah numbers, J. Phys. A: Math. Gen. $\mathbf{3 6}$ (2003), 10391-10398.
[9] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences.
[10] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, 1986.
[11] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199-218.

2000 Mathematics Subject Classification: Primary 05A99; Secondary 05A10.
Keywords: Laguerre configuration, Lah numbers, lattice paths, q-binomial coefficient.
(Concerned with sequences A000262 and A089656.)

Received July 1 2005; revised version received October 18 2005. Published in Journal of Integer Sequences, October 202005.

Return to Journal of Integer Sequences home page.

