

Evaluations of Some Variant Euler Sums

Hongwei Chen
Department of Mathematics
Christopher Newport University
Newport News, VA 23606

hchen@cnu.edu

Abstract

In this note we present some elementary methods for the summation of certain Euler sums with terms involving $1 + 1/3 + 1/5 + \cdots + 1/(2k-1)$.

1 Introduction

In the last decade, based on extensive experimentation with computer algebraic systems, a large class of Euler sums have been explicitly evaluated in terms of the Riemann zeta function $\zeta(k)$. For example, let

$$H_k = 1 + \frac{1}{2} + \dots + \frac{1}{k}.$$

Then

$$\sum_{k=1}^{\infty} \frac{1}{k^2} H_k = 2\zeta(3),$$

$$\sum_{k=1}^{\infty} \frac{1}{2^k k^2} H_k = \zeta(3) - \frac{\pi^2}{12} \ln 2,$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} H_k^2 = \frac{17}{4} \zeta(4),$$

and

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2} H_k = \frac{5}{8} \zeta(3).$$

More details can be found in [1, 2, 3, 4] In particular, Borwein and Bradley [3] collected 32 beautiful proofs of the first sum above.

Motivated by the above results, in this note, replacing H_k by

$$h_k = H_{2k} - \frac{1}{2}H_k = 1 + \frac{1}{3} + \dots + \frac{1}{2k-1},$$
 (1)

we study the following variant Euler sums

$$\sum_{k=1}^{\infty} a_k h_k$$

where the a_k are relatively simple function of k.

2 The Main Results

We begin to derive some series involving h_k . Since

$$-\ln(1-x) = \int_0^x \frac{dt}{1-t} = \sum_{k=1}^{\infty} \frac{x^k}{k},$$

replacing x by -x gives

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}.$$

Averaging these two series gives us

$$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{k=1}^{\infty} \frac{1}{2k-1} x^{2k-1}.$$
 (2)

In term of the Cauchy product and partial fractions, we have

$$\frac{1}{4} \ln^2 \left(\frac{1+x}{1-x} \right) = \sum_{k=1}^{\infty} \left(\frac{1}{(2k-1)\cdot 1} + \frac{1}{(2k-3)\cdot 3} + \dots + \frac{1}{1\cdot (2k-1)} \right) x^{2k}
= \sum_{k=1}^{\infty} \frac{1}{2k} \left[\left(\frac{1}{2k-1} + \frac{1}{1} \right) + \left(\frac{1}{2k-3} + \frac{1}{3} \right) + \dots + \left(\frac{1}{1} + \frac{1}{2k-1} \right) \right] x^{2k}
= \sum_{k=1}^{\infty} \left(1 + \frac{1}{3} + \dots + \frac{1}{2k-1} \right) \frac{x^{2k}}{k}.$$

Noting that h_k is given by (1), we have

$$\sum_{k=1}^{\infty} \frac{h_k}{k} x^{2k} = \frac{1}{4} \ln^2 \left(\frac{1+x}{1-x} \right). \tag{3}$$

This enables us to evaluate a wide variety of interesting series via specialization, differentiation and integration.

First, setting x = 1/2, we find

$$\sum_{k=1}^{\infty} \frac{h_k}{2^{2k} k} = \frac{1}{4} \ln^2 3. \tag{4}$$

For $x = \sqrt{2}/2$,

$$\sum_{k=1}^{\infty} \frac{h_k}{2^k k} = \frac{1}{4} \ln^2(3 + 2\sqrt{2}). \tag{5}$$

Putting $x = (\sqrt{5} - 1)/2 = \phi$, the golden ratio, we get

$$\sum_{k=1}^{\infty} \frac{h_k}{k} \phi^{2k} = \frac{1}{4} \ln^2(2 + \sqrt{5}). \tag{6}$$

Furthermore, for any $\alpha \geq 2$, putting $x = (\sqrt{5}+1)/2\alpha$ and $x = (\sqrt{5}-1)/2\alpha$ in (3) respectively, we get

$$\sum_{k=1}^{\infty} \frac{h_k}{\alpha^{2k} k} \left(\frac{\sqrt{5} + 1}{2} \right)^{2k} = \frac{1}{4} \ln^2 \left(\frac{(2\alpha + 1) + \sqrt{5}}{(2\alpha - 1) - \sqrt{5}} \right)$$
 (7)

and

$$\sum_{k=1}^{\infty} \frac{h_k}{\alpha^{2k} k} \left(\frac{\sqrt{5} - 1}{2} \right)^{2k} = \frac{1}{4} \ln^2 \left(\frac{(2\alpha - 1) + \sqrt{5}}{(2\alpha + 1) - \sqrt{5}} \right). \tag{8}$$

Recalling the Fibonacci numbers which are defined by

$$F_1 = 1, F_2 = 1, F_k = F_{k-1} + F_{k-2}$$
 for $k \ge 2$

and Binet's formula

$$F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right),$$

combining (7) and (8), we find

$$\sum_{k=1}^{\infty} \frac{h_k}{\alpha^{2k} k} F_{2k} = \frac{\sqrt{5}}{20} \ln \left(\frac{\alpha^2 + \alpha - 1}{\alpha^2 - \alpha - 1} \right) \ln \left(\frac{\alpha^2 + \alpha\sqrt{5} + 1}{\alpha^2 - \alpha\sqrt{5} + 1} \right). \tag{9}$$

In particular, for $\alpha = 2$

$$\sum_{k=1}^{\infty} \frac{h_k}{2^{2k} k} F_{2k} = \frac{\sqrt{5}}{4} \ln 5 \ln(9 + 4\sqrt{5}). \tag{10}$$

Another step along this path is to change variables. Setting $x = \cos \theta$ in (3) leads to

$$\sum_{k=1}^{\infty} \frac{h_k}{k} \cos^{2k} \theta = \ln^2 (\cot(x/2)).$$
 (11)

Integrating both sides from 0 to π , and using

$$\int_0^\pi \cos^{2k} \theta \, d\theta = \frac{\pi}{2^{2k}} \left(\begin{array}{c} 2k \\ k \end{array} \right)$$

and

$$\int_0^{\pi} \ln^2 (\cot(x/2)) \ d\theta = \frac{\pi^3}{4},$$

we find

$$\sum_{k=1}^{\infty} \frac{h_k}{2^{2k} k} \begin{pmatrix} 2k \\ k \end{pmatrix} = \frac{\pi^2}{4}.$$
 (12)

This adds another interesting series to Lehmer's list [6].

Next, for 0 < x < 1, differentiating (3), then multiplying both sides by x, we obtain

$$\sum_{k=1}^{\infty} h_k x^{2k} = \frac{x}{2(1-x^2)} \ln\left(\frac{1+x}{1-x}\right). \tag{13}$$

Setting x = 1/2, we get

$$\sum_{k=1}^{\infty} \frac{h_k}{2^{2k}} = \frac{1}{3} \ln 3. \tag{14}$$

For $x = \sqrt{2}/2$,

$$\sum_{k=1}^{\infty} \frac{h_k}{2^k} = \frac{\sqrt{2}}{2} \ln(3 + 2\sqrt{2}). \tag{15}$$

Similar to (10), we have

$$\sum_{k=1}^{\infty} \frac{h_k}{2^{2k}} F_{2k} = \frac{\sqrt{5}}{50} \left(10 \ln(5 + 2\sqrt{5}) + 3\sqrt{5} \ln 5 - 5 \ln 5 \right). \tag{16}$$

Finally, for $0 < x \le 1$, dividing both sides of (3) by x and integrating from 0 to x, we obtain

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} x^{2k} = \frac{1}{2} \int_0^x \frac{1}{t} \ln^2 \left(\frac{1+t}{1-t} \right) dt.$$
 (17)

Using the substitution u = (1 - x)/(1 + x) and integration by parts, we get

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} x^{2k} = \int_{(1-x)/(1+x)}^{1} \frac{\ln^2 u}{1 - u^2} du$$

$$= \frac{1}{2} \ln x \ln^2 \left(\frac{1-x}{1+x}\right) + \int_{(1-x)/(1+x)}^{1} \frac{\ln u}{u} \ln \left(\frac{1-u}{1+u}\right) du.$$

In view of (2), we have

$$\int_{(1-x)/(1+x)}^{1} \frac{\ln u}{u} \ln \left(\frac{1-u}{1+u}\right) du = -2 \sum_{k=0}^{\infty} \frac{1}{2k+1} \int_{(1-x)/(1+x)}^{1} u^{2k} \ln u \, du.$$

Since

$$\int u^{2k} \ln u \, du = \frac{1}{2k+1} u^{2k+1} \ln u - \frac{1}{(2k+1)^2} u^{2k+1} + C,$$

we find

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} x^{2k} = \frac{1}{2} \ln x \ln^2 \left(\frac{1-x}{1+x} \right) + 2 \ln \left(\frac{1-x}{1+x} \right) \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \left(\frac{1-x}{1+x} \right)^{2k+1}$$

$$+2 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} - 2 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} \left(\frac{1-x}{1+x} \right)^{2k+1}.$$
 (18)

In terms of the polylogarithm function [5]

$$Li_n(x) = \sum_{k=1}^{\infty} \frac{x^n}{k^n},$$

and noting that

$$\sum_{k=0}^{\infty} \frac{x^n}{(2k+1)^n} = \frac{1}{2} \left(Li_n(x) - Li_n(-x) \right)$$

and

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} = \sum_{k=0}^{\infty} \frac{1}{k^3} - \sum_{k=0}^{\infty} \frac{1}{(2k)^3} = \frac{7}{8} \zeta(3),$$

we finally obtain

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} x^{2k} = \frac{7}{4} \zeta(3) + \frac{1}{2} \ln x \ln^2 \left(\frac{1-x}{1+x} \right) + \ln \left(\frac{1-x}{1+x} \right) \left(Li_2 \left(\frac{1-x}{1+x} \right) - Li_2 \left(\frac{x-1}{1+x} \right) \right) - \left(Li_3 \left(\frac{1-x}{1+x} \right) - Li_3 \left(\frac{x-1}{1+x} \right) \right).$$

Setting x = 1, we get

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} = \frac{7}{4} \zeta(3). \tag{19}$$

For x = 1/3,

$$\sum_{k=1}^{\infty} \frac{h_k}{3^{2k} k^2} = \frac{7}{8} \zeta(3) - \frac{1}{2} \ln 3 \ln^3 2 + \frac{1}{3} \ln^3 2 + \ln 2 Li_2(-1/2) + Li_3(-1/2),$$

where we have used

$$Li_2(1/2) = \frac{\pi^2}{12} - \frac{1}{2} \ln^2 2;$$

 $Li_3(1/2) = \frac{7}{8} \zeta(3) + \frac{1}{6} \ln^3 2 - \frac{\pi^2}{12} \ln 2.$

Moreover, noting that

$$h_k = \sum_{i=1}^k \int_0^1 x^{2(i-1)} dt = \int_0^1 \left(\sum_{i=1}^k x^{2(i-1)}\right) dt = \int_0^1 \frac{1 - x^{2k}}{1 - x^2} dx$$

and rewriting (8) as

$$\sum_{k=1}^{\infty} \frac{h_k}{k^2} (1 - x^{2k}) = \frac{1}{2} \int_x^1 \frac{1}{t} \ln^2 \left(\frac{1+t}{1-t} \right) dt,$$

we have

$$\sum_{k=1}^{\infty} \frac{h_k^2}{k^2} = \sum_{k=1}^{\infty} \frac{h_k}{k^2} \int_0^1 \frac{1 - x^{2k}}{1 - x^2} dx$$
$$= \frac{1}{2} \int_0^1 \left(\frac{1}{1 - x^2} \int_x^1 \frac{1}{t} \ln^2 \left(\frac{1 + t}{1 - t} \right) dt \right) dx.$$

Exchanging the order of the integration, we get

$$\sum_{k=1}^{\infty} \frac{h_k^2}{k^2} = \frac{1}{2} \int_0^1 \left(\frac{1}{t} \ln^2 \left(\frac{1+t}{1-t} \right) \int_0^t \frac{1}{1-x^2} dx \right) dt.$$
$$= \frac{1}{4} \int_0^1 \frac{1}{t} \ln^3 \left(\frac{1+t}{1-t} \right) dt.$$

Using the substitution x = (1 - t)/(1 + t) and the well-known fact that

$$\int_0^1 x^k \ln^3 x \, dx = -\frac{6}{(k+1)^3},$$

we find

$$\sum_{k=1}^{\infty} \frac{h_k^2}{k^2} = -\frac{1}{2} \int_0^1 \frac{\ln^3 x}{1 - x^2} dx$$

$$= -\frac{1}{2} \sum_{k=0}^{\infty} \int_0^1 x^{2k} \ln^3 x \, dx = 3 \sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{45}{16} \zeta(4)$$
(20)

Another path out of (3) is to bring in complex variables. Since

$$\frac{1}{i}\tan^{-1}(iz) = \tanh^{-1}z = \frac{1}{2}\ln\left(\frac{1+z}{1-z}\right)$$

Replacing x by ix in (3), we obtain

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{k} x^{2k} = (\tan^{-1} x)^2.$$
 (21)

This series may be evaluated at values such as $x = 2 - \sqrt{3}, \sqrt{3}/3, 1$ explicitly:

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k (2 - \sqrt{3})^{2k}}{k} = \frac{\pi^2}{144} = \frac{3}{72} \zeta(2), \tag{22}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{3^k k} = \frac{\pi^2}{36} = \frac{1}{6} \zeta(2), \tag{23}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{k} = \frac{\pi^2}{16} = \frac{3}{8} \zeta(2). \tag{24}$$

Similarly, applying differentiation and integration to (21), we deduce the corresponding formulas

$$\sum_{k=1}^{\infty} (-1)^{k-1} h_k x^{2k} = \frac{x}{1+x^2} \tan^{-1} x, \tag{25}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{k^2} x^{2k} = 2 \int_0^x \frac{(\tan^{-1} t)^2}{t} dt.$$
 (26)

In particular, we find

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{3^k} = \frac{\sqrt{3}}{24} \pi, \tag{27}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} h_k}{k^2} = G \pi - \frac{7}{4} \zeta(3), \tag{28}$$

where G is the Catalan's constant which is defined by

$$G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}.$$

Finally, following the excellent suggestion of an anonymous referee, recalling that

$$h_k = H_{2k} - \frac{1}{2} H_k, (29)$$

we find from (19)

$$\sum_{k=1}^{\infty} \frac{1}{k^2} H_{2k} = \sum_{k=1}^{\infty} \frac{1}{k^2} h_k + \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k^2} H_k = \frac{11}{4} \zeta(3).$$
 (30)

Furthermore, in terms of the multiple series [7]

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{ij(i+j)} = 2\zeta(3), \quad \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(-1)^{i+j}}{ij(i+j)} = \frac{1}{4}\zeta(3),$$

the difference gives

$$\sum_{i,j>1, i+j = \text{odd}} \frac{1}{ij(i+j)} = \frac{7}{8} \zeta(3).$$

Setting i + j = 2k + 1 and using partail fractions, we have

$$\sum_{i,j>1,i+j=\text{odd}} \frac{1}{ij(i+j)} = \sum_{k=1}^{\infty} \sum_{j=1}^{2k} \frac{1}{j(2k+1-j)(2k+1)}$$

$$= \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} \sum_{j=1}^{2k} \left(\frac{1}{j} + \frac{1}{2k+1-j}\right)$$

$$= \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} 2H_{2k}.$$

Thus,

$$\sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} H_{2k} = \frac{7}{16} \zeta(3). \tag{31}$$

Subsequently, we have

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} H_{2k} = \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} H_{2k} + \sum_{k=1}^{\infty} \frac{1}{(2k-1)^3} + \sum_{k=1}^{\infty} \frac{1}{2k(2k-1)^2} = \frac{21}{16} \zeta(3) + \frac{1}{8} (\pi^2 - 8 \ln 2).$$
 (32)

From this and the known result [1]

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} H_k = \frac{1}{4} (\pi^2 - \pi^2 \ln 2 - 8 \ln 2 + 7\zeta(3)),$$

we finally get

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} h_k = \frac{7}{16} \zeta(3) + \frac{3}{4} \zeta(2) \ln 2.$$
 (33)

3 Acknowledgments

The author would like to thank the referee and the editor for their thoughtful comments and suggestions for improving the original version of the manuscript.

References

- [1] D. Bailey, J. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, *Experimental Math.*, **3** (1994), 17–30.
- [2] J. Borwein, D. Bailey and R. Girgensohn, *Experimentation in Mathematics*, A. K. Peters, 2004.
- [3] J. Borwein and D. V. Bradley, Thirty-two Goldbach variations, preprint. Available at http://users.cs.dal.ca/~jborwein/32goldbach.pdf.
- [4] J. Borwein and I. J. Zucker and J. Boersma, The evaluation of character Euler double sums, preprint. Available at http://users.cs.dal.ca/~jborwein/bzb7.pdf.
- [5] L. Lewin, *Polylogarithms and Associated Functions*, Elsevier North Holland, New York-Amsterdam, 1981.
- [6] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92 (1985), 449–457.
- [7] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. 2, Paris, Birkhauser, 1994, pp. 497–512.

2000 Mathematics Subject Classification: Primary 40C15; Secondary 40A25, 11M41, 11M06. Keywords: Euler sums, Riemann zeta function, closed forms.

(Concerned with sequences <u>A000045</u>, <u>A000984</u>, <u>A001008</u>, and <u>A005408</u>.)

Received February 9 2006; revised version received April 21 2006. Published in *Journal of Integer Sequences*, May 18 2006.

Return to Journal of Integer Sequences home page.