
Journal of Lie Theory
Volume 13 (2003) 247–261
C©2003 Heldermann Verlag

The Product Formula for the Spherical Functions
on Symmetric Spaces of Noncompact Type
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Abstract. In this paper, we prove the existence of the product formula
for the spherical functions on symmetric spaces of noncompact type. To this
end, we study the analyticity properties of the Cartan decomposition and we
find a limited Taylor expansion of the abelian factor in this decomposition.

1. Introduction

Let G be a semisimple noncompact connected Lie group with finite center and K
a maximal compact subgroup of G and X = G/K the corresponding Riemannian
symmetric space of noncompact type. We have a Cartan decomposition g = k + p

and we choose a maximal abelian subalgebra a of p . In what follows, Σ corresponds
to the root system of g and Σ+ to the positive roots. This implies that we have
chosen a set of simple positive roots α1 , . . . , αr where r = dim a is the rank of
the symmetric space. We have the root space decomposition g = g0 +

∑
α∈Σ gα .

Recall that k , the Lie algebra of K , can be described as

k = span {Xα + θ(Xα): Xα ∈ gα, α ∈ Σ+ ∪ {0}}

where θ is the Cartan automorphism. Let n =
∑
α∈Σ+ gα and n̄ =

∑
α∈Σ+ g−α =∑

α∈Σ+ θ(gα). Denote the groups corresponding to the Lie algebras a , n and n̄ by
A , N and N̄ respectively. We have the Cartan decomposition G = K AK and
the Iwasawa decomposition G = K AN . Let a+ = {H ∈ A: α(H) > 0 ∀ α ∈ Σ+}
and A+ = exp(a+).

If λ is a complex-valued functional on a , the corresponding spherical func-
tion is

φλ(e
H) =

∫
K
e(i λ−ρ)(H(eH k)) dk
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where g = k eH(g) n ∈ K AN and ρ = (1/2)
∑
α∈Σ+ mα α (mα denotes the

multiplicity of the root α). A spherical function, like any K -biinvariant function,
can also be considered as a K -invariant function on the Riemannian symmetric
space of noncompact type X = G/K . Naturally, such a function is completely
determined by its values on A (or on A+ ). The books [4, 7, 8] constitute a standard
reference on these topics.

Suppose that the symmetric space G/K is of noncompact type. Suppose
also that X ∈ a+ and Y ∈ a+ . We will assume these hypotheses throughout the
paper. At the end of the paper, we relax the last hypothesis.

Remark 1.1. The condition X ∈ a+ and Y ∈ a+ is for convenience. We could
assume instead that α(X) 6= 0 and α(Y ) 6= 0 for every α ∈ Σ+ .

In [8, (32), page 480], Helgason shows that a Weyl-invariant measure µX,Y
exists on the Lie algebra a such that

φλ(e
X)φλ(e

Y ) =
∫
a
φλ(e

H) dµX,Y (H) (1)

(unlike us, Helgason states his results at the group level).

It is known [8] that

φλ(e
X)φλ(e

Y ) =
∫
K
φλ(e

X k eY ) dk.

The measure µX,Y is then to satisfy∫
K
f(eX k eY ) dk =

∫
a
f(eH) dµX,Y (H)

for all continuous functions f which are biinvariant under the action of K .

The support of the measure µX,Y is shown to be included in C(X) +C(Y )
when 0 6∈ W ·X+W ·Y where C(H) is the convex hull of the orbit of H under the
action of the Weyl group W . In fact, this is true for all X and Y using properties
of weak convergence of probability measures.

The natural question is whether the measure µX,Y is absolutely continuous
with respect to the Lebesgue measure on a i.e. whether we have a “product
formula”

φλ(e
X)φλ(e

Y ) =
∫
a
φλ(e

H) k(H,X, Y ) dH (2)

where k(H,X, Y ) is Weyl invariant in each of the variables. Helgason also discusses
this measure and some partial results in [9].

Flensted-Jensen and Koornwinder give explicit formulae for the rank one
case in [2]. In fact, they give a product formula for a larger class of special
functions, namely the Jacobi functions. The formulae given can be derived using
an addition formula which is not currently available in higher rank situations. The
reader may wish to consult also [11]. In [6], the authors prove the existence of
the product formula for the spherical functions in the complex case and we study
properties of the integral kernel of this formula.
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In this paper, we prove the existence of the product formula (2) for sym-
metric spaces of noncompact type. In [9, page 367], Helgason writes that “It is
obviously an interesting problem to relate µb,c to the structure of G”. The product
formula is an important step in solving that problem.

In Section 2, we discuss our approach to prove the existence of the product
formula. Our method is based on the approach Flensted-Jensen and Ragozin
use in [3] to prove the existence of the kernel of the Abel transform (see also
[8, Theorem 10.11, page 478]). It leads us to study analyticity properties of the
Cartan decomposition and in particular the analyticity of the function g → a
where g = k1ak2 is the Cartan decomposition of g , a question interesting in itself.
It is worthwhile mentioning that in order to prove the product formula, we do not
use direct knowledge of the spherical functions unlike our result of [6].

In Section 3, a rank-one reduction is used. This section contains most of
the computations.

In Section 4, we put everything together to prove the existence of the
product formula. We conclude by the discussion of cases X ∈ ∂a+ or Y ∈ ∂a+ and
by giving some interesting applications of the product formula (they were given in
the complex case in [6]).

2. Product formula and analyticity of the Cartan decomposition

To prove the product formula (2), it is sufficient to show that there exists a kernel
k(H,X, Y ) such that for every K -biinvariant continuous function f and for every
X , Y ∈ a , we have∫

K
f(eX k eY ) dk =

∫
a
f(eH) k(H,X, Y ) dH. (3)

Let a:G→ a+ be defined by g = k1 e
a(g) k2 . Equation (3) is equivalent to∫

K
f(ea(eX k eY )) dk =

∫
a
f(eH) k(H,X, Y ) dH. (4)

Let M be the centralizer of A in K . It is possible to write (4) as∫
K/M

f(ea(eX k eY )) dkM =
∫
a
f(eH) k(H,X, Y ) dH. (5)

if the measure on the coset space K/M is properly normalized. Indeed, if m ∈M ,
a(eX kmeY ) = a(eX k eY ).

The question is therefore to show whether the measure on a given by the
left-hand side of (4) or (5) is absolutely continuous with respect to the Lebesgue
measure on a . Our approach, embodied by Proposition 2.8 at the end of this sec-
tion, is inspired by [3] and [8]. Since their approach relies on the analyticity of the
Iwasawa decomposition, in order to adapt their method, we have to investigate the
analyticity of the Cartan decomposition. Contrary to the Iwasawa decomposition,
the function g → a(g) is not analytic on the whole group G although it is known
to be smooth on K A+ K by [7, Corollary 1.2, page 402]. We go a little further.
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Proposition 2.1. Suppose G/K is a symmetric space of noncompact type and
let g = k1 e

a(g) k2 , a(g) ∈ a+ , be the Cartan decomposition of g ∈ G. Then the
function g → a(g) is analytic on K A+ K .

Proof. Let g = k expX where k ∈ K and X ∈ p . The map g → (k,X) ∈
K × p is analytic ([4, Prop. 2.1.11, p. 60]). Now, one represents X ∈ p as
X = Ad(k)H where k ∈ K/M and H ∈ a+ and the Jacobian of the analytic map
(kM,H) → Ad(k)H is equal to

∏
α∈Σ+ α(H)mα ([8, p. 195]). It follows that the

mapping g → X → H = a(g) is analytic when a(g) ∈ a+ .

We now give a result which will prove useful several times.

Proposition 2.2. Let H be a connected Lie group and f : H → R an analytic
function. If f 6= 0 then the zeros of f form a closed set C of zero Haar measure
in H .

Proof. This well known property of analytic functions follows for example from
Lelong’s theorem on semi-analytic sets (see for example [12]).

Let us give here a simple elementary proof of this property. Consider h ∈ C
and a coordinate map φ on a neighbourhood U of h such that V = φ(U) is a
product of open intervals in Rm , m = dimH . The set U ∩ C is of Haar measure
zero if and only if its image by φ is of zero Lebesgue measure in Rm . We proceed
by induction. If m = 1 then it is well known that if F = f ◦ φ−1: (a, b) → R is
analytic then either F = 0 or the zeros of f are isolated and therefore of Lebesgue
measure zero.

If V is a product of m > 1 intervals, we write it V = I × J with I =
(a, b) ⊂ R and J a product of m− 1 intervals. Consider A = {x ∈ I: F (x, y) = 0
for all y ∈ J} ⊂ I . Either A is of strictly positive Lebesgue measure in I or A
is of zero measure. The first case implies that F is identically zero on V . In the
second case, if x ∈ I \ A then by induction hypothesis, the set of y ’s in J such
that F (x, y) = 0 is of measure zero in Rm−1 . An application of Fubini’s theorem
allows us to conclude the proof.

Remark 2.3. Let µ be the Haar measure on H . The complement of a closed
set of µ-measure zero is a dense open set.

Corollary 2.4. Let H be a connected Lie group and N an analytic manifold.
Let f : H → N an analytic map. Let k = min(dimH, dimN).

If the differential df is of rank k at a point h ∈ H then it is of rank k on
an open set H \ C ⊂ H where the Haar measure of C is zero.

Proof. The differential df is an analytic map on H . Let sk(h) be the sum of
squares of all determinants of df |h of dimension k . The function sk is non-negative
analytic on H . According to the hypothesis, sk(h) > 0 and we apply Proposition
2.2 to sk .

We will also need the following algebraic result.
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Theorem 2.5. (Hermite) Let P be a polynomial of degree n with real coeffi-
cients. The number of distinct roots of P is equal to the rank of the matrix

B =


p0 p1 . . . pn−1

p1 p2 . . . pn
...

...
. . .

...
pn−1 pn . . . p2n−2


where pk =

∑
j b

k
j and b1 ,. . . , bn are the roots of P . The Newton polynomials pk

are polynomials of the coefficients of P .

Proof. Refer to [5].

Remark 2.6. The matrix B is sometimes called the Bezoutian of the the
polynomial P .
We will be applying the above result to P (t) = det(t I − A) where A is a real
symmetric matrix. In that case, the rank of the corresponding matrix B will
denote the number of distinct real roots of P i.e. the number of distinct eigenvalues
of A .

In the sequel we want to use Proposition 2.2 and Corollary 2.4 in order to
study the absolute continuity of the measure µX,Y which is characterized by the
equality ∫

K
f(ea(eX k eY )) dk =

∫
a
f(eH) dµX,Y (H). (6)

for all K -biinvariant continuous functions on G . Since the application

F : K → a+, F (k) = a(eX k eY )

is only analytic on K0 = {k ∈ K : a(eX k eY ) ∈ a+} ⊂ K , we cannot apply
the analytic continuation arguments of Proposition 2.2 and Corollary 2.4 because
K0 may not be connected. We will surmount this difficulty by working on a
subset K ′ of K0 introduced in the following lemma. We will write k ∈ K ′ if
H = a(eXkeY ) ∈ a+ and α(H) 6= β(H) for different roots α and β .

Let us fix a basis of g according to [7, Lemma 3.5, page 261]. This is a basis
constructed as a union of bases of root spaces g0 and gα . If we have g = k1 e

H k2

(i.e. H = a(g)) then

Ad(g) = Ad(k1) eadH Ad(k2)

and

Ad(θ(g)−1) Ad(g) = Ad(k2)−1 e2 adH Ad(k2).

In the above basis, the operator e2 adH is given by the matrix

diag[

dim g0︷ ︸︸ ︷
1, . . . , 1,

dim gα1︷ ︸︸ ︷
e2α1(H), . . . e2α1(H), . . . , e−2α1(H), . . . , e−2αn0 (H)] (7)

where n0 = |Σ+| is the number of positive roots.
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Lemma 2.7. Let

G′ = {g ∈ G: Ad(θ(g)−1) Ad(g) has 1 + 2 |Σ+| distinct eigenvalues}

and K ′ = {k ∈ K: eX k eY ∈ G′}. If K ′ 6= Ø then K ′ is an open set in K whose
complement is of measure zero.

Proof. The map from G to the set of linear operators on g defined by g →
Ad(θ(g)−1) Ad(g) is analytic.

For a given g , let Φ(g) = det(t I −Ad(θ(g)−1) Ad(g)) be the characteristic
polynomial of Ad(θ(g)−1) Ad(g) and let Bg be the matrix defined in Theorem 2.5
for the polynomial Φ(g). Let m = 1 + 2 |Σ+| which is the largest possible number
of distinct roots of Φ(g) (refer to (7)). According to Theorem 2.5, Φ(g) has m
distinct roots if and only if sm(Bg) > 0 where sm(B) is the sum of squares of all
determinants of order m of the matrix B .

Consider the analytic map k → sm(BeX k eY ). Assuming that there exists
k ∈ K ′ , this map is not identically zero on K so the statement follows by
Proposition 2.2.

Proposition 2.8. Let F (k) = a(eX k eY ). In order to show that the measure
µX,Y in (1) and (6) is absolutely continuous with respect to the Lebesgue measure
on a it suffices to show that the differential of the map F is surjective for at least
one point k0 ∈ K ′ (refer to Lemma 2.7).

Proof. Denote by Pn[t] the space of real polynomials of degree n = dim g with
the highest term tn . Consider the map Φ: G → Pn[t] defined as in Lemma 2.7.
Clearly, Φ is an analytic map which verifies Φ(g) = Φ(ea(g)). Denote by ΦA the
restriction of Φ to A . The map ΦA is analytic on A . The map Ψ = ΦA ◦ eF is
analytic on K since Ψ(k) = Φ(eX k eY ).

The map ΦA is of rank less than or equal to r = dim a . We now show that
ΦA is of rank r on the set A′ = A ∩G′ open in A . Denote mi = mαi . Then

ΦA(t) = (t− 1)m0

n0∏
i=1

((t− e2αi) (t− e−2αi))mi .

Suppose that Q =
∑r
k=1 ak

∂ΦA

∂αk
= 0. If 1 ≤ j ≤ r then on A′ we have

dmj−1

dtmj−1
Q

∣∣∣∣∣
t=e2αj

= − 2 ajmj! e
2αj (e2αj − 1)m0 (e2αj − e−2αj)mj

×
∏
i6=j

((e2αj − e2αi) (e2αj − e−2αi))mi = 0

so the ak are all zero and ∂ΦA

∂αk
, k = 1, . . . , r , are linearly independent. It follows

that ΦA is of rank r on A′ .

From that we deduce that at a point k ∈ K ′ where dF is surjective, the
map Ψ(k) = ΦA(eF (k)) is of full rank r .
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By Corollary 2.4, we find an open set U of K such that K\U is of measure 0
and such that dΨ is of rank r everywhere on U . Let V = K ′ ∩ U where K ′ is
as in Lemma 2.7. If k ∈ V , then dΨ is surjective at k and dΦA is surjective at
F (k). Since dΨ = dΦA ◦ d(eF ), we conclude that dF is surjective at k .

The proof of the fact that if S is of zero Lebesgue measure in a+ than
µX,Y (S) = 0 is now identical as in [3] or [8, p. 479].

Remark 2.9. The analyticity of the roots of a polynomial as functions of its
coefficients was studied by Brillinger in [1] but these results are not precise enough
to be used in the proof of the Proposition 2.8.

Remark 2.10. In the proofs of Lemma 2.7 and Proposition 2.8 one can use in
an equivalent way the polynomial

Φ̃(g) = det(t I − adX)

where g = k expX with k ∈ K and X ∈ p instead of the polynomial Φ(g) =
det(t I−Ad(θ(g)−1) Ad(g)). The map g → Φ̃(g) is analytic and one verifies easily
that Φ̃(g) = Φ̃(ea(g)). The rest of the proofs remains identical.

The remainder of this paper consists mainly in showing that there exists
an element k ∈ K such that the hypotheses of Lemma 2.7 and Proposition 2.8
are fulfilled i.e. that there exists k ∈ K such that eX k eY ∈ G′ and dF (k) is
surjective. This will be done in Theorem 4.5 for an element of K of the form

k0 = exp(t1 (Xα1 + θ(Xα1)) + . . .+ tr (Xαr + θ(Xαr)))

where Xα1 , . . . , Xαr are root vectors and the ti ’s are not zero but small enough.

3. A rank one reduction

The main result of this section is Proposition 3.2 and its corollary. There we
restrict the map F of Proposition 2.8 to elements of the form

k = exp(t1 (Xα1 + θ(Xα1)) + . . .+ tr (Xαr + θ(Xαr)))

and compute a limited Taylor expansion about k = e using a rank one reduction.

Lemma 3.1. Let α be a positive root with associated root vector Xα and let
Hα = [Xα, θ(Xα)]. Then α(Hα) < 0. If α1 , . . . , αr are simple positive roots then
the vectors Hα1 , . . . , Hαr form a basis of a.

Proof. Define Aα ∈ a by α(H) = B(H,Aα) for all H ∈ a . Using [7, (7), page
407], we get Hα = B(Xα, θ(Xα))Aα and therefore,

α(Hα) = B(Xα, θ(Xα))α(Aα) = B(Xα, θ(Xα))B(Aα, Aα) < 0

since the quadratic form X → B(X, θ(X)) is strictly negative definite everywhere
([7, Proposition 7.4 page 184]) while the form H → B(H,H) is strictly positive
definite on a (the second statement is a consequence of the former since θ = −id
on a).
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Proposition 3.2. Assume a < 0 and b < 0. Let α be a positive root, Xα

an associated root vector and let Hα = [Xα, θ(Xα)]. Let Kα be the connected
subgroup of K with subalgebra kα generated by Xα + θ(Xα). Then there exist
k1(t), k2(t) ∈ Kα and S > 0 such that for t small enough, we have

eaHα et (Xα+θ(Xα)) ebHα = k1(t) exp
(
(a+ b)Hα + S Hα t

2 +O(t3)Hα

)
k2(t). (8)

Proof. Let c =
√
−α(Hα)/2 (which is a positive real number by Lemma 3.1).

Let g̃ = span {Hα, Xα, θ(Xα)} . It is easy to check that g̃ is a Lie algebra and that

the map η: g̃→ sl(2,R) defined by η(b1 Hα+b2 Xα+b3 θ(Xα)) =

[
−c2 b1 c b2

−c b3 c2 b1

]
is a Lie algebra isomorphism.

For t small enough, the result depends only on the Lie algebra and we can
use the correspondence given by η . We know that we have

eaHα et (Xα+θ(Xα)) ebHα = k1 exp
(
(a+ b)Hα + e1 Hα t+ e2 Hα t

2 +O(t3)Hα

)
k2

with k1 = k1(t), k2 = k2(t) ∈ Kα (the Cartan decomposition in the connected
subgroup of G corresponding to g̃). Call the above equality A = B and write
θ(A)−1 A = θ(B)−1 B . This gives

ebHα e−t (Xα+θ(Xα)) e2 aHα et (Xα+θ(Xα)) ebHα

= k−1
2 exp

(
2 (a+ b)Hα + 2 e1 Hα t+ 2 e2 Hα t

2 +O(t3)Hα

)
k2.

Using the isomorphism η , this becomes

e

[
−b c2 0

0 b c2

]
e

[
0 −c t
c t 0

]
e

[
−2 a c2 0

0 2 a c2

]
e

[
0 c t
−c t 0

]
e

[
−b c2 0

0 b c2

]
=

k̃−1
2 e

[
−2((a+ b) + e1 t+ e2 t

2 +O(t3))c2 0
0 2((a+ b) + e1 t+ e2 t

2 +O(t3))c2

]
k̃2

where k̃2 = k̃2(t) corresponds to k2 = k2(t) under the isomorphism. The ex-
ponential map on a one dimensional matrix Lie algebra is the classical matrix
exponential so the product of exponentials on the lefthand-side of the last formula

is equal to

[
d1 d2

d3 d4

]
with

d1 = cos(c t)2 (e−2 c2 (b+a) − e2 c2 (−b+a)) + e(2 c2 (−b+a)),

d2 = − cos(c t) sin(c t) (e2 c2 a − e−2 c2 a),

d3 = − cos(c t) sin(c t) (e2 c2 a − e(−2 c2 a)),

d4 = cos(c t)2 (e2 c2 (b+a) − e2 c2 (−b+a)) + e(2 c2 (−b+a)).

Taking the trace on both sides, we find that

cos(c t)2 e−2 c2 (b+a) + e2 c2 (−b+a) − cos(c t)2 e2 c2 (−b+a)

+e−2 c2 (−b+a) − cos(c t)2 e−2 c2 (−b+a) + cos(c t)2 e2 c2 (b+a)

= 2 cosh(2 ((a+ b) + e1 t+ e2 t
2)) +O(t3).
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Comparing the limited Taylor expansions of the last equality, we find easily
that e1 = 0 and that

S = e2 =
sinh(2 a c2)

(
e−2 b c2 sinh(2 (a+ b) c2)− sinh(2 a c2)

)
− sinh(2 (a+ b) c2)e−2 (a+b) c2

.

It is not difficult to see that the last expression is strictly positive when
a < 0 and b < 0.

Corollary 3.3. Let α be a positive root, Xα an associated root vector and let
Hα = [Xα, θ(Xα)]. Suppose α(X) > 0 and α(Y ) > 0. Then there exists S > 0
such that for t small enough, we have

a(eX et (Xα+θ(Xα)) eY ) = X + Y + S Hα t
2 +O(t3)Hα.

Proof. Write

X =
α(X)

α(Hα)
Hα +

X′︷ ︸︸ ︷
(X − α(X)

α(Hα)
Hα) and Y =

α(Y )

α(Hα)
Hα +

Y ′︷ ︸︸ ︷
(Y − α(Y )

α(Hα)
Hα) .

Since α(X ′) = 0 = α(Y ′) and X ′ , Y ′ ∈ a , they both commute with the elements
of g̃ (refer to the proof of Proposition 3.2). For the same reason eX

′
, eY

′
and

eX
′+Y ′ commute with the elements of Kα . We then have

eX et (Xα+θ(Xα)) eY = eX
′
e
α(X)
α(Hα)

Hα et (Xα+θ(Xα)) e
α(Y )
α(Hα)

HαeY
′

= eX
′
k1(t) e(

α(X)
α(Hα)

+
α(Y )
α(Hα))Hα+S Hα t2+O(t3)Hα k2(t)eY

′

= k1(t) eX
′+Y ′+( α(X)

α(Hα)
+

α(Y )
α(Hα))Hα+S Hα t2+O(t3)Hα k2(t)

= k1(t) eX+Y+S Hα t2+O(t3)Hα k2(t)

(ki(t) ∈ Kα ⊂ K ). For t small enough, X + Y + S Hα t
2 + O(t3)Hα ∈ a+ which

allows us to conclude.

4. The existence of the product formula

Definition 4.1. Let α1 , . . . , αr be the simple positive roots and choose as-
sociated root vectors Xα1 , . . . , Xαr . Suppose X , Y ∈ a+ . Define g: Rr → a

by

g(t1, . . . , tr) = a(eX et1 (Xα1+θ(Xα1 ))+...+tr (Xαr+θ(Xαr )) eY ).

Remark 4.2. In order to prove that the differential of the map F defined in
Proposition 2.8 is surjective at a point k0 ∈ K ′ , it clearly suffices to show that there
exists a point t = (t1, . . . , tr) such that g(t) ∈ a+ , α(g(t)) 6= β(g(t)) whenever
α 6= β , α, β ∈ Σ+ and such that the Jacobian of g in t is nonzero.

It will also be convenient to think of g as a map into Rr (using the basis
Hαi , i = 1, . . . , r , of a where Hαi = [Xαi , θ(Xαi)]).
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Lemma 4.3. We have

g(±t1, . . . ,±tr) = g(t1, . . . , tr)

where the signs are independent.

Proof. Fix εi ∈ {−1, 1} , i = 1, . . . , r . Recall that g = ⊕α gα where the sum
is taken over all the roots and that for any root α , we have α =

∑r
i=1 ni αi where

the ni are integers that are all greater than or equal to 0 or all smaller than or
equal to 0 and that the representation is unique. We define the map ψ: g→ g by

ψ(X) = εn1
1 · · · εnrr X if X ∈ gα, α =

r∑
i=1

ni αi

and we extend the map linearly to g . Note that ψ(X) = X when X ∈ g0 . It is easy
to check that ψ is a Lie algebra isomorphism (using the relation [gα, gβ] = gα+β

where gα+β = {0} if α + β is not a root).

Let G̃ be the simply connected covering of G . Since G is connected,
we know that G ' G̃/Z where Z is a subgroup of Z(G̃), the center of G̃
(see [13, page 26]). There exists a group automorphism Ψ on G̃ such that
Ψ(eX) = eψ(X) for all X ∈ g . Now, Ψ(Z(G̃)) = Z(G̃) so it is possible to
define the group automorphism Ψ on G̃/Z(G̃). Now, G̃/Z(G̃) ' G/Z(G) since
they are both isomorphic to Int(g) (see [7, Corollary 5.2, page 129]). Note that
G/Z(G) has Lie algebra g and finite center (its center is {eZ(G)} by [7, Corollary
5.3, page 129]). It is easy to see that Z(G) is a subgroup of K . Indeed, let
K ′ be any maximal compact subgroup containing the finite set Z(G). Since all
maximal compact subgroups of G are conjugate, there exists g ∈ G such that
g K ′ g−1 = K . But then Z(G) = g Z(G) g−1 ⊂ K . Hence, with some abuse of
language, G/Z(G) = (K/Z(G))AN and G/Z(G) = (K/Z(G))A (K/Z(G)).

All this implies that the function g : Rr → a = Rr is the same if we define
it via the Iwasawa and Cartan decompositions of the group G or of the group
G/Z(G). On G/Z(G), the automorphism Ψ is well defined. We will therefore
work on G/Z(G) or, in other words, work on G supposing that the center of
G is {e} . Note also that the map Ψ sends the groups K , A , N and N̄ onto
themselves. In addition, the automorphism Ψ is the identity on A .

We have a(Ψ(g)) = a(g) since g = k1 e
a(g) k2 implies

Ψ(g) = Ψ(k1) Ψ(ea(g)) Ψ(k2) = Ψ(k1) eψ(a(g)) Ψ(k2) = Ψ(k1) ea(g) Ψ(k2).

Hence, writing Zi = Xαi + θ(Xαi),

g(±t1, . . . ,±tr) = a(eX e±t1 Z1+...+±tr ZreY ) = a(eX eψ(t1 Z1+...+tr Zr)eY )

= a(eX Ψ(et1 Z1+...+tr Zr)eY )) = a(Ψ(eX et1 Z1+...+tr ZreY ))

= g(t1, . . . , tr)

which proves the lemma.
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Proposition 4.4. There exist S1 > 0, . . . , Sr > 0 such that we have

g(t1, . . . , tr) = X + Y +
r∑
i=1

SiHαi t
2
i +O(‖t‖3).

Proof. Taking α = αi and Xα = Xαi in Corollary 3.3, it is clear that

g(t1, . . . , tr) = X + Y +
r∑
i=1

SiHαi t
2
i +

∑
i<j

cij ti tj Hij +O(‖t‖3) (9)

where Si > 0 for each i . The invariance given in Lemma 4.3 implies that the
coefficients cij of the terms cij ti tj Hij must be 0 (it would suffice to take εi = −1
and εk = 1 for k 6= i).

Theorem 4.5. The product formula (2) exists for every symmetric space of
noncompact type.

Proof. We show the existence of a point t = (t1, . . . , tr) with properties re-
quired in Remark 4.2.

The Jacobian of g is easily computed; for s = (s1, . . . , sr) close to the
origin, the Jacobian is 2r (

∏r
i=1 si Si) det(Hα1 , . . . , Hαr) +O(‖s‖2) which is clearly

nonzero when all si 6= 0. Fix such an s . It follows that g is a diffeomorphism
of an open neighbourhood U of s onto an open neighbourhood V of g(s). The
Lebesgue measure of the set C = {v ∈ V | α(v) = β(v) for some roots α 6= β} is
zero so there exists t ∈ U with nonzero coefficients such that g(t) 6∈ C .

As announced in the introduction, we now discuss what happens without
the hypothesis X ∈ a+ and Y ∈ a+ .

Lemma 4.6. Let ∆ be an irreducible root system and ∆0 be the set of simple
positive roots. If β1 ∈ ∆0 then one may order the elements of ∆0 in such a way
β2 , . . . , βr (r = |∆0|) that

∑k
i=1 βi ∈ ∆ for all k = 1, . . . , r .

Proof. We use induction on r . The result is trivial when r = 1.

Suppose that the statement is true for any root system with r − 1 simple
positive roots.

Consider the Dynkin diagram D of a root system with |∆0| = r . As a
graph, this diagram is a finite tree so there exists a root αr ∈ ∆ such that 〈α, αr〉
for only one other root in ∆, say α = αr−1 (geometrically, it means that the only
vertex of D connected with αr is αr−1 ).

Let ∆′ be the root system generated by the simple roots ∆0 \ {αr} (the
Dynkin diagram D′ of ∆′ is obtained from D by suppressing the vertex αr and
the edge [αr−1, αr]).

Let us order the elements of ∆0 \ {αr} in such a way α1 , . . . , αr−1 that∑r−1
i=k αi ∈ ∆ for all k = 1, . . . , r−1. This is possible by the induction hypothesis.

Let β = α1 + . . . + αr−1 ∈ ∆. As 〈αp, αr〉 = 0 when p < r − 1 and
〈αr−1, αr〉 < 0 (all this follows from the fact that D contains the edge [αr−1, αr]
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and no other edge with vertex αr ) we infer that 〈β, αr〉 < 0. This implies [7,
Lemma 2.18 page 291] that β + αr = α1 + . . . + αr ∈ ∆. The statement of
the lemma is then true for β1 = αi , i < r . It is also true for β1 = αr since∑r−1
i=k αi + αr ∈ ∆ for k = 1, . . . , r − 1 which follows from the same argument

replacing β by αk + . . .+ αr−1 .

The lemma could also be proven using the classification of root systems by
a case by case examination. See for instance [7].

Proposition 4.7. Let X ∈ ∂a+ , X 6= 0 and Y ∈ a+ (or vice-versa). Then
µX,Y has a density.

Proof. We refer to the notation of Lemma 4.6. Let β1 ∈ ∆0 be such that
β1(X) 6= 0. Let β2 , . . . , βr be as in Lemma 4.6. We define g(t1, . . . , tr) as in
Definition 4.1 using the roots αk =

∑k
i=1 βi , k = 1, . . . , r , which are no longer

simple. Then equation (9) still holds.

We define the map ψ: g→ g by

ψ(X) = εn1
1 · · · εnrr X if X ∈ gα, α =

r∑
i=1

ni βi

and we extend the map linearly to g . If i < j , we choose εi = −1 and all other
εk ’s to be 1. We then have

g(0, . . . , 0, ti, 0, . . . , 0,−tj, 0, . . . , 0) = g(0, . . . , 0, ti, 0, . . . , 0, tj, 0, . . . , 0)

which shows that the term ti tj does not appear in (9).

We now discuss some instructive examples. Let G/K = SL(3,R)/SO(3).

Let K1 = {

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 : θ ∈ R} , K2 = {

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 : θ ∈ R}

and K3 = {

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 : θ ∈ R} . If K = SO(3) then K = K1 K3 K2

(in [10], we have K = K1 K2 K3 which is equivalent if we interchange the first 2
coordinates in R3 ) and K = K1 K2 K1 (see [15]).

If X =

 a 0 0
0 a 0
0 0 −2 a

 ∈ ∂a+ , a > 0, and Y =

 b 0 0
0 b 0
0 0 −2 b

 ∈ ∂a+ ,

b > 0, then for k = k1 k2 k
′
1 ∈ K = K1 K2 K1 , we have with the help of

Corollary 3.3

eX k eY = eX k1 k2 k
′
1 e

Y = k1 e
X k2 e

Y k′1 = k1 k
′
2 e

X+Y+cHβ k′′2 k
′
1

where Hβ =

 0 0 0
0 1 0
0 0 −1

 . The set {a(eX k eY ): k ∈ K} is contained in a segment

and therefore µX,Y cannot have a density. Note that in this case, X + Y ∈ ∂a+ .



Graczyk and Sawyer 259

If X =

 a 0 0
0 a 0
0 0 −2 a

 ∈ ∂a+ , a > 0 and Y =

 2 b 0 0
0 −b 0
0 0 −b

 ∈ ∂a+ ,

b > 0, then for k = k1 k3 k2 ∈ K = K1 K3 K2 , we have with the help of
Corollary 3.3

eX k eY = eX k1 k3 k2 e
Y = k1 e

X k3 e
Y k2 = k1 k

′
3 e

X+Y+cHβ k′′3 k2

where Hβ =

 1 0 0
0 0 0
0 0 −1

 . The set {a(eX k eY ): k ∈ K} is again contained

in a segment and the measure µX,Y has not a density. Note that in this case,
X + Y ∈ a+ .

Similar remarks can be made for the same examples in the case G/K =
SL(3,C)/SU(3) using [6, Proposition 4.4].

Let us take G/K = SL(4,R)/SO(4). Suppose X , Y ∈ ∂a+ with α1(X) =
0, α2(X) > 0, α3(X) > 0 and α2(Y ) = 0, α1(Y ) > 0, α3(Y ) > 0. Then α3 ,
α2 + α3 and α1 + α2 + α3 are independent roots which are nonzero on X and Y
(note that X + Y ∈ a+ ). Then the reasoning used in the proof of Proposition 4.7
shows that µX,Y has a density.

The above examples show that the density of µX,Y in the case where X
and Y ∈ ∂a+ may exist or not.

In a further analysis of the kernel of the product formula the following
observations should be useful. We define the map k: G→ K by g = k(g) eH(g) n
(the Iwasawa decomposition of g ). The map n̄→ k(n̄)M is a diffeomorphism of
N̄ into an open subset of K/M whose complement is of measure zero with respect
to dkM . Combining (5) with [8, Th.5.20, page 198] we get∫

N̄
f(ea(eX k(n̄) eY )) e−2ρ (H(n̄)) dn̄ =

∫
a
f(eH) k(H,X, Y ) dH.

where the measures are normalized to ensure that
∫
K/M dkM =

∫
N̄ e−2ρ (H(n̄)) dn̄ .

It will be interesting to study the application n̄ → a(eX k(n̄) eY ) on N̄ . Let us
give here a Taylor expansion of this function.

Corollary 4.8.

(i) Let α be a positive root, Xα an associated root vector and let Hα = [Xα, θ(Xα)].
Suppose α(X) > 0 and α(Y ) > 0. Then there exists S > 0 such that for t
small enough, we have

a(eX k(et θ(Xα)) eY ) = X + Y + S Hα t
2 +O(t3)Hα.

(ii) Let α1, . . . , αr be the simple positive roots and Xα1 , . . . , Xαr be associated
root vectors. Suppose X , Y ∈ a+ . Then

a(eX k(et1 θ(Xα1 )+...+tr θ(Xαr )) eY ) = X + Y +
r∑
i=1

SiHαi t
2
i +O(‖t‖3).

Proof. The part (i) follows from Corollary 3.3 using Lemma 4.9 below. The
part (ii) may be then deduced from (i) similarly as the Proposition 4.4 is deduced
from Corollary 3.3.
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Lemma 4.9. Let α be a positive root and let Xα be any associated root vector.
Then k(et θ(Xα)) = et (Xα+θ(Xα))+O(t3) .

Proof. This is straightforward when we use the rank one reduction of Section
3. This can also be shown using Campbell-Baker-Hausdorff formula [14, Theorem
2.15.4].

The following results are straightforward applications of the product for-
mula and its proof. The proof of Corollary 4.10 is the same as that given in [6] in
the complex case.

Corollary 4.10. Let G be a semisimple Lie group of noncompact type and let
µ, ν be two K -biinvariant finite measures on G such that µ(K) = ν(K) = 0.
Suppose that µ(K∂A+K) = 0 or ν(K∂A+K) = 0. Then the measure µ ∗ ν is
absolutely continuous.

Corollary 4.11.

(i) Let X ∈ a+, Y ∈ a+ . Then the support of µX,Y contains a nonempty open
set.

(ii) Let G be a simple Lie group of noncompact type and let g ∈ K A+ K . Then
the orbit K gK generates G.

For some interesting applications of the product formula in the arithmetic
of probability measures and statistics see also [6].

5. Conclusion

Naturally, we would like to have more information about the kernel of the product
formula and its support a(eX K eY ). All our result guarantees is that the kernel
H → k(H,X, Y ) is of class L1 on a .
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