

A Recursive Relation for Weighted Motzkin Sequences

Wen-jin Woan
Department of Mathematics
Howard University
Washington, D.C. 20059
USA
wwoan@howard.edu

Abstract

We consider those lattice paths that use the steps $U p$, Level, and Down with assigned weights w, u, and v. In probability theory, the total weight is 1 . In combinatorics, we regard weight as the number of colors and normalize by setting $w=1$. The lattice paths generate Motzkin sequences. Here we give a combinatorial proof of a three-term recursion for a weighted Motzkin sequence and we find the radius of convergence.

1 Introduction

We consider those lattice paths in the Cartesian plane starting from $(0,0)$ that use the steps U, L, and D, where $U=(1,1)$, an up-step; $L=(1,0)$, a level-step; and $D=(1,-1)$, a down-step. Let c and d be positive integers, and color the L steps with d colors and the D steps with c colors. Let $A(n, k)$ be the set of all colored paths ending at the point (n, k), and let $M(n, k)$ be the set of lattice paths in $A(n, k)$ that never go below the x-axis. Let $a_{n, k}=|A(n, k)|, m_{n, k}=|M(n, k)|$, and $m_{n}=|M(n, 0)|$. The number m_{n} is called the $(1, d, c)-$ Motzkin number. Let $B(n, k)$ denote the set of lattice paths in $A(n, k)$ that never return to the x-axis and let $b_{n, k}=|B(n, k)|$. Note that $a_{n, k}=a_{n-1, k-1}+d a_{n-1, k}+c a_{n-1, k+1}$. Here we give a combinatorial proof of the following three-term recursion for the ($1, d, c$)-Motzkin sequence:

$$
\begin{aligned}
(n+2) m_{n} & =d(2 n+1) m_{n-1}+\left(4 c-d^{2}\right)(n-1) m_{n-2} \\
\text { If } \frac{\sqrt{c}}{2} \leq d, \text { then } \lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}} & =k=d+2 \sqrt{c}
\end{aligned}
$$

Example 1. The first few terms of the (1, 3, 2)-Motzkin numbers are $m_{0}=1,3,11,45,197,903, \ldots$, $k=3+2 \sqrt{2}$. This sequence is the little Schroeder number sequence and is Sloane's sequence A001003. Some entries of the matrices $\left(a_{n, k}\right),\left(m_{n, k}\right)$ and $\left(b_{n, k}\right)$ are as follows;

$$
\begin{gathered}
\left(a_{n, k}\right)=\left[\begin{array}{cccccccccc}
n / k & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 2 & 3 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 4 & 12 & 13 & 6 & 1 & 0 & 0 \\
3 & 0 & 8 & 36 & 66 & 63 & 33 & 9 & 1 & 0 \\
4 & 16 & 96 & 248 & 360 & 321 & 180 & 62 & 12 & 1
\end{array}\right], \\
\left(m_{n, k}\right)=\left[\begin{array}{cccccc}
n / k & 0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 \\
2 & 11 & 6 & 1 & 0 & 0 \\
3 & 45 & 31 & 9 & 1 & 0 \\
4 & 197 & 156 & 60 & 12 & 1
\end{array}\right], \\
\left(b_{n, k}\right)=\left[\begin{array}{ccccccc}
n / k & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 3 & 1 & 0 & 0 & 0 \\
3 & 0 & 11 & 6 & 1 & 0 & 0 \\
4 & 0 & 45 & 31 & 9 & 1 & 0 \\
5 & 0 & 197 & 156 & 60 & 12 & 1
\end{array}\right] .
\end{gathered}
$$

Example 2. The first few terms of the (1, 2, 1)-Motzkin numbers are $m_{0}=1,2,5,14,42, \ldots, k=$ $2+2 \sqrt{1}=4$. This sequence is the Catalan sequence, Sloane's sequence A000108.

Example 3. The first few terms of the ($1,1,1$)-Motzkin numbers are $m_{0}=1,1,2,4,9,21, \ldots, k=$ $1+2 \sqrt{1}=3$. The sequence is the Motzkin sequence, discussed by Woan [0], and is Sloane's sequence 1001006 .

2 Main Results

We apply the cut and paste technique to prove the following lemma. Please refer to Dershowitz and Zaks [1] and Pergola and Pinzani [2] for information about the technique.

Lemma 4. There is a combinatorial proof for the equation $m_{n}=b_{n+1,1}=d b_{n, 1}+c b_{n, 2}=$ $d m_{n-1}+c b_{n, 2}$.

Proof. Let $P \in B(n+1,1)$. Remove the first step (U) and note that the remaining is in $M(n, 0)$.

For example, the path $P=U U L D L U U U D D L D \in B(12,1)$ becomes $Q=U L D L U U U D D L D \in$ $M(11)$ where \times marks the origin.

Theorem 5. There is a combinatorial proof for the equation $(n+1) b_{n+1,1}=a_{n+1,1}$.
Proof. Wendel (1) proved a similar result. Let

$$
S(n+1)=\left\{P^{*}: P \in B(n+1,1)\right.
$$

where P^{*} is P with one vertex marked $\}$. Then $|S(n+1)|=(n+1) b_{n+1,1}$. Let $P^{*} \in S(n+1)$. The marked vertex partitions the path into $P=F B$, where F is the front section and B is the back section. Then $Q=B F \in A(n+1,1)$. Note that, graphically, the point of attachment is the rightmost lowest point of Q.

Conversely, starting with any path we may find the rightmost lowest point of Q and reverse the procedure to create a marked path P^{*} in $B(n+1,1)$.

For example,

Proposition 6. The total number of L steps in $M(n)$ is the same as that in $B(n+1,1)$ and is $d a_{n, 1}$.

Proof. From the proof of Lemma 团, there is a bijection between $M(n)$ and $B(n+1,1)$. Let $P=F L B \in B(n+1,1)$ with an L step. Then $Q=B F \in A(n, 1)$. Note that the attachment point is the rightmost lowest point in Q since $P \in B(n+1,1)$. This identification suggests the inverse mapping. Note that there are d colors for an L step.

For example,

Proposition 7. There is a combinatorial proof for the equation

$$
a_{n, 0}=m_{n}+\frac{1}{2}\left(n m_{n}-d a_{n, 1}\right)=b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-d n b_{n, 1}\right)
$$

Proof. Let $T(n)=\left\{P^{e}: P \in M(n)\right.$ where P^{e} is P with a U step marked $\}$. By Theorem 0 and Proposition 6 the number of L steps among all paths in $M(n)$ is $d a_{n, 1}=d n b_{n, 1}$. The total number of steps among all paths in $M(n)$ is $n m_{n}=n b_{n+1,1}$, hence the total number of U steps among all paths in $M(n)$ is $\frac{1}{2}\left(n b_{n+1,1}-d n b_{n, 1}\right)=|T(n)|$. Let $P^{e}=F U B \in T(n)$ with a U step marked. Then $Q=B U F \in A(n, 0)-M(n, 0)$ and the initial point of U in Q is the rightmost lowest point in Q. The inverse mapping starts with the rightmost lowest point. Note that $|M(n, 0)|=m_{n}=b_{n+1,1}$

For example,

$$
\begin{aligned}
& Q=\stackrel{\circ}{ } \stackrel{\circ}{ } \stackrel{\circ}{ } \stackrel{\circ}{ } .
\end{aligned}
$$

Proposition 8. There is a combinatorial proof for the equation

$$
\begin{aligned}
a_{n, 0} & =a_{n-1,-1}+d a_{n-1,0}+c a_{n-1,1}=2 c a_{n-1,1}+d a_{n-1,0} \\
& =2 c(n-1) b_{n-1,1}+d\left(b_{n, 1}+\frac{1}{2}\left((n-1) b_{n, 1}-d(n-1) b_{n-1,1}\right)\right) .
\end{aligned}
$$

Proof. The first equality represents the partition of $A(n, 0)$ by the last step $(U, L$ or $D)$. The second equality represents the fact that $a_{n-1,-1}=c a_{n-1,1}$, since elements in $A(n-1,-1)$ have one more D step than those in $A(n-1,1)$. And the last equality holds by Theorem 5 and Proposition 7 .

Sulanke [3] proved the following result for the Motzkin sequence.
Theorem 9. $(n+2) m_{n}=(2 d n+d) m_{n-1}+\left(4 c-d^{2}\right)(n-1) m_{n-2}$.
Proof. By Propositions 7 and 8
$b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-d n b_{n, 1}\right)=2 c(n-1) b_{n-1,1}+d b_{n, 1}+\left(\frac{1}{2}\left((n-1) b_{n, 1}-d(n-1) b_{n-1,1}\right)\right)$.
By Lemma
$m_{n}+\frac{1}{2}\left(n m_{n}-d n m_{n-1}\right) .=2 c(n-1) m_{n-2}+d m_{n-1}+d\left(\frac{1}{2}\left((n-1) m_{n-1}-d(n-1) m_{n-2}\right)\right)$.
Equivalently

$$
(n+2) m_{n}=(2 d n+d) m_{n-1}+\left(4 c-d^{2}\right)(n-1) m_{n-2} .
$$

Theorem 10. $\lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=k=d+2 \sqrt{c}$.
Proof. By Theorem 日, let

$$
s_{n}:=\frac{m_{n}}{m_{n-1}}=\frac{d(2 n+1)}{n+2}+\left(\frac{\left(4 c-d^{2}\right)(n-1)}{n+2}\right) \frac{m_{n-2}}{m_{n-1}},
$$

and let

$$
\begin{aligned}
& a_{n}:=\frac{d(2 n+1)}{n+2}=2 d-\frac{3 d}{n+2} \\
& b_{n}:=\frac{\left(4 c-d^{2}\right)(n-1)}{n+2}=\left(4 c-d^{2}\right)\left(1-\frac{3}{n+2}\right)
\end{aligned}
$$

Then $s_{n}=a_{n+} \frac{b_{n}}{s_{n-1}}$.
 $d+2 \sqrt{c}$.
Case 1. $4 c-d^{2} \geq 0$.
If $s_{n-1} \leq k$, then

$$
\begin{aligned}
s_{n} & =a_{n+} \frac{b_{n}}{s_{n-1}} \geq 2 d-\frac{3 d}{n+2}+\frac{\left(4 c-d^{2}\right) \frac{n-1}{n+2}}{k}=k-\frac{3 d k+3\left(4 c-d^{2}\right)}{k(n+2)} \\
& =k-\frac{3 k^{2}-3 d k}{k(n+2)}=k-\frac{3(k-d)}{n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{n+1} & =a_{n+1}+\frac{b_{n+1}}{s_{n}} \leq 2 d-\frac{3 d}{n+3}+\frac{\left(4 c-d^{2}\right)\left(\frac{n}{n+3}\right)}{k-\frac{3(k-d)}{n+2}} \\
& =2 d-\frac{3 d}{n+3}+\frac{\left(4 c-d^{2}\right)}{k}\left(1-\frac{3 d n+9 d-3 k}{(n+3)(k n-k+3 d)}\right) \\
& =2 d+\frac{\left(4 c-d^{2}\right)}{k}-\frac{3 d}{n+3}-\frac{\left(4 c-d^{2}\right)}{k} \frac{3 d n+9 d-3 k}{(n+3)(k n-k+3 d)} \\
& =k-\frac{3(2 d n(k-d)-(k-d)(k-3 d))}{(n+3)(k n-k+3 d)} \\
& =k-\frac{6(k-d)(d(n+1)-\sqrt{c})}{(n+3)(k n-k+3 d)} .
\end{aligned}
$$

Note that $s_{1}=\frac{d}{1}$ and $s_{2}=\frac{d^{2}+c}{d}=d+\frac{c}{d}$. If $\frac{\sqrt{c}}{2} \leq d$, then $s_{1}, s_{2} \leq k$. By induction on both odd and even n we have

$$
k-\frac{3(k-d)}{n+3} \leq s_{n+1} \leq k-\frac{6(k-d)(d(n+1)-\sqrt{c})}{(n+3)(k n-k+3 d)} \leq k
$$

and $\lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=k$.
Case 2. $4 c-d^{2}<0$.
Inductively, assuming that $s_{n-1} \leq k$ and $\left\{s_{i}\right\}$ is nondecreasing up to $n-1$. Then

$$
\begin{aligned}
s_{n} & =a_{n+} \frac{b_{n}}{s_{n-1}} \leq 2 d-\frac{3 d}{n+2}+\frac{\left(4 c-d^{2}\right) \frac{n-1}{n+2}}{k}=k-\frac{3 d k+3\left(4 c-d^{2}\right)}{k(n+2)} \\
& =k-\frac{3 k^{2}-3 d k}{k(n+2)}=k-\frac{3(k-d)}{n+2}<k
\end{aligned}
$$

and

$$
\begin{aligned}
s_{n}-s_{n-1}= & \left(\frac{d(2 n+1)}{n+2}+\frac{\left(4 c-d^{2}\right)(n-1)}{s_{n-1}(n+2)}\right)- \\
& \left(\frac{d(2 n-1)}{n+1}+\frac{\left(4 c-d^{2}\right)(n-2)}{s_{n-2}(n+1)}\right) \\
= & d\left(2-\frac{3}{n+2}\right)+\frac{\left(4 c-d^{2}\right)}{s_{n-1}}\left(1-\frac{3}{n+2}\right)- \\
& \left(d\left(2-\frac{3}{n+1}\right)+\frac{\left(4 c-d^{2}\right)}{s_{n-2}}\left(1-\frac{3}{n+1}\right)\right) \\
\geq & -\frac{3 d}{n+2}+\frac{3 d}{n+1}+\frac{\left(4 c-d^{2}\right)}{s_{n-1}}\left(-\frac{3}{n+2}+\frac{3}{n+1}\right) \\
= & \frac{3 d}{(n+2)(n+1)}+\frac{3\left(4 c-d^{2}\right)}{s_{n-1}(n+2)(n+1)} \\
= & \frac{3 d s_{n-1}+3\left(4 c-d^{2}\right)}{s_{n-1}(n+2)(n+1)} \geq \frac{12 c}{s_{n-1}(n+2)(n+1)}>0 .
\end{aligned}
$$

By induction $\left\{s_{i}\right\}$ is a bounded nondecreasing sequence and

$$
\lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=k
$$

References

[1] N. Dershowitz and S. Zaks, The cycle lemma and some applications, European J. Combin. 11 (1990), 34-40.
[2] E. Pergola and R. Pinzani, A combinatorial interpretation of the area of Schroeder paths, Electron. J. Combin. 6 (1999), Research paper 40, 13 pp.
[3] R. Sulanke, Moments of generalized Motzkin paths, J. Integer Seq. 3 (2000), Article 00.1.1.
[4] J. Wendel, Left-continuous random walk and the Lagrange expansion, Amer. Math. Monthly 82 (1975), 494-499.
[5] W. Woan, A Combinatorial proof of a recursive relation of the Motzkin sequence by Lattice Paths Fibonacci Quart. 40 (2002), 3-8.

2000 Mathematics Subject Classification: Primary 05A15; Secondary 05A19.
Keywords: Motzkin paths, combinatorial identity.
(Concerned with sequences A000108, A001003, and A001006.)

Received January 9 2005; revised version received February 24 2005. Published in Journal of Integer Sequences, February 282005.

Return to Journal of Integer Sequences home page.

