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Abstract

We study polynomial generalizations of the r-Fibonacci and r-Lucas sequences

which arise in connection with a certain statistic on linear and circular r-mino ar-

rangements, respectively. By considering special values of these polynomials, we derive

periodicity and parity theorems for this statistic on the respective structures.

1 Introduction

If r > 2, the r-Fibonacci numbers F
(r)
n are defined by F

(r)
0 = F

(r)
1 = · · · = F

(r)
r−1 = 1, with

F
(r)
n = F

(r)
n−1 + F

(r)
n−r if n > r. The r-Lucas numbers L

(r)
n are defined by L

(r)
1 = L

(r)
2 = · · · =

L
(r)
r−1 = 1 and L

(r)
r = r + 1, with L

(r)
n = L

(r)
n−1 + L

(r)
n−r if n > r + 1. If r = 2, the F

(r)
n and L

(r)
n

reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized as in Wilf
[12], by F0 = F1 = 1, etc., and L1 = 1, L2 = 3, etc.).
Polynomial generalizations of Fn and/or Ln have arisen as generating functions for statis-

tics on binary words [1], lattice paths [5], and linear and circular domino arrangements [8].

Generalizations of F
(r)
n and/or L

(r)
n have arisen similarly in connection with statistics on

Morse code sequences [4] as well as on linear and circular r-mino arrangements [9].
Cigler [3] introduces and studies a new class of q-Fibonacci polynomials, generalizing the

classical sequence, which arise in connection with a certain statistic on Morse code sequences
in which the dashes have length 2. The same statistic, which we’ll denote by π, applied more
generally to linear r-mino arrangements, leads to the polynomial generalization

F (r)
n (q, t) :=

∑

06k6bn/rc
q(

k+1
2 )
(

n− (r − 1)k

k

)

q

tk (1.1)
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of F
(r)
n . A natural extension of this π statistic to circular r-mino arrangements leads to the

new polynomial generalization

L(r)
n (q, t) :=

∑

06k6bn/rc
q(

k+1
2 )
[

(r − 1)kq + (n− (r − 1)k)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

tk (1.2)

of L
(r)
n .
In addition to deriving the above closed forms for F

(r)
n (q, t) and L

(r)
n (q, t), we present both

algebraic and combinatorial evaluations of F
(r)
n (−1, t) and L

(r)
n (−1, t), as well as determine

when the sequences F
(r)
n (−1, 1) and L

(r)
n (−1, 1) are periodic. Our algebraic proofs make

frequent use of the identity [11, pp. 201–202]

∑

n>0

(

n

k

)

q

xn =
xk

(1− x)(1− qx) · · · (1− qkx)
, k ∈ N. (1.3)

Our combinatorial proofs are based on the fact that F
(r)
n (q, t) and L

(r)
n (q, t) are bivariate

generating functions for a pair of statistics defined, respectively, on linear and circular ar-
rangements of r-minos. We also describe some variants of the π statistic on circular domino
arrangements which lead to additional polynomial generalizations of the Lucas sequence.
In what follows, N and P denote, respectively, the nonnegative and positive integers.

Empty sums take the value 0 and empty products the value 1, with 00 := 1. If q is an

indeterminate, then 0q := 0, nq := 1 + q + · · ·+ qn−1 for n ∈ P, 0!q := 1, n
!
q := 1q2q · · ·nq for

n ∈ P, and

(

n

k

)

q

:=



















n!q
k!q(n−k)!q

, if 0 6 k 6 n;

0, if k < 0 or 0 6 n < k.

(1.4)

A useful variation of (1.4) is the well known formula [10, p. 29]

(

n

k

)

q

=
∑

d0+d1+···+dk=n−k
di∈N

q0d0+1d1+···+kdk =
∑

t>0

p(k, n− k, t)qt, (1.5)

where p(k, n − k, t) denotes the number of partitions of the integer t with at most n − k
parts, each no larger than k.

2 Linear r-Mino Arrangements

Let R
(r)
n,k denote the set of coverings of the numbers 1, 2, . . . , n arranged in a row by k

indistinguishable r-minos and n− rk indistinguishable squares, where pieces do not overlap,
an r-mino, r > 2, is a rectangular piece covering r numbers, and a square is a piece covering
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a single number. Each such covering corresponds uniquely to a word in the alphabet {r, s}
comprising k r’s and n− rk s’s so that

|R
(r)
n,k| =

(

n− (r − 1)k

k

)

, 0 6 k 6 bn/rc, (2.1)

for all n ∈ P. (If we set R(r)
0,0 = {∅}, the “empty covering,” then (2.1) holds for n = 0 as

well.) In what follows, we will identify coverings c with such words c1c2 · · · in {r, s}. With

R(r)
n :=

⋃

06k6bn/rc
R

(r)
n,k, n ∈ N, (2.2)

it follows that

|R(r)
n | =

∑

06k6bn/rc

(

n− (r − 1)k

k

)

= F (r)
n , (2.3)

where F
(r)
0 = F

(r)
1 = · · · = F

(r)
r−1 = 1, with F

(r)
n = F

(r)
n−1 + F

(r)
n−r if n > r. Note that

∑

n>0

F (r)
n xn =

1

1− x− xr
. (2.4)

Given a covering c = c1c2 · · · , let

π(c) :=
∑

i:ci=r

i; (2.5)

note that π(c) gives the total resulting when one counts the number of pieces preceding each
r-mino, inclusive, and adds up these numbers.
Let

F (r)
n (q, t) :=

∑

c∈R(r)
n

qπ(c)tv(c), n ∈ N, (2.6)

where v(c) := the number of r-minos in the covering c.
Categorizing linear covers of 1, 2, . . . , n according to whether the piece covering n is a

square or r-mino yields the recurrence relation

F (r)
n (q, t) = F

(r)
n−1(q, t) + qn−r+1tF

(r)
n−r
(

q, t/qr−1
)

, n > r, (2.7)

with F
(r)
i (q, t) = 1 if 0 6 i 6 r − 1, since the total number of pieces in c ∈ R

(r)
m is

m− (r− 1)v(c). Categorizing covers of 1,2,...,n according to whether the piece covering 1 is
a square or r-mino yields

F (r)
n (q, t) = F

(r)
n−1(q, qt) + qtF

(r)
n−r(q, qt), n > r. (2.8)

By combining relations (2.7) and (2.8), one gets a recurrence for F
(r)
n (q, t) for each number

q and t. For example when r = 3, this is

F (3)
n (q, t) = F

(3)
n−1(q, t) + qn−2tF

(3)
n−5(q, t) + qn−3(1 + q)t2F

(3)
n−7(q, t)

+ qn−3t3F
(3)
n−9(q, t). (2.9)

The F
(r)
n (q, t) have the following explicit formula.
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Theorem 2.1. For all n ∈ N,

F (r)
n (q, t) =

∑

06k6bn/rc
q(

k+1
2 )
(

n− (r − 1)k

k

)

q

tk. (2.10)

Proof. It clearly suffices to show that

∑

c∈R(r)
n,k

qπ(c) = q(
k+1
2 )
(

n− (r − 1)k

k

)

q

.

Each c ∈ R
(r)
n,k corresponds uniquely to a sequence (d0, d1, . . . , dk), where d0 is the number

of squares following the kth r-mino (counting from left to right) in the covering c, dk is the
number of squares preceding the first r-mino, and, for 0 < i < k, dk−i is the number of
squares between the ith and (i+ 1)st r-mino. Then π(c) = (dk + 1) + (dk + dk−1 + 2) + · · ·+
(dk + dk−1 + · · ·+ d1 + k) =

(

k+1
2

)

+ kdk + (k − 1)dk−1 + · · ·+ 1d1 so that

∑

c∈R(r)
n,k

qπ(c) = q(
k+1
2 )

∑

d0+d1+···+dk=n−rk
di∈N

q0d0+1d1+···+kdk

= q(
k+1
2 )
(

n− (r − 1)k

k

)

q

,

by (1.5).

Theorem 2.2. The ordinary generating function of the sequence (F
(r)
n (q, t))n>0 is given by

∑

n>0

F (r)
n (q, t)x

n =
∑

k>0

q(
k+1
2 )tkxrk

(1− x)(1− qx) · · · (1− qkx)
. (2.11)

Proof. By (2.10) and (1.3),

∑

n>0

F (r)
n (q, t)x

n =
∑

n>0





∑

06k6bn/rc
q(

k+1
2 )
(

n− (r − 1)k

k

)

q

tk



 xn

=
∑

k>0

q(
k+1
2 )tkx(r−1)k

∑

n>kr

(

n− (r − 1)k

k

)

q

xn−(r−1)k

=
∑

k>0

q(
k+1
2 )tkx(r−1)k ·

xk

(1− x)(1− qx) · · · (1− qkx)
.
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Note that F
(r)
n (1, 1) = F

(r)
n , whence (2.11) generalizes (2.4). Setting q = 1 and q = −1 in

(2.11) yields

Corollary 2.2.1. The ordinary generating function of the sequence (F
(r)
n (1, t))n>0 is given

by
∑

n>0

F (r)
n (1, t)x

n =
1

1− x− txr
. (2.12)

and

Corollary 2.2.2. The ordinary generating function of the sequence (F
(r)
n (−1, t))n>0 is given

by
∑

n>0

F (r)
n (−1, t)x

n =
1 + x− txr

1− x2 + t2x2r
. (2.13)

When r = 2 and t = 1 in (2.13), we get

∑

n>0

F (2)
n (−1, 1)x

n =
1 + x− x2

1− x2 + x4
=
(1 + x+ x3 − x4)(1− x6)

1− x12
, (2.14)

which implies

Corollary 2.2.3. The sequence (F
(2)
n (−1, 1))n>0 is periodic with period 12; namely, if

an := F
(2)
n (−1, 1) for n > 0, then a0 = 1, a1 = 1, a2 = 0, a3 = 1, a4 = −1, and a5 = 0 with

an+6 = −an, n > 0.

(We call a sequence (bn)n>0 periodic with period d if bn+d = bn for all n > m for somem ∈ N.)

Remark. Corollary 2.2.3 is the q = −1 case of the well known formula

∑

06k6bn/2c
(−1)kq(

k
2)
(

n− k

k

)

q

=











(−1)bn/3cqn(n−1)/6, if n ≡ 0, 1 (mod 3);

0, if n ≡ 2 (mod 3).

See, e.g., Cigler [5], Ekhad and Zeilberger [6], and Kupershmidt [7].

We now show that the periodic behavior of F
(r)
n (−1, 1) seen when r = 2 is restricted

to that case. The following lemma is established in [9]. We include its proof here for
completeness.

Lemma 2.3. If r > 3, then gr(x) := 1− x+ xr does not divide any polynomial of the form

1− xm, where m ∈ P.

Proof. We first describe the roots of unity that are zeros of gr(x), where r > 2. If z is such a
root of unity, let y = zr−1. Since z(1−zr−1) = 1 and z is a root of unity, it follows that both y
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and 1−y are roots of unity. In particular, |y| = |1−y| = 1. Therefore, 1−2Re(y)+ |y|2 = 1,
so Re(y) = 1

2
. This forces y, and hence 1−y, to be primitive 6th roots of unity. But 1−y = 1

z
,

so z is also a primitive 6th root of unity.
This implies that the only possible roots of unity which are zeros of gr are the primitive

6th roots of unity. Since the derivative of gr has no roots of unity as zeros, these 6
th roots of

unity can only be simple zeros of gr. In particular, if every root of gr is a root of unity, then
r = 2.

Theorem 2.4. The sequence (F
(r)
n (−1, 1))n>0 is never periodic for r > 3.

Proof. By (2.13) at t = 1, we must show that 1 − x2 + x2r does not divide the product
(1−xm)(1+x−xr) for anym ∈ P whenever r > 3. First note that the polynomials 1−x2+x2r

and 1 + x− xr cannot share a zero; for if t0 is a common zero, then t
2
0 − 1 = t2r0 = (t0 + 1)

2,
i.e, t0 = −1, which isn’t a zero of either polynomial. Observe next that 1−x

2+x2r = gr(x
2),

where gr(x) is as in Lemma 2.3, so that 1 − x2 + x2r fails to divide 1 − xm for any m ∈ P,
since gr(x) fails to, which completes the proof.

Iterating (2.7) or (2.8) yields F
(r)
−i (q, t) = 0 if 1 6 i 6 r − 1, which we’ll take as a

convention.

Theorem 2.5. Let m ∈ N. If m and r have the same parity, then

F (r)
m (−1, t) = F

(r)
bm/2c(1,−t

2)− tF
(r)
(m−r)/2(1,−t

2), (2.15)

and if m and r have different parity, then

F (r)
m (−1, t) = F

(r)
bm/2c(1,−t

2). (2.16)

Proof. Taking the even and odd parts of both sides of (2.13) followed by replacing x with
x1/2 yields

∑

n>0

F
(r)
2n (−1, t)x

n =
1− txr/2

1− x+ t2xr

and
∑

n>0

F
(r)
2n+1(−1, t)x

n =
1

1− x+ t2xr
,

when r is even, and
∑

n>0

F
(r)
2n (−1, t)x

n =
1

1− x+ t2xr

and
∑

n>0

F
(r)
2n+1(−1, t)x

n =
1− tx(r−1)/2

1− x+ t2xr
,

when r is odd, from which (2.15) and (2.16) now follow from (2.12) upon putting together
cases.
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For a combinatorial proof of (2.15) and (2.16), we first assign to each r-mino arrangement

c ∈ R
(r)
m the weight wc := (−1)

π(c)tv(c), where t is an indeterminate. Let R
(r)′

m consist of those

c = c1c2 · · · in R
(r)
m satisfying the conditions c2i−1 = c2i, i > 1. Suppose c ∈ R

(r)
m − R

(r)′

m ,
with i0 being the smallest value of i for which c2i−1 6= c2i. Exchanging the positions of the

(2i0− 1)
st and (2i0)

th pieces within c produces a π-parity changing involution of R
(r)
m −R

(r)′

m

which preserves v.
If m and r have the same parity, then

F (r)
m (−1, t) =

∑

c∈R(r)
m

wc =
∑

c∈R(r)′
m

wc =
∑

c∈R(r)′

m
v(c) even

wc +
∑

c∈R(r)′

m
v(c) odd

wc

=
∑

c∈R(r)′

m
v(c) even

(−1)v(c)/2tv(c) − t
∑

c∈R(r)′

m−r

v(c) even

(−1)v(c)/2tv(c)

=
∑

z∈R(r)
bm/2c

(−1)v(z)t2v(z) − t
∑

z∈R(r)
(m−r)/2

(−1)v(z)t2v(z)

= F
(r)
bm/2c(1,−t

2)− tF
(r)
(m−r)/2(1,−t

2),

which gives (2.15), since each pair of consecutive r-minos in c ∈ R
(r)′

m contributes a factor

of −1 towards the sign (−1)π(c) and since members of R
(r)′

m for which v(c) is odd end in a
single r-mino. If m and r differ in parity, then

F (r)
m (−1, t) =

∑

c∈R(r)
m

wc =
∑

c∈R(r)′
m

wc =
∑

z∈R(r)
bm/2c

(−1)v(z)t2v(z) = F
(r)
bm/2c(1,−t

2),

which gives (2.16), since members of R
(r)′

m must contain an even number of r-minos.

The involution of the previous theorem in the case r = 2 can be extended to account

for the periodicity in Corollary 2.2.3 as follows. If n > 6, let R
(2)∗
n ⊆ R

(2)′

n consist of
those domino arrangements c = c1c2 · · · that contain at least 4bn/6c pieces satisfying the
conditions

c4i−3c4i−2c4i−1c4i = ssdd, 1 6 i 6 bn/6c; (2.17)

if 0 6 n 6 5, then let R
(2)∗
n = R

(2)′

n .

A π-parity changing involution of R
(2)′

n −R
(2)∗
n when n > 6 is given by the pairing

(ssdd)kssssu←→ (ssdd)kddu,

where k > 0 and u is some (non-empty) word in {d, s}. If n = 6m + i, where m > 1 and
0 6 i 6 5, then

F (2)
n (−1, 1) =

∑

c∈R(2)
n

(−1)π(c) =
∑

c∈R(2)′
n

(−1)π(c) =
∑

c∈R(2)∗
n

(−1)π(c)

= (−1)m
∑

c∈R(2)∗
i

(−1)π(c) = (−1)mF
(2)
i (−1, 1),

7



which implies Corollary 2.2.3, upon checking directly the cases 0 6 n 6 5, as each ssdd unit
in c ∈ R

(2)∗
n contributes a factor of −1 towards the sign (−1)π(c).

3 Circular r-Mino Arrangements

If n ∈ P and 0 6 k 6 bn/rc, let C(r)
n,k denote the set of coverings by k r-minos and n − rk

squares of the numbers 1, 2, . . . , n arranged clockwise around a circle:
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By the initial segment of an r-mino occurring in such a cover, we mean the segment first
encountered as the circle is traversed clockwise. Classifying members of C

(r)
n,k according as (i)

1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying
(2.1), yields

∣

∣

∣C
(r)
n,k

∣

∣

∣ = r

(

n− (r − 1)k − 1

k − 1

)

+

(

n− (r − 1)k − 1

k

)

=
n

n− (r − 1)k

(

n− (r − 1)k

k

)

, 0 6 k 6 bn/rc. (3.1)

Below we illustrate two members of C
(3)
4,1 :

(i)

................................................................
......................

..................
...............
..............
..............
.............
.............
............
............
............
.............
.............
..............
...............

................
...................

.........................
.......................................................

..............................................
.................
..............
.............
............
.............
..............
.................

............................................
1

2

3

4 (ii)

...........................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................

1

2

3

4

In covering (i), the initial segment of the 3-mino covers 1, and in covering (ii), the initial
segment covers 3.
With

C(r)
n :=

⋃

06k6bn/rc
C

(r)
n,k, n ∈ P, (3.2)
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it follows that

∣

∣C(r)
n

∣

∣ =
∑

06k6bn/rc

n

n− (r − 1)k

(

n− (r − 1)k

k

)

= L(r)
n , (3.3)

where L
(r)
1 = L

(r)
2 = · · · = L

(r)
r−1 = 1, L

(r)
r = r + 1, and L

(r)
n = L

(r)
n−1 + L

(r)
n−r if n > r + 1. Note

that
∑

n>1

L(r)
n xn =

x+ rxr

1− x− xr
. (3.4)

We’ll associate to each c ∈ C(r)
n a word uc = u1u2 · · · in the alphabet {r, s}, where

ui :=

{

r, if the ith piece of c is an r-mino;

s, if the ith piece of c is a square,

and one determines the ith piece of c by starting with the piece covering 1 and proceeding
clockwise from that piece. Note that for each word starting with r, there are exactly r
associated members of C

(r)
n , while for each word starting with s, there is only one associated

member.
Given c ∈ C

(r)
n and its associated word uc = u1u2 · · · , let

π(c) :=
∑

i:ui=r

i; (3.5)

note that π(c) gives the sum of the numbers gotten by counting the number of pieces preced-
ing each r-mino, inclusive (counting back each time counterclockwise to the piece covering
1).
Let

L(r)
n (q, t) :=

∑

c∈C(r)
n

qπ(c)tv(c), n ∈ P, (3.6)

where v(c) := the number of r-minos in the covering c.
Categorizing circular covers c of 1, 2, . . . , n according to whether the last letter in uc is

an s or r yields the recurrence relation

L(r)
n (q, t) = L

(r)
n−1(q, t) + qn−r+1tL

(r)
n−r(q, t/q

r−1), n > r + 1, (3.7)

with L
(r)
i (q, t) = 1 if 1 6 i 6 r − 1 and L

(r)
r (q, t) = 1 + rqt, as seen upon removing the

final piece of c, sliding the remaining pieces together to form a circle, and renumbering (if

necessary) so that 1 corresponds to the same position as before. The L
(r)
n (q, t), though, do

not seem to satisfy a recurrence like (2.8). The following theorem gives an explicit formula

for L
(r)
n (q, t).

Theorem 3.1. For all n ∈ P,

L(r)
n (q, t) =

∑

06k6bn/rc
q(

k+1
2 )
[

(r − 1)kq + (n− (r − 1)k)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

tk. (3.8)

9



Proof. It suffices to show that

∑

c∈C(r)
n,k

qπ(c) = q(
k+1
2 )
[

(r − 1)kq + (n− (r − 1)k)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

.

Partitioning C
(r)
n,k into the categories employed above in deriving (3.1), and applying (2.10),

yields

∑

c∈C(r)
n,k

qπ(c) = rqk−1+1 · q(
k
2)
(

n− (r − 1)k − 1

k − 1

)

q

+ qk · q(
k+1
2 )
(

n− (r − 1)k − 1

k

)

q

(3.9)

= q(
k+1
2 )
[

rkq + qk(n− rk)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

= q(
k+1
2 )
[

(r − 1)kq + (n− (r − 1)k)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

,

which completes the proof.

Note that L
(r)
n (1, 1) = L

(r)
n . By (3.8) and (2.10), the L

(r)
n (q, t) are related to the F

(r)
n (q, t)

by the formula

L(r)
n (q, t) = F (r)

n (q, t) + (r − 1)qtF
(r)
n−r(q, qt), n > 1, (3.10)

which reduces to
L(r)
n = F (r)

n + (r − 1)F
(r)
n−r, n > 1, (3.11)

when q = t = 1. Formula (3.10) can also be realized by considering the way in which 1 is

covered in c ∈ C
(r)
n , the first term representing those c for which 1 is covered by a square

or an initial segment of an r-mino and the second term representing the remaining r − 1
possibilities.

Theorem 3.2. The ordinary generating function of the sequence (L
(r)
n (q, t))n>1 is given by

∑

n>1

L(r)
n (q, t)x

n =
x

1− x
+
∑

k>1

q(
k+1
2 )tkxrk

[

r − (r − 1)qkx
]

(1− x)(1− qx) · · · (1− qkx)
. (3.12)

Proof. From (3.9),
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∑

n>1

L(r)
n (q, t)x

n =
∑

n>1

xn
∑

06k6bn/rc

(

qk+(
k+1
2 )tk

(

n− (r − 1)k − 1

k

)

q

+ rq(
k+1
2 )tk

(

n− (r − 1)k − 1

k − 1

)

q

)

=
x

1− x
+
∑

k>1

qk+(
k+1
2 )tk

∑

n>rk+1

(

n− (r − 1)k − 1

k

)

q

xn

+ r
∑

k>1

q(
k+1
2 )tk

∑

n>rk

(

n− (r − 1)k − 1

k − 1

)

q

xn

=
x

1− x
+
∑

k>1

qk+(
k+1
2 )tkx(r−1)k+1 ·

xk

(1− x)(1− qx) · · · (1− qkx)

+ r
∑

k>1

q(
k+1
2 )tkx(r−1)k+1 ·

xk−1

(1− x)(1− qx) · · · (1− qk−1x)

=
x

1− x
+
∑

k>1

q(
k+1
2 )tk ·

xrk
[

qkx+ r(1− qkx)
]

(1− x)(1− qx) · · · (1− qkx)
,

by (1.3).

Note that (3.12) reduces to (3.4) when q = t = 1. Setting q = 1 and q = −1 in (3.12)
yields

Corollary 3.2.1. The ordinary generating function of the sequence (L
(r)
n (1, t))n>1 is given

by
∑

n>1

L(r)
n (1, t)x

n =
x+ rtxr

1− x− txr
. (3.13)

and

Corollary 3.2.2. The ordinary generating function of the sequence (L
(r)
n (−1, t))n>1 is given

by
∑

n>1

L(r)
n (−1, t)x

n =
x+ x2 − rtxr − (r − 1)txr+1 − rt2x2r

1− x2 + t2x2r
. (3.14)

When r = 2 and t = 1 in (3.14), we get

∑

n>1

L(2)
n (−1, 1)x

n =
x− x2 − x3 − 2x4

1− x2 + x4
=
(x− x2 − 3x4 − x5 − 2x6)(1− x6)

1− x12
, (3.15)

which implies

11



Corollary 3.2.3. The sequence (L
(2)
n (−1, 1))n>1 is periodic with period 12; namely, if an :=

L
(2)
n (−1, 1) for n > 1, then a1 = 1, a2 = −1, a3 = 0, a4 = −3, a5 = −1, and a6 = −2 with

an+6 = −an, n > 1.

This periodic behavior is again restricted to the case r = 2.

Theorem 3.3. The sequence (L
(r)
n (−1, 1))n>1 is never periodic for r > 3.

Proof. By (3.14) at t = 1, we must show that f(x) := 1−x2+x2r does not divide the product
(1−xm)h(x), where h(x) := x+x2−rxr−(r−1)xr+1−rx2r, for anym ∈ P whenever r > 3. By
the proof of Theorem 2.4, it suffices to show that f and h are relatively prime. Suppose, to the
contrary, that t0 is a common zero of f and h so that t0(1+t0)+r(1−t

2
0) = t0(1+t0)−rt

2r
0 =

tr0[r+(r− 1)t0]. Squaring, substituting t
2r
0 = t20− 1, and noting t0 6= −1 implies that t0 must

then be a root of the equation (x+1) [(r − 1)x− r]2 = (x− 1)[(r− 1)x+ r]2, which reduces
to (r2 − 1)x2 = r2. But t0 = ±

r√
r2−1

is a zero of neither f nor h after all, which implies f
and h are relatively prime and completes the proof.

Recall that F
(r)
−i (q, t) = 0 if 1 6 i 6 r − 1, by convention.

Theorem 3.4. Let m ∈ P. If r is even, then

L
(r)
2m(−1, t) = L(r)

m (1,−t
2)− rtF

(r)
m− r

2
(1,−t2) (3.16)

and

L
(r)
2m−1(−1, t) = F

(r)
m−1(1,−t

2)− (r − 1)tF
(r)
m− r

2
−1(1,−t

2), (3.17)

and if r is odd, then

L
(r)
2m(−1, t) = L(r)

m (1,−t
2)− (r − 1)tF

(r)

m−( r+1
2 )
(1,−t2) (3.18)

and

L
(r)
2m−1(−1, t) = F

(r)
m−1(1,−t

2)− rtF
(r)

m−( r+1
2 )
(1,−t2). (3.19)

Proof. Taking the even and odd parts of both sides of (3.14) followed by replacing x with
x1/2 yields

∑

m>1

L
(r)
2m(−1, t)x

m =
x− rtx

r
2 − rt2xr

1− x+ t2xr

and
∑

m>1

L
(r)
2m−1(−1, t)x

m =
x− (r − 1)tx

r
2
+1

1− x+ t2xr
,

when r is even, and

∑

m>1

L
(r)
2m(−1, t)x

m =
x− (r − 1)tx

(r+1)
2 − rt2xr

1− x+ t2xr

12



and
∑

m>1

L
(r)
2m−1(−1, t)x

m =
x− rtx

(r+1)
2

1− x+ t2xr
,

when r is odd, from which (3.16)−(3.19) now follow from (3.13) and (2.12).

For a combinatorial proof of (3.16)−(3.19), we first assign to each covering c ∈ C
(r)
n the

weight wc := (−1)
π(c)tv(c), where t is an indeterminate. Let C

(r)′

n consist of those c in C
(r)
n

whose associated word uc = u1u2 · · · satisfies the conditions u2i = u2i+1, i > 1. Suppose

c ∈ C
(r)
n − C

(r)′

n , with i0 being the smallest value of i for which u2i 6= u2i+1. Exchanging
the positions of the (2i0)

th and (2i0 + 1)
st pieces within c produces a π-parity changing,

v-preserving involution of C
(r)
n − C

(r)′

n .
If r is even and n = 2m, then

L
(r)
2m(−1, t) =

∑

c∈C(r)
2m

wc =
∑

c∈C(r)′

2m

wc =
∑

c∈C(r)′

2m
v(c) even

wc +
∑

c∈C(r)′

2m
v(c) odd

wc

=
∑

c∈C(r)′

2m
v(c) even

(−1)v(c)/2tv(c) − rt
∑

c∈R(r)′

2m−r

v(c) even

(−1)v(c)/2tv(c)

=
∑

z∈C(r)
m

(−1)v(z)t2v(z) − rt
∑

z∈R(r)

m− r
2

(−1)v(z)t2v(z)

= L(r)
m (1,−t

2)− rtF
(r)
m− r

2
(1,−t2),

which gives (3.16), where R
(r)′

n is as in the proof of Theorem 2.5, since members of C
(r)′

2m with
v(c) even must begin and end with the same type of piece, while members with v(c) odd
must have u1 = r in uc with r possibilities for the position of its initial segment. Similarly,
if r is odd and n = 2m− 1, then

L
(r)
2m−1(−1, t) =

∑

c∈C(r)′

2m−1

wc =
∑

c∈C(r)′

2m−1
u1=s

wc +
∑

c∈C(r)′

2m−1
u1=r

wc

=
∑

c∈R(r)′

2m−2

wc − rt
∑

c∈R(r)′

2m−r−1

wc

= F
(r)
m−1(1,−t

2)− rtF
(r)

m−( r+1
2 )
(1,−t2),

which gives (3.19).

For the cases that remain, let C
(r)∗

n ⊆ C
(r)′

n such that C
(r)′

n −C
(r)∗

n comprises those c which
satisfy the following additional conditions:

(i) c contains an even number of pieces in all;

(ii) u1 6= up in uc = u1u2 · · · up;
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(iii) if u1 = r, then 1 corresponds to the initial segment of the r-mino covering it.

Pair members of C
(r)′

n − C
(r)∗

n of opposite π-parity as follows: given c ∈ C
(r)′

n − C
(r)∗

n , let c′ be
the covering resulting when uc = u1u2 · · · up is read backwards.
If r is even and n = 2m− 1, then

L
(r)
2m−1(−1, t) =

∑

c∈C(r)
2m−1

wc =
∑

c∈C(r)∗

2m−1

wc =
∑

c∈C(r)∗

2m−1
u1=s

wc +
∑

c∈C(r)∗

2m−1
u1=r

wc

=
∑

c∈R(r)′

2m−2

v(c) even

wc − (r − 1)t
∑

c∈R(r)′

2m−r−2

v(c) even

wc

= F
(r)
m−1(1,−t

2)− (r − 1)tF
(r)
m− r

2
−1(1,−t

2),

which gives (3.17), since members of C
(r)∗

2m−1 with u1 = s must end in a double letter, while
those with u1 = r must end in a single s with 1 not corresponding to the initial segment of
the r-mino covering it. Similarly, if r is odd and n = 2m, then

L
(r)
2m(−1, t) =

∑

c∈C(r)∗

2m

wc =
∑

c∈C(r)∗

2m
u1=up

wc +
∑

c∈C(r)∗

2m
u1 6=up

wc

=
∑

c∈C(r)∗

2m
u1=up

(−1)v(c)/2tv(c) − (r − 1)t
∑

c∈R(r)′

2m−r−1

(−1)v(c)/2tv(c)

=
∑

z∈C(r)
m

(−1)v(z)t2v(z) − (r − 1)t
∑

z∈R(r)

m−( r+1
2 )

(−1)v(z)t2v(z)

= L(r)
m (1,−t

2)− (r − 1)tF
(r)

m−( r+1
2 )
(1,−t2),

which gives (3.18).

4 Variants of the π Statistic

Modifying the π statistic of the previous section in different ways yields additional polynomial
generalizations of L

(r)
n . In this section, we look at some specific variants of the π statistic on

circular r-mino arrangements, taking r = 2 for simplicity. We’ll use the notation Cn = C
(2)
n ,

Cn,k = C
(2)
n,k, and Fn(q, t) = F

(2)
n (q, t).

We first partition Cn as follows: let
−→
C n comprise those coverings in which 1 is covered by

a square or by an initial segment of a domino and let
←−
C n comprise those coverings in which

1 is covered by the second segment of a domino.
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Define the statistic π1 on Cn by

π1(c) =

{

π(c), if c ∈
−→
C n;

π(c)− 2v(c) + n, if c ∈
←−
C n.

(4.1)

Note that π1(c) gives the sum of the numbers obtained by counting back counterclockwise

the pieces from each domino to the piece covering 2 whenever c ∈
←−
C n.

Theorem 4.1. For all n ∈ P,

∑

c∈Cn

qπ1(c)tv(c) =
∑

06k6bn/2c
q(

k+1
2 )
[

(n− k)q + qn−2kkq
(n− k)q

](

n− k

k

)

q

tk. (4.2)

Proof. By (2.10) when r = 2,

∑

c∈Cn,k

qπ1(c) = q(
k+1
2 )
(

n− k

k

)

q

+ q(
k
2)+k+(n−2k)

(

n− k − 1

k − 1

)

q

= q(
k+1
2 )

[

(

n− k

k

)

q

+ qn−2k kq
(n− k)q

(

n− k

k

)

q

]

= q(
k+1
2 )

[

(n− k)q + qn−2kkq

(n− k)q

]

(

n− k

k

)

q

.

If L̂n(q, t) denotes the distribution polynomial in (4.2), then

L̂n(q, t) = Fn(q, t) + qn−1tFn−2(q, t/q), n > 1, (4.3)

by (4.2) and (2.10), or by considering whether or not c belongs to
−→
C n. The L̂n(q, t) satisfy

the nice recurrence

L̂n(q, t) = L̂n−1(q, qt) + qtL̂n−2(q, qt), n > 3, (4.4)

with L̂1(q, t) = 1 and L̂2(q, t) = 1 + 2qt, the first term of (4.4) accounting for those c ∈
−→
C n

where 1 is covered by a square as well as those c ∈
←−
C n where 2 is covered by a square and

the second term accounting for the cases that remain.
Next define π2 on Cn by

π2(c) =

{

π(c), if c ∈
−→
C n;

π(c)− v(c), if c ∈
←−
C n.

(4.5)

Theorem 4.2. For all n ∈ P,

∑

c∈Cn

qπ2(c)tv(c) =
∑

06k6bn/2c
q(

k
2) nq
(n− k)q

(

n− k

k

)

q

tk. (4.6)
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Proof. By (2.10) when r = 2,

∑

c∈Cn,k

qπ2(c) = q(
k+1
2 )
(

n− k

k

)

q

+ q(
k
2)+k−k

(

n− k − 1

k − 1

)

q

= q(
k
2)

[

qk(n− k)q + kq

(n− k)q

]

(

n− k

k

)

q

= q(
k
2) nq
(n− k)q

(

n− k

k

)

q

.

Theorem 4.2 provides a combinatorial interpretation of the generalized Lucas polynomials

Lucn(x, t) :=
∑

06k6bn/2c
q(

k
2) nq
(n− k)q

(

n− k

k

)

q

xn−2ktk, (4.7)

studied by Cigler [2, 3]. Note that the joint distribution of π2 and v on Cn is Lucn(1, t), with
the x variable of Lucn(x, t) recording the number of squares in c ∈ Cn. Considering whether

or not c belongs to
−→
C n leads directly to the relation (cf. [3])

Lucn(1, t) = Fn(q, t) + tFn−2(q, t), n > 1. (4.8)

The Lucn(1, t) do not seem to satisfy a two-term recurrence like (3.7) or (4.4).
Similar reasoning shows that Lucn(1, t) is also the joint distribution of the statistics π3

and v on Cn, where

π3(c) =

{

π(c)− v(c), if c ∈
−→
C n;

π(c)− 2v(c) + n, if c ∈
←−
C n,

(4.9)

which yields the relation

Lucn(1, t) = Fn(q, t/q) + qn−1tFn−2(q, t/q), n > 1. (4.10)

The π2 statistic on Cn can be generalized to C
(r)
n by letting π2(c) = π(c), if the number

1 is covered by a square or an initial segment of an r-mino, and letting π2(c) = π(c)− v(c),

otherwise. Reasoning as in Theorem 4.2 with π2 on C
(r)
n leads to

Luc(r)n (x, t) :=
∑

06k6bn/rc
q(

k
2)
[

(r − 2)kq + (n− (r − 2)k)q
(n− (r − 1)k)q

](

n− (r − 1)k

k

)

q

xn−rktk, (4.11)

which generalizes Lucn(x, t). The Luc
(r)
n (x, t) are connected with the F

(r)
n (q, t) by the simple

relation
Luc(r)n (1, t) = F (r)

n (q, t) + (r − 1)tF
(r)
n−r(q, t), n > 1, (4.12)

which generalizes (4.8).
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