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Abstract

In this note we present some elementary methods for the summation of certain
Euler sums with terms involving 1 +1/3+1/5+---+1/(2k —1).

1 Introduction

In the last decade, based on extensive experimentation with computer algebraic systems,
a large class of Euler sums have been explicitly evaluated in terms of the Riemann zeta
function ((k). For example, let
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More details can be found in [, |, B, [l In particular, Borwein and Bradley [[J] collected 32
beautiful proofs of the first sum above.
Motivated by the above results, in this note, replacing Hy by
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we study the following variant Euler sums
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where the ay are relatively simple function of k.

2 The Main Results

We begin to derive some series involving hy. Since
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replacing z by —z gives
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Averaging these two series gives us
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In term of the Cauchy product and partial fractions, we have
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This enables us to evaluate a wide variety of interesting series via specialization, differenti-
ation and integration.

First, setting z = 1/2, we find
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Putting z = (v/5 — 1)/2 = ¢, the golden ratio, we get
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Furthermore, for any o > 2, putting © = (v/5+1)/2a and = = (v/5—1)/2a in (3) respectively,

we get
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Recalling the Fibonacci numbers which are defined by
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combining (7) and (8), we find

and Binet’s formula
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Another step along this path is to change variables. Setting x = cos# in (3) leads to
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Integrating both sides from 0 to m, and using
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This adds another interesting series to Lehmer’s list [[]].

Next, for 0 < z < 1, differentiating (3), then multiplying both sides by x, we obtain
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Similar to (10), we have
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Finally, for 0 < x < 1, dividing both sides of (3) by x and integrating from 0 to x, we
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Using the substitution u = (1 — z)/(1 + z) and integration by parts, we get
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In view of (2), we have
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In terms of the polylogarithm function [f]

Lin(2) ="

and noting that

and

we finally obtain
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Setting x = 1, we get
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where we have used
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Exchanging the order of the integration, we get
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Another path out of (3) is to bring in complex variables. Since
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Replacing z by iz in (3), we obtain
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This series may be evaluated at values such as z = 2 — v/3,/3 /3,1 explicitly:
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Similarly, applying differentiation and integration to (21), we deduce the corresponding
formulas
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In particular, we find
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Finally, following the excellent suggestion of an anonymous referee, recalling that
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Furthermore, in terms of the multiple series [[]]
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Subsequently, we have
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From this and the known result [[]]
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