Kazhdan Constants and Matrix Coefficients of $\operatorname{Sp}(n, \mathbf{R})$

Markus Neuhauser*
Communicated by Alain Valette

Abstract

An infinitesimal Kazhdan constant of $\mathrm{Sp}(2, \mathbf{R})$ is computed. The methods used to prove this can also be employed to determine a quantitative estimate of the asymptotics of the matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$ in an elementary manner. An application of the result gives explicit Kazhdan constants for $\operatorname{Sp}(n, \mathbf{R}), n \geq 2$.

1. Introduction

A locally compact group G has Kazhdan's property T, if for a compact subset $Q \subset G$ and an $\varepsilon>0$, every unitary representation π which has a (Q, ε)-invariant vector, i. e. a vector $\xi \in H_{\pi}$ such that $\|\pi(g) \xi-\xi\|<\varepsilon\|\xi\|$ for all $g \in Q$, has in fact a nonzero invariant vector. If such (Q, ε) for a group exists it is called a Kazhdan pair. This group theoretic property introduced in [9] has remarkable applications, for an account see [5] and [12].

In this paper, by "representation" we shall always mean "unitary representation". Let G be a connected Lie group. If π is a representation of G, a vector $\xi \in H_{\pi}$ is called a C^{∞}-vector if $g \mapsto\langle\pi(g) \xi, \eta\rangle$ is a C^{∞}-function for all $\eta \in H_{\pi}$, cf. for example [14]. The space of C^{∞}-vectors is denoted by H_{π}^{∞}. Let K be a maximal compact subgroup of G. A vector $\xi \in H_{\pi}$ is K-finite if the linear span of $\pi(K) \xi$ is finite-dimensional. We denote by $H_{\pi, K}^{\infty}$ the space of K-finite, C^{∞}-vectors in H_{π}.

Let X_{1}, \ldots, X_{m} be a basis of the Lie algebra of G, then $\Delta=-\sum_{k=1}^{m} X_{k}^{2}$ denotes the Laplacian. If π is a representation of G, let $d \pi$ denote the derived representation of the Lie algebra. It can be extended to the universal enveloping algebra.

In [1, Theorem 3.10], it was shown that property T for a connected Lie group G, is equivalent to the existence of an $\varepsilon>0$ such that

$$
\langle d \pi(\Delta) \xi, \xi\rangle \geq \varepsilon\|\xi\|^{2}
$$

for every $\xi \in H_{\pi}^{\infty}$ and every π without nonzero fixed vector.

[^0]In [2, page 94], it was shown that restriction to the space $H_{\pi, K}^{\infty}$ is possible, namely:

Theorem 1.1. \quad The connected Lie group G has property T if and only if there exists a constant $\varepsilon>0$ such that

$$
\inf \left\{\langle d \pi(\Delta) \xi, \xi\rangle: \xi \in H_{\pi, K}^{\infty},\|\xi\|=1\right\} \geq \varepsilon
$$

for any unitary representation π of G without nonzero fixed vector.
We define the infinitesimal Kazhdan constant as

$$
\kappa_{K}(\Delta, G)=\inf \left\{\langle d \pi(\Delta) \xi, \xi\rangle: \xi \in H_{\pi, K}^{\infty},\|\xi\|=1, \pi \ngtr 1\right\} .
$$

The symplectic group $\operatorname{Sp}(n, \mathbf{R}) \subset G L(2 n, \mathbf{R})$ is the group of isometries of the skew symmetric bilinear form induced by

$$
J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

where I_{n} is the $n \times n$ identity matrix. So

$$
\operatorname{Sp}(n, \mathbf{R})=\left\{g \in \mathrm{GL}(2 n, \mathbf{R}): g^{T} J g=J\right\} .
$$

In the following $G=\operatorname{Sp}(n, \mathbf{R})$ and $K=\operatorname{Sp}(n, \mathbf{R}) \cap \operatorname{SO}(2 n)$ is the standard maximal compact subgroup of G.

Let π be a strongly continuous representation of G on a Hilbert space H_{π}. A vector $\xi \in H_{\pi}$ is called K-finite if the linear span of the set $\pi(K) \xi$ in H_{π} is finite-dimensional. Denote this dimension by $\delta(\xi)=\operatorname{dim}\langle\pi(K) \xi\rangle$.

Theorem 1.2. For every $\operatorname{Sp}(2, \mathbf{R}) \cap \mathrm{SO}(4)$-finite unit C^{∞}-vector η and every representation π of $\operatorname{Sp}(2, \mathbf{R})$ without nonzero invariant vectors

$$
\langle d \pi(\Delta) \eta, \eta\rangle \geq \frac{1}{4 \pi} \sup _{0<\vartheta<\pi / 2} \frac{(\sin (2 \vartheta))^{2}}{\vartheta}>0.11532
$$

for a suitable Laplacian Δ on $\operatorname{Sp}(2, \mathbf{R})$, described after Theorem 3.5.
By Theorem 1.1, this implies that $\mathrm{Sp}(2, \mathbf{R})$ has Kazhdan's property T which was shown for any local field in [4] and [13] and with an elementary proof in [3].

The group G can be decomposed as $G=K A K$, where

$$
A=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right): a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)\right\},
$$

the subgroup of the diagonal matrices in G. In fact, the matrices in A in the decomposition can be chosen more specially as $G=K A^{+} K$, where

$$
A^{+}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right): \begin{array}{l}
a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \\
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq 1
\end{array}\right\}
$$

This can be achieved by suitable conjugation of an element of A by permutation matrices contained in K.

The asymptotics of the matrix coefficients will be given for the dense subspace of K-finite vectors of a representation π.

The quantitative estimate of the asymptotic of matrix coefficients will be given in terms of the Harish-Chandra function Ξ defined by

$$
\Xi\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\frac{1}{2 \pi} a^{-1} \int_{0}^{2 \pi}\left|a^{-4}(\cos \vartheta)^{2}+(\sin \vartheta)^{2}\right|^{-1 / 2} d \vartheta
$$

cf. for example [7, page 215].
Let $g \in G$ with the decomposition $g=k_{1} h k_{2}, k_{1}, k_{2} \in K$,

$$
h=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, a_{1}^{-1}, \ldots, a_{n}^{-1}\right) \in A^{+}
$$

then define

$$
\Psi(g)=\Xi\left(\begin{array}{cc}
\sqrt{a_{1} a_{2}} & 0 \\
0 & {\sqrt{a_{1} a_{2}}}^{-1}
\end{array}\right)
$$

The next theorem gives a quantitative estimate for the asymptotics of matrix coefficients.

Theorem 1.3. Let π be a strongly continuous representation of $\operatorname{Sp}(n, \mathbf{R})$, $n \geq 2$, without nonzero invariant vectors, then

$$
\left|\varphi_{\xi, \eta}(g)\right| \leq\|\xi\|\|\eta\| \sqrt{\delta(\xi) \delta(\eta)} \Psi(g)
$$

for two K-finite vectors $\xi, \eta \in H_{\pi}$, where $\varphi_{\xi, \eta}(g)=\langle\pi(g) \xi, \eta\rangle$.
Here the main application of this theorem is the proof of Kazhdan's property T of $\operatorname{Sp}(n, \mathbf{R}), n \geq 2$, with an explicit Kazhdan pair.

Theorem 1.4. Let $0<\delta<1, \varepsilon=0.32 \times \sqrt{2 \delta}$, and $Q=\Psi^{-1}([1-\delta, 1])$, then (Q, ε) is a Kazhdan pair of $\operatorname{Sp}(n, \mathbf{R})$.

It is a pleasure to thank M. B. Bekka, H. Führ, G. Schlichting, A. Valette, and the referee for their comments and suggestions. Financial support form the Centre de Coopération Universitaire Franco-Bavarois is acknowledged.

2. Preliminaries

A set in the dual space of $S^{2}\left(\mathbf{R}^{2}\right)$ is determined, where $S^{2}\left(\mathbf{R}^{2}\right)$ is identified with the vector space of the symmetric 2×2-matrices. This set will be important for the computation of an explicit estimate of the infinitesimal Kazhdan constant of $\mathrm{Sp}(2, \mathbf{R})$ in Section 3 and for the determination of an explicit quantitative estimate of the asymptotics of matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$ in Section 5 . The asymptotics will be employed in the last section to obtain a Kazhdan pair for $\operatorname{Sp}(n, \mathbf{R})$.

For SL (3, R) M. B. Bekka and M. Mayer in [2] have determined a lower bound of the infinitesimal Kazhdan constant associated with a Laplacian.

Let π be a representation of $\operatorname{Sp}(2, \mathbf{R})$ on H_{π}. The strategy for establishing the estimates consists in considering the restriction of π to $\mathrm{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$.

There is a spectral measure on the dual group \widehat{N} corresponding to $\left.\pi\right|_{N}$ where $N=S^{2}\left(\mathbf{R}^{2}\right)$ is an abelian subgroup. The main problem here will be to find a set $W \subset \widehat{N}$ of which the spectral measure can be computed and estimated under the action of a suitably defined one parameter subgroup.

The subgroup

$$
P=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{T-1}
\end{array}\right): a \in \mathrm{SL}(2, \mathbf{R}), a b^{T}=b a^{T}\right\} \cong \mathrm{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)
$$

will be considered. If ξ is a vector fixed by the subgroup

$$
N=\left\{\left(\begin{array}{cccc}
1 & 0 & x & y \\
0 & 1 & y & z \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right): x, y, z \in \mathbf{R}\right\} \cong \mathbf{R}^{3}
$$

then ξ is a fixed vector of $\operatorname{Sp}(2, \mathbf{R})$, cf. for example [10, page 88].
So it can be supposed that π has no nonzero N-invariant vector. Let E be the spectral measure of \widehat{N}. Then $\left.\pi\right|_{N}=\int_{\widehat{N}} \chi d E(\chi)$ and $E(\{0\})=0$. For Borel sets $W \subset \widehat{N}$ we have $E(a \cdot W)=\pi(a) E(W) \pi(a)^{-1}$ for all $a \in \operatorname{SL}(2, \mathbf{R})$.

Let ρ denote the action of $\operatorname{SL}(2, \mathbf{R})$ on $S^{2}\left(\mathbf{R}^{2}\right)$ by $\rho(a) b=a b a^{T}$. We have that $a^{T}=\omega a^{-1} \omega^{-1}$ for $\omega=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $a \in \operatorname{SL}(2, \mathbf{R})$. So the dual operation on \widehat{N} is equivalent to the usual operation ρ since $\operatorname{tr}\left(b a^{T} c a\right)=\operatorname{tr}\left(a b a^{T} c\right)$.

The following basis

$$
s_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), s_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), s_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

of $S^{2}\left(\mathbf{R}^{2}\right)$ is chosen. The isomorphism

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto x s_{1}+y s_{2}+z s_{3}=\left(\begin{array}{cc}
x+y & z \\
z & x-y
\end{array}\right)
$$

yields an identification between $\widehat{N} \cong N \cong S^{2}\left(\mathbf{R}^{2}\right)$ and \mathbf{R}^{3}. The spectral measure E is now considered to be defined on \mathbf{R}^{3}.

For an angle $0<\vartheta<\pi$ and $h \in \mathbf{R}$ define

$$
S_{h}^{+}(\vartheta)=\left\{\left(\begin{array}{c}
x \\
h x+y \cos \beta \\
y \sin \beta
\end{array}\right): x \in \mathbf{R}, y>0,-\vartheta<\beta \leq \vartheta\right\} .
$$

For $0<\vartheta<\frac{\pi}{2}$ one has

$$
S_{h}^{+}(\vartheta)=\left\{\left(\begin{array}{c}
x \\
h x+y \\
y \tan \beta
\end{array}\right): x \in \mathbf{R}, y>0,-\vartheta<\beta \leq \vartheta\right\} .
$$

Let $g_{0}(\alpha)=\left(\begin{array}{cc}\cos (\alpha / 2) & -\sin (\alpha / 2) \\ \sin (\alpha / 2) & \cos (\alpha / 2)\end{array}\right)$. Then in the chosen basis $g_{0}(\alpha)$ acts on \mathbf{R}^{3} by

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) .
$$

Hence

$$
g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)=\left\{\left(\begin{array}{c}
x \\
y \cos \beta \\
y \sin \beta
\end{array}\right): x \in \mathbf{R}, y>0,-\vartheta+\alpha<\beta \leq \vartheta+\alpha\right\} .
$$

This implies that $g_{0}(2 \vartheta) \cdot S_{0}^{+}(\vartheta)$ and $S_{0}^{+}(\vartheta)$ are disjoint.
Let ξ be a unit eigenvector of the image $\pi(K)$, then $\pi\left(g_{0}(\alpha)\right) \xi=e^{i n \alpha / 2} \xi$ for an $n \in \mathbf{Z}$. As $g_{0}(\alpha) \in \operatorname{SL}(2, \mathbf{R})$,

$$
\begin{aligned}
\pi\left(g_{0}(\alpha)\right) E\left(S_{0}^{+}(\vartheta)\right) \xi & =\pi\left(g_{0}(\alpha)\right) E\left(S_{0}^{+}(\vartheta)\right) \pi\left(g_{0}(\alpha)\right)^{-1} \pi\left(g_{0}(\alpha)\right) \xi \\
& =E\left(g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)\right) \pi\left(g_{0}(\alpha)\right) \xi \\
& =e^{\text {in } \alpha / 2} E\left(g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)\right) \xi
\end{aligned}
$$

and so

$$
\begin{aligned}
\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\| & =\left\|\pi\left(g_{0}(\alpha)\right) E\left(S_{0}^{+}(\vartheta)\right) \xi\right\| \\
& =\left\|E\left(g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)\right) \xi\right\| .
\end{aligned}
$$

On the other hand $S_{0}^{+}(\vartheta)$ and $g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)$ are disjoint for $2 \vartheta \leq \alpha \leq 2 \pi-$ 2ϑ. Hence $E\left(S_{0}^{+}(\vartheta)\right) E\left(g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)\right)=0$ and $E\left(S_{0}^{+}(\vartheta)\right) \xi$ is orthogonal to $E\left(g_{0}(\alpha) \cdot S_{0}^{+}(\vartheta)\right) \xi$.

Let now $n \geq 2, \vartheta=\pi / n$, and $\alpha_{j}=2 \pi j / n$ for $0 \leq j \leq n-1$, then

$$
\mathbf{R}^{3} \backslash\{0\}=\bigcup_{j=0}^{n-1} g_{0}\left(\alpha_{j}\right) \cdot S_{0}^{+}(\vartheta)
$$

where the union is disjoint. So $\sum_{j=0}^{n-1} E\left(g_{0}\left(\alpha_{j}\right) \cdot S_{0}^{+}(\vartheta)\right)=\operatorname{id}_{H_{\pi}}$. This way ξ can be decomposed into vectors of equal length $\xi=\sum_{j=0}^{n-1} E\left(g_{0}\left(\alpha_{j}\right) \cdot S_{0}^{+}(\vartheta)\right) \xi$. If ξ is a unit vector

$$
\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}=1 / n=\vartheta / \pi
$$

This equality can be extended first to all $\vartheta=r \pi$ with $r \in \mathbf{Q} \cap] 0,1[$ and then to all $r \in] 0,1[$. This proves the following.

Lemma 2.1. For $0<\vartheta<\pi$:

$$
\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}=\vartheta / \pi .
$$

Let now

$$
\begin{aligned}
S_{h}^{-}(\vartheta) & =\left\{\left(\begin{array}{c}
x \\
h x+y \cos \beta \\
y \sin \beta
\end{array}\right): x \in \mathbf{R}, y<0,-\vartheta<\beta \leq \vartheta\right\} \\
& =g_{0}(\pi) \cdot S_{-h}^{+}(\vartheta)
\end{aligned}
$$

then $\left\|E\left(S_{0}^{-}(\vartheta)\right) \xi\right\|^{2}=\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}=\vartheta / \pi$.
Let $S_{0}(\vartheta)=S_{0}^{+}(\vartheta) \cup S_{0}^{-}(\vartheta), W^{+}(\vartheta)=S_{1}^{+}(\vartheta) \cap S_{0}^{+}(2 \vartheta), W^{-}(\vartheta)=$ $S_{1}^{-}(\vartheta) \cap S_{0}^{-}(2 \vartheta)$, and $W(\vartheta)=W^{-}(\vartheta) \cup W^{+}(\vartheta)$ for $0<\vartheta<\pi / 2$.

The determination of the spectral measure of $W(\vartheta)$ is a more difficult task. This will be done in the next section.

3. Kazhdan constants associated with a Laplacian

The next proposition is an important step in the determination of the infinitesimal Kazhdan constant associated with Δ.

Proposition 3.1. For $0<\vartheta<\pi / 2$ and a unit K-eigenvector ξ the spectral measure is $\|E(W(\vartheta)) \xi\|^{2}=2 \vartheta / \pi$.

The proof is postponed to Appendix A.
Now it will be investigated how $W(\vartheta)$ behaves under the action of the one parameter group $g_{1}(t)=\left(\begin{array}{cc}\exp (t / 2) & 0 \\ 0 & \exp (-t / 2)\end{array}\right)$. Then $g_{1}(t)$ acts on $S^{2}\left(\mathbf{R}^{2}\right)$ with the above basis by

$$
\left(\begin{array}{ccc}
\cosh t & \sinh t & 0 \\
\sinh t & \cosh t & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Hence

$$
\begin{aligned}
g_{1}(t) \cdot S_{1}^{+}(\vartheta) & =\left\{\left(\begin{array}{c}
x \\
x+y \\
y e^{t} \tan \beta
\end{array}\right): x \in \mathbf{R}, y>0,-\vartheta<\beta \leq \vartheta\right\} \\
& =S_{1}^{+}\left(\arctan \left(e^{t} \tan \vartheta\right)\right)
\end{aligned}
$$

and

$$
g_{1}(t) \cdot W^{ \pm}(\vartheta)=S_{1}^{ \pm}\left(\arctan \left(e^{t} \tan \vartheta\right)\right) \cap\left(g_{1}(t) \cdot S_{0}^{ \pm}(2 \vartheta)\right) .
$$

Here

$$
\begin{aligned}
& g_{1}(t) \cdot S_{0}^{ \pm}(\vartheta) \\
= & \left\{\left(\begin{array}{c}
x \cosh t+y \cos \beta \sinh t \\
x \sinh t+y \cos \beta \cosh t \\
y \sin \beta
\end{array}\right): x \in \mathbf{R}, \pm y>0,-\vartheta<\beta \leq \vartheta\right\} .
\end{aligned}
$$

Since $x \in \mathbf{R}$ is arbitrary, replace x by $\frac{x-y \cos \beta \sinh t}{\cosh t}$. Then the first coordinate becomes x and the second $(x-y \cos \beta \sinh t) \tanh t+y \cos \beta \cosh t=x \tanh t+$ $\frac{y \cos \beta}{\cosh t}$. So

$$
\left.\left.\begin{array}{rl}
g_{1}(t) \cdot S_{0}^{ \pm}(\vartheta) & =\left\{\binom{x}{x \tanh t+\frac{y \cos \beta}{\cosh t}}: x \in \mathbf{R}, \pm y>0,-\vartheta<\beta \leq \vartheta\right\} \\
y \sin \beta
\end{array}\right)\right\}
$$

The next proposition determines a ϑ_{t} dependent of t and ϑ such that $W\left(\vartheta_{t}\right)$ is contained in $g_{1}(t) \cdot W(\vartheta)$ giving in the corollary below a lower bound for the spectral measure of $W\left(\vartheta_{t}\right)$ as an immediate consequence.

Proposition 3.2. For $0<\vartheta<\pi / 2$ and $t>0$ holds $g_{1}(t) \cdot W(\vartheta) \supseteq$ $W\left(\arctan \left(e^{t} \tan \vartheta\right)\right)$.

The proof is postponed to Appendix B.
Corollary 3.3. For $0<\vartheta<\pi / 2$ and $t>0$,

$$
\left\|E\left(g_{1}(t) \cdot W(\vartheta)\right) \xi\right\|^{2} \geq \frac{2}{\pi} \arctan \left(e^{t} \tan \vartheta\right)
$$

The purpose of all this is to obtain an estimate of $\left\|d \pi\left(Y_{1}\right) \xi\right\|$, where $Y_{1}=\frac{1}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, for a smooth $\mathrm{SO}(2)$-finite unit vector ξ. Observe that $g_{1}(t)=\exp \left(t Y_{1}\right)$.

Proposition 3.4. Let π be a representation of $\operatorname{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, then

$$
\left\|d \pi\left(Y_{1}\right) \xi\right\| \geq \frac{1}{2 \sqrt{2 \pi}} \frac{\sin (2 \vartheta)}{\sqrt{\vartheta}}
$$

for every smooth $\mathrm{SO}(2)$-eigenvector ξ with $\|\xi\|=1$.
Proof. For ξ smooth of norm 1:

$$
\begin{aligned}
\left\|E\left(g_{1}(t) \cdot W(\vartheta)\right) \xi\right\| & =\left\|\pi\left(g_{1}(t)\right) E(W(\vartheta)) \pi\left(g_{1}(-t)\right) \xi\right\| \\
& =\left\|E(W(\vartheta)) \pi\left(g_{1}(-t)\right) \xi\right\| .
\end{aligned}
$$

Differentiating at $t=0$ yields

$$
\begin{aligned}
& \left.\frac{d}{d t}\left\|E\left(g_{1}(t) \cdot W(\vartheta)\right) \xi\right\|^{2}\right|_{t=0} \\
= & \left.\frac{d}{d t}\left\|E(W(\vartheta)) \pi\left(g_{1}(-t)\right) \xi\right\|^{2}\right|_{t=0} \\
= & -\left\langle d \pi\left(Y_{1}\right) \xi, E(W(\vartheta)) \xi\right\rangle-\left\langle E(W(\vartheta)) \xi, d \pi\left(Y_{1}\right) \xi\right\rangle .
\end{aligned}
$$

If f is a real function differentiable at 0 with $f(0)=0$ and $f(x) \geq 0$ for $x \geq 0$, then $f^{\prime}(0) \geq 0$. Together with Corollary 3.3 this implies

$$
\begin{aligned}
& \left.\frac{d}{d t}\left\|E\left(g_{1}(t) \cdot W(\vartheta)\right) \xi\right\|^{2}\right|_{t=0} \\
\geq & \left.\frac{2}{\pi} \frac{d}{d t} \arctan \left(e^{t} \tan \vartheta\right)\right|_{t=0}=\frac{2}{\pi} \frac{1}{1+(\tan \vartheta)^{2}} \tan \vartheta \\
= & \frac{2}{\pi}(\cos \vartheta)^{2} \tan \vartheta=\frac{2}{\pi} \cos \vartheta \sin \vartheta=\frac{1}{\pi} \sin (2 \vartheta) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
2\left\|d \pi\left(Y_{1}\right) \xi\right\| \sqrt{\frac{2 \vartheta}{\pi}} & \geq-\left\langle d \pi\left(Y_{1}\right) \xi, E(W(\vartheta)) \xi\right\rangle-\left\langle E(W(\vartheta)) \xi, d \pi\left(Y_{1}\right) \xi\right\rangle \\
& =\left.\frac{d}{d t}\left\|E\left(g_{1}(t) \cdot W(\vartheta)\right) \xi\right\|^{2}\right|_{t=0} \\
& \geq \frac{1}{\pi} \sin (2 \vartheta)
\end{aligned}
$$

and

$$
\left\|d \pi\left(Y_{1}\right) \xi\right\| \geq \frac{1}{2 \sqrt{2 \pi}} \frac{\sin (2 \vartheta)}{\sqrt{\vartheta}}
$$

for every smooth K-eigenvector ξ of norm 1 .
For $Y_{2}=\frac{1}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, conjugate to Y_{1}, the same equality holds. Together with $Y_{0}=\frac{1}{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, the three elements Y_{0}, Y_{1}, Y_{2} form a basis of the Lie algebra of $\operatorname{SL}(2, \mathbf{R})$ orthogonal with respect to the Killing form. The corresponding Casimir operator is $C=\frac{1}{2}\left(Y_{1}^{2}+Y_{2}^{2}-Y_{0}^{2}\right)$ and the corresponding Laplacian is $\Delta=-Y_{1}^{2}-Y_{2}^{2}-Y_{0}^{2}=-2 C-2 Y_{0}^{2}$.

Theorem 3.5. Let π be a representation of $\operatorname{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, then

$$
\langle d \pi(\Delta) \eta, \eta\rangle \geq \frac{1}{4 \pi} \sup _{0<\vartheta<\pi / 2} \frac{(\sin (2 \vartheta))^{2}}{\vartheta}
$$

for every smooth SO (2)-finite unit vector η.

Proof. Let $\eta=\sum_{k=1}^{r} \xi_{k}$ be the orthogonal decomposition of η into $d \pi\left(Y_{0}\right)$ eigenvectors, then the observation that C commutes with Y_{0} implies

$$
\begin{aligned}
& \langle d \pi(\Delta) \eta, \eta\rangle \\
= & \left\langle d \pi\left(-2 Y_{0}^{2}\right) \eta, \eta\right\rangle+\langle d \pi(-2 C) \eta, \eta\rangle \\
= & \sum_{k=1}^{r}\left\langle d \pi\left(-2 Y_{0}^{2}\right) \xi_{k}, \xi_{k}\right\rangle+\left\langle d \pi(-2 C) \xi_{k}, \xi_{k}\right\rangle=\sum_{k=1}^{r}\left\langle d \pi(\Delta) \xi_{k}, \xi_{k}\right\rangle \\
\geq & \sum_{k=1}^{r} 2\left(\frac{1}{2 \sqrt{2 \pi}} \frac{\sin (2 \vartheta)}{\sqrt{\vartheta}}\right)^{2}\left\|\xi_{k}\right\|^{2}=\frac{1}{4 \pi} \frac{\sin ^{2}(2 \vartheta)}{\vartheta}\|\eta\|^{2} .
\end{aligned}
$$

The following basis of the Lie algebra $\mathrm{sp}(2, \mathbf{R})$ will be considered which contains elements corresponding to Y_{1} and Y_{2}. The Lie algebra $\operatorname{sp}(2, \mathbf{R})$ admits a Cartan decomposition into $\operatorname{sp}(2, \mathbf{R})=k \oplus p$ where $k=\operatorname{so}(4, \mathbf{R}) \cap \operatorname{sp}(2, \mathbf{R})$ and $p=S^{2}\left(\mathbf{R}^{2}\right) \cap \mathrm{sp}(2, \mathbf{R})$. With

$$
\begin{aligned}
& X_{0}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), X_{1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& X_{2}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right), X_{3}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& X_{4}=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), X_{5}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \\
& X_{6}=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), X_{7}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \\
& X_{8}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), X_{9}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

the Casimir operator satisfies

$$
C=2\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}+X_{5}^{2}+X_{6}^{2}-\left(X_{7}^{2}+X_{8}^{2}+X_{9}^{2}+X_{0}^{2}\right)\right)
$$

The elements $X_{0}, X_{7}, X_{8}, X_{9}$ form a basis of k and $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$ form a basis of p. Let η be a smooth $\operatorname{Sp}(2, \mathbf{R}) \cap \mathrm{SO}(4)$-finite unit vector, then

$$
\langle d \pi(\Delta) \eta, \eta\rangle \geq\left\langle d \pi\left(\Delta_{1}\right) \eta, \eta\right\rangle
$$

with $\Delta_{1}=-X_{0}^{2}-X_{1}^{2}-X_{2}^{2}=-2 X_{0}^{2}-2 C_{1}$ where $C_{1}=\frac{1}{2}\left(-X_{0}^{2}+X_{1}^{2}+X_{2}^{2}\right)$ is the Casimir operator of a Lie subalgebra isomorphic to sl ($2, \mathbf{R}$). By Theorem 3.5 this shows that $\langle d \pi(\Delta) \eta, \eta\rangle \geq(4 \pi)^{-1}(\sin (2 \vartheta))^{2} / \vartheta$ for every smooth $\operatorname{Sp}(2, \mathbf{R}) \cap$ SO (4)-finite unit vector η of a representation π without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors.

To conclude the proof of Theorem 1.2 let π be a representation of $\operatorname{Sp}(2, \mathbf{R})$ without nonzero invariant vector. If the restriction to $S^{2}\left(\mathbf{R}^{2}\right)$ would have a nonzero invariant vector this would imply the contradiction that $\operatorname{Sp}(2, \mathbf{R})$ would have a nonzero invariant vector by an argument similar to the one for $\operatorname{SL}(2, \mathbf{R})$ in [10, page 88]. For more details see also the proof of Theorem 4.3. In the notation used there a nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vector would imply a nonzero vector invariant under $G_{1,1}, G_{1,2}$, and $G_{2,2}$ (see next section). But these three subgroups together generate $\operatorname{Sp}(2, \mathbf{R})$.

By Theorem 3.5 now only the maximum of the function $\vartheta \mapsto(\sin (2 \vartheta))^{2} / \vartheta$ has to be considered which is obtained at approximately $\vartheta \approx 0.582781$ so

$$
\frac{1}{4 \pi} \sup _{0<\vartheta<\pi / 2} \frac{(\sin (2 \vartheta))^{2}}{\vartheta} \approx 0.115325>0.11532
$$

4. Vanishing of matrix coefficients

In this section the qualitative behavior of the matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$ will be analyzed in an elementary manner. The case $\operatorname{SL}(n, \mathbf{R})$ was done in [7].

The following notion will be used.

Let X be a Hausdorff topological space. A complex valued function f is said to vanish at infinity if for every $\varepsilon>0$ there exists a compact set $C \subset X$ such that $|f(x)|<\varepsilon$ for all $x \in X \backslash C$.

A sequence goes to ∞ in X if it has no limit point in X. If X is second countable a complex valued function f vanishes at ∞ if $\lim _{m \rightarrow \infty} f(x)=0$ for every sequence $\left(x_{m}\right)_{m \in \mathbf{N}}$ in X going to ∞. This will be used for $\operatorname{Sp}(n, \mathbf{R})$.

The following is easily deduced from the fact that $\operatorname{Sp}(n, \mathbf{R})=K A^{+} K$ and $\pi(K)$ is compact.

Lemma 4.1. Let π be a representation of $\operatorname{Sp}(n, \mathbf{R})$ on H_{π} such that the matrix coefficients do not vanish at infinity; then there are $\xi, \eta \in H_{\pi}$ and a sequence $\left(g_{m}\right)_{m \in \mathbf{N}}$ with $g_{m} \in A^{+}$and $g_{m} \rightarrow \infty$ such that $\left(\left\langle\pi\left(g_{m}\right) \xi, \eta\right\rangle\right)_{m \in \mathbf{N}}$ does not converge to 0 .

The subgroup

$$
N_{1}=\left\{\left(\begin{array}{cccc}
1 & 0 & x & y^{T} \\
0 & I & y & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & I
\end{array}\right): x \in \mathbf{R}, y \in \mathbf{R}^{n-1}\right\}
$$

of $\operatorname{Sp}(n, \mathbf{R})$ will be important. The following proposition shows that a representation of $\operatorname{Sp}(n, \mathbf{R})$ which has a matrix coefficient that does not vanish at ∞ has in fact a nonzero vector which is N_{1}-invariant. The next theorem will show this vector is in fact invariant by proving that some specific subgroups generate Sp (n, \mathbf{R}).

Proposition 4.2. Let π be a strongly continuous unitary representation of $\operatorname{Sp}(n, \mathbf{R})$ on H_{π} and suppose that a matrix coefficient of π does not vanish at ∞, then there is a nonzero N_{1}-invariant vector.

Proof. By Lemma 4.1 there is a sequence $\left(g_{m}\right)_{m \in \mathbf{N}}$ which goes to infinity with $g_{m} \in A^{+}$and a $\xi \in H_{\pi}$ such that the sequence $\left(\pi\left(g_{m}\right) \xi\right)_{m \in \mathbf{N}}$ does not converge weakly to 0 . After passing to a subsequence it can be assumed that $\left(\pi\left(g_{m}\right) \xi\right)_{m \in \mathbf{N}}$ converges in the weak topology to $\eta \neq 0$ since $\pi\left(g_{m}\right)$ is unitary and the unit ball is compact in the weak topology.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& g_{m}=\left(\begin{array}{cc}
a_{m} & 0 \\
0 & a_{m}^{-1}
\end{array}\right) \text { with } \\
& \qquad a_{m}=\operatorname{diag}\left(a_{m, 1}, \ldots, a_{m, n}\right), a_{m, 1} \geq \ldots \geq a_{m, n} \geq 1
\end{aligned} .
\end{aligned}
$$

As $a_{m} \rightarrow \infty$, we have $a_{m, 1}^{-1} \rightarrow 0$. The elements $g_{m}^{-1} h g_{m}$ converge to the identity I_{n} for $m \rightarrow \infty$ and $h \in N_{1}$ as

$$
\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
I_{n} & b \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & a^{-1} b a^{-1} \\
0 & I_{n}
\end{array}\right)
$$

with a diagonal and $b \in S^{2}\left(\mathbf{R}^{n}\right)$,

$$
\left(\begin{array}{cc}
a_{m, 1}^{-1} & 0 \\
0 & d_{m}^{-1}
\end{array}\right)\left(\begin{array}{cc}
x & y^{T} \\
y & 0
\end{array}\right)\left(\begin{array}{cc}
a_{m, 1}^{-1} & 0 \\
0 & d_{m}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
a_{m, 1}^{-2} x & a_{m, 1}^{-1} y^{T} d_{m}^{-1} \\
a_{m, 1}^{-1} d_{m}^{-1} y & 0
\end{array}\right)
$$

with $d_{m}=\operatorname{diag}\left(a_{m, 2}, \ldots, a_{m, n}\right)$ and so $a_{m, 1}^{-2} x \rightarrow 0$ and $a_{m, 1}^{-1} d_{m}^{-1} y \rightarrow 0$ because $a_{m, j} \geq 1$ for all j.

Next it is proven that $\eta \in H_{\pi}$ is N_{1}-invariant. Let $h \in N_{1}$ with $h=$ $\left(\begin{array}{ll}I & b \\ 0 & I\end{array}\right)$, then

$$
\begin{aligned}
|\langle\pi(h) \eta-\eta, \zeta\rangle| & =\lim _{m \rightarrow \infty}\left|\left\langle\pi(h) \pi\left(g_{m}\right) \xi-\pi\left(g_{m}\right) \xi, \zeta\right\rangle\right| \\
& =\lim _{m \rightarrow \infty}\left|\left\langle\pi\left(g_{m}\right)\left(\pi\left(g_{m}^{-1} h g_{m}\right) \xi-\xi\right), \zeta\right\rangle\right| \\
& \leq \lim _{m \rightarrow \infty}\left\|\pi\left(g_{m}\right)\left(\pi\left(g_{m}^{-1} h g_{m}\right) \xi-\xi\right)\right\|\|\zeta\| \\
& =\lim _{m \rightarrow \infty}\left\|\pi\left(g_{m}^{-1} h g_{m}\right) \xi-\xi\right\|\|\zeta\|=0
\end{aligned}
$$

for all $\zeta \in H_{\pi}$ because of the strong continuity of π. So $\pi(h) \eta=\eta$.
With the help of the last proposition the following yields an elementary proof that the matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$ vanish at infinity.

Let $E_{j, k} \in \mathbf{R}^{n \times n}$ be the matrix which is zero in every entry except for the one at (j, k) which is 1 . Let $\rho_{j, k}: \operatorname{SL}(2, \mathbf{R}) \rightarrow \operatorname{Sp}(n, \mathbf{R})$ be the homomorphisms

$$
\rho_{j, k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
I_{n}+(a-1)\left(E_{j, j}+E_{k, k}\right) & b\left(E_{j, k}+E_{k, j}\right) \\
c\left(E_{j, k}+E_{k, j}\right) & I_{n}+(d-1)\left(E_{j, j}+E_{k, k}\right)
\end{array}\right)
$$

for $j, k=1, \ldots, n, j \neq k$,

$$
\rho_{k, k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
I_{n}+(a-1) E_{k, k} & b E_{k, k} \\
c E_{k, k} & I_{n}+(d-1) E_{k, k}
\end{array}\right)
$$

for $k=1, \ldots, n$, and $\tilde{\rho}_{j, k}: \operatorname{SL}(2, \mathbf{R}) \rightarrow \operatorname{SL}(n, \mathbf{R})$ the homomorphisms

$$
\tilde{\rho}_{j, k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=I_{n}+(a-1) E_{j, j}+b E_{j, k}+c E_{k, j}+(d-1) E_{k, k}
$$

for $j, k=1, \ldots, n$. Let

$$
\begin{aligned}
G_{j, k} & =\rho_{j, k}(\operatorname{SL}(2, \mathbf{R})), \\
\tilde{G}_{j, k} & =\left\{\left(\begin{array}{cc}
\tilde{\rho}_{j, k}(g) & 0 \\
0 & \left(\tilde{\rho}_{j, k}(g)^{T}\right)^{-1}
\end{array}\right): g \in \operatorname{SL}(2, \mathbf{R})\right\}
\end{aligned}
$$

for $j, k=1, \ldots, n$ be the corresponding subgroups.
The first proof of the following was given in [6].
Theorem 4.3. Let π be a unitary representation of $\operatorname{Sp}(n, \mathbf{R})$ which does not contain the trivial representation, then the matrix coefficients of π vanish at infinity.

Proof. Assume by contradiction that at least one coefficient of π does not vanish at infinity.

For $n=1$ a vector which is N_{1}-invariant is also invariant for $\operatorname{Sp}(n, \mathbf{R})=$ SL $(2, \mathbf{R})$, see for example [10, page 88$]$.

Now suppose $n \geq 2$, then by Lemma 4.2 there is an N_{1}-invariant ξ. The case $n=1$ implies that this vector is also $G_{1, k}$-invariant for $k=1, \ldots, n$. Let G be the subgroup of $\operatorname{Sp}(n, \mathbf{R})$ generated by these subgroups. It will be shown that $G=\operatorname{Sp}(n, \mathbf{R})$.

Let

$$
\omega=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \omega_{j, k}=\rho_{j, k}(\omega), \tilde{\omega}_{j, k}=\tilde{\rho}_{j, k}(\omega)
$$

for $j, k=1, \ldots, n$. Then $\omega_{1, k} \rho_{1,1}(g) \omega_{1, k}^{-1}=\left(\rho_{k, k}(g)^{T}\right)^{-1}$ for $k=2, \ldots, n$. This implies $G_{k, k} \subset G$. Since $\omega_{1,1} \rho_{1, k}(g) \omega_{1,1}^{-1}=\left(\tilde{\rho}_{1, k}(g)^{T}\right)^{-1}$ for $k=2, \ldots, n$, we have $\tilde{G}_{1, k} \subset G$. Also $\tilde{\omega}_{1, j} \tilde{\rho}_{1, k}(g) \tilde{\omega}_{1, j}^{-1}=\tilde{\rho}_{j, k}(g)$ for $j, k=2, \ldots, n, j \neq k$ which gives $\tilde{G}_{j, k} \subset G$. Finally $\tilde{\omega}_{1, j} \rho_{1, k}(g) \tilde{\omega}_{1, j}^{-1}=\rho_{j, k}(g)$ for $j, k=2, \ldots, n, j \neq k$ and $G_{j, k} \subset G$.

This implies $G=\operatorname{Sp}(n, \mathbf{R})$, see [8, Section 6.9]. So ξ is G-invariant.

5. An estimate for the decay of the matrix coefficients

Before studying the decay of the matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$ the matrix coefficients of the semi-direct product $\mathrm{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ are considered. A set in the unitary dual $\widehat{S^{2}\left(\mathbf{R}^{2}\right)}$ of the additive group of $S^{2}\left(\mathbf{R}^{2}\right)$ will help to determine an estimate for the matrix coefficients of the representations of $\operatorname{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors.

Theorem 5.1. Let π be a representation of $\mathrm{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ on H_{π} without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, then

$$
\left|\varphi_{\xi, \eta}\left(g_{0}(\alpha) g_{1}(t) g_{0}(\beta)\right)\right|=\left|\left\langle\pi\left(g_{0}(\alpha) g_{1}(t) g_{0}(\beta)\right) \xi, \eta\right\rangle\right| \leq c_{\xi, \eta} e^{-t / 2}
$$

for $\xi, \eta \in H_{\pi, K}$ and $c_{\xi, \eta}$ is a constant depending only on ξ and η.

Proof. Let $\Phi: \mathbf{R}^{3} \rightarrow \widehat{S^{2}\left(\mathbf{R}^{2}\right)}$ be the isomorphism

$$
(\Phi(x, y, z))(u)=\exp \left(i \operatorname{tr}\left(\left(\begin{array}{cc}
x+z & y \\
y & z
\end{array}\right) u\right)\right)
$$

for $u \in S^{2}\left(\mathbf{R}^{2}\right)$. We identify \mathbf{R}^{3} with $\widehat{S^{2}\left(\mathbf{R}^{2}\right)}$ via Φ. Let $s>1$ and

$$
X_{s}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbf{R}^{3}: s^{-2}<y^{2}+z^{2}<s^{2}\right\}
$$

then $\bigcup_{s>1} X_{s}=\mathbf{R}^{3} \backslash\{0\}$. As π has no nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, $E\left(X_{s}\right) \eta$ converges to η for $\eta \in H_{\pi}$ where E is the spectral measure associated to $\left.\pi\right|_{S^{2}\left(\mathbf{R}^{2}\right)}$. So it is enough to prove the statement for eigenvectors $\xi, \eta \in E\left(X_{s}\right) H_{\pi}$ of $\pi(K)$ as the matrix coefficients are sesquilinear in ξ and η.

Let $t>2 \ln s$, then

$$
\begin{aligned}
\varphi_{\xi, \eta}\left(g_{1}(t)\right) & =\left\langle\pi\left(g_{1}(t)\right) \xi, \eta\right\rangle=\left\langle\pi\left(g_{1}(t)\right) E\left(X_{s}\right) \xi, E\left(X_{s}\right) \eta\right\rangle \\
& =\left\langle E\left(g_{1}(t) \cdot X_{s}\right) \pi\left(g_{1}(t)\right) \xi, E\left(X_{s}\right) \eta\right\rangle \\
& =\left\langle\pi\left(g_{1}(t)\right) \xi, E\left(\left(g_{1}(t) \cdot X_{s}\right) \cap X_{s}\right) \eta\right\rangle .
\end{aligned}
$$

By the Cauchy-Schwarz inequality:

$$
\left|\varphi_{\xi, \eta}\left(g_{1}(t)\right)\right| \leq\|\xi\|\left\|E\left(\left(g_{1}(t) \cdot X_{s}\right) \cap X_{s}\right) \eta\right\| .
$$

The one-parameter subgroup generated by $g_{1}(t)$ operates in the following way on \mathbf{R}^{3}. Then

$$
\begin{aligned}
g_{1}(-t)\left(\begin{array}{cc}
x+z & y \\
y & z
\end{array}\right) g_{1}(-t) & =\left(\begin{array}{cc}
e^{-t}(x+z) & y \\
y & e^{t} z
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-t} x-2 z \sinh t+e^{t} z & y \\
y & e^{t} z
\end{array}\right)
\end{aligned}
$$

so by the isomorphism Φ

$$
g_{1}(t) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
e^{-t} x-2 z \sinh t \\
y \\
e^{t} z
\end{array}\right)
$$

Hence

$$
g_{1}(t) \cdot X_{s}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): s^{-2}<y^{2}+e^{-2 t} z^{2}<s^{2}\right\} \subset\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):|z|<e^{t} s\right\} .
$$

As

$$
\left(g_{1}(t) \cdot X_{s}\right) \cap X_{s} \subset\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): y^{2}+z^{2}>s^{-2},|z|<e^{t} s\right\}
$$

we have $|z|\left(\sqrt{y^{2}+z^{2}}\right)^{-1}<e^{t} s\left(s^{-1}\right)^{-1}=e^{t} s^{2}$. Now $z=r \cos \beta$ with $r=$ $\sqrt{y^{2}+z^{2}}$ where $|\cos \beta|<e^{t} s^{2}$. Let $\vartheta=\arccos \left(e^{t} s^{2}\right)$, then $-\pi<\beta<\pi$ if and only if $-\pi<\beta<-\vartheta$ or $\vartheta<\beta<\pi$. By definition of $S_{h}(\vartheta)$ and $W(\vartheta)$, cf. Section 3,

$$
\begin{aligned}
\left|\varphi_{\xi, \eta}\left(g_{1}(t)\right)\right| & \leq \sqrt{1-\left\|E\left(S_{1}(\vartheta)\right) \xi\right\|^{2}} \leq \sqrt{1-\|E(W(\vartheta)) \xi\|^{2}} \\
& =\sqrt{1-\frac{2}{\pi} \arccos \left(e^{-t} s^{2}\right)}=\sqrt{\frac{2}{\pi} \arcsin \left(e^{-t} s^{2}\right)} \\
& \leq s e^{-t / 2} .
\end{aligned}
$$

Finally for $t \leq 2 \ln s,\left|\varphi_{\xi, \eta}\left(g_{1}(t)\right)\right| \leq 1 \leq s e^{-t / 2}$ holds.

There is an estimate for the matrix coefficients of the regular representation of $\operatorname{SL}(2, \mathbf{R})$ which depends on the Harish-Chandra Ξ function, cf. for example [7, page 217]. For $t \in \mathbf{R}$:

$$
\Xi\left(g_{1}(t)\right)=(2 \pi)^{-1} e^{-t / 2} \int_{0}^{2 \pi}\left|e^{-2 t}(\cos \vartheta)^{2}+(\sin \vartheta)^{2}\right|^{-1 / 2} d \vartheta
$$

Theorem 5.2. Let π be a representation of $\operatorname{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ without nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, then for the matrix coefficient of any two vectors $\xi, \eta \in$ H_{π} there is the pointwise estimate

$$
\left|\varphi_{\xi, \eta}\left(g_{1}(t)\right)\right| \leq\|\xi\|\|\eta\| \sqrt{\operatorname{dim}\langle\pi(K) \xi\rangle \operatorname{dim}\langle\pi(K) \eta\rangle} \Xi\left(g_{1}(t)\right),
$$

where $\langle\pi(K) \xi\rangle$ is the subspace spanned by the orbit $\pi(K) \xi$.
The proof can be copied word by word form [7, page 226] replacing the corresponding statement by Theorem 5.1.

Hence it is possible to prove Theorem 1.3, which describes the asymptotics of matrix coefficients of $\operatorname{Sp}(n, \mathbf{R})$.

Proof of Theorem 1.3. Consider the subgroups

$$
\begin{aligned}
\tilde{G}_{1,2} & =\left\{\left(\begin{array}{llcc}
a & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & a^{T-1} & 0 \\
0 & 0 & 0 & I
\end{array}\right): a \in \operatorname{SL}(2, \mathbf{R})\right\} \\
P_{1,2} & =\left\{\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & I & 0 & 0 \\
0 & 0 & a^{T-1} & 0 \\
0 & 0 & 0 & I
\end{array}\right): a \in \operatorname{SL}(2, \mathbf{R}), a b^{T}=b a^{T}\right\}
\end{aligned}
$$

isomorphic to $\mathrm{SL}(2, \mathbf{R})$ and $\mathrm{SL}(2, \mathbf{R}) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$ respectively.
Let π be a representation of $\operatorname{Sp}(n, \mathbf{R})$ without nonzero invariant vectors, then the representation $\pi_{1,2}=\left.\pi\right|_{P_{1,2}}$ also has no nonzero $S^{2}\left(\mathbf{R}^{2}\right)$-invariant vectors, as the matrix coefficients of π and hence the ones of $\pi_{1,2}$ vanish at ∞, as shown in Theorem 4.3 .

To $\tilde{G}_{1,2} \subset \operatorname{Sp}(n, \mathbf{R})$ the estimate of Theorem 5.2 is applied. Let

$$
K_{1,2}=\left\{\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & I
\end{array}\right): a \in \operatorname{SO}(2, \mathbf{R})\right\}
$$

be a maximal compact subgroup of $\tilde{G}_{1,2}$.

$$
\begin{aligned}
& \text { Let } \omega=\left(\begin{array}{cc}
I-E_{2,2} & -E_{2,2} \\
E_{2,2} & I-E_{2,2}
\end{array}\right) \in K \text {, then } \\
& \quad \omega g \omega^{-1}=\operatorname{diag}\left(a_{1}, a_{2}^{-1}, a_{3}, \ldots, a_{n}, a_{1}^{-1}, a_{2}, a_{3}^{-1}, \ldots, a_{n}^{-1}\right) .
\end{aligned}
$$

Now

$$
\left(\begin{array}{cc}
\sqrt{a_{1} a_{2}} & 0 \\
0 & {\sqrt{a_{1} a_{2}}-1}^{2}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{a_{1} / a_{2}} & 0 \\
0 & \sqrt{a_{1} / a_{2}}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}^{-1}
\end{array}\right) .
$$

Let

$$
\begin{aligned}
\tilde{g} & =\operatorname{diag}\left(\sqrt{a_{1} a_{2}},{\sqrt{a_{1} a_{2}}}^{-1}, 1, \ldots, 1,{\sqrt{a_{1} a_{2}}}^{-1}, \sqrt{a_{1} a_{2}}, 1, \ldots, 1\right) \\
h & =\operatorname{diag}\left(\sqrt{a_{1} / a_{2}}, \sqrt{a_{1} / a_{2}}, a_{3}, \ldots, a_{n}, \sqrt{a_{2} / a_{1}}, \sqrt{a_{2} / a_{1}}, a_{3}^{-1}, \ldots, a_{n}^{-1}\right),
\end{aligned}
$$

then

$$
\begin{aligned}
\left|\varphi_{\xi, \eta}(g)\right| & =|\langle\pi(g) \xi, \eta\rangle|=|\langle\pi(\tilde{g}) \pi(h \omega) \xi, \pi(\omega) \eta\rangle| \\
& \leq\|\xi\|\|\eta\| \sqrt{\delta(\xi) \delta(\eta)} \Xi\left(\begin{array}{cc}
\sqrt{a_{1} a_{2}} & 0 \\
0 & \sqrt{a_{1} a_{2}}-1
\end{array}\right)
\end{aligned}
$$

by Theorem 5.2 , as π is unitary,

$$
\begin{aligned}
\operatorname{dim}\left\langle\pi\left(K_{1,2}\right) \pi(h \omega) \xi\right\rangle & =\operatorname{dim}\left\langle\pi(h) \pi\left(K_{1,2}\right) \pi(\omega) \xi\right\rangle \\
& =\operatorname{dim}\left\langle\pi\left(K_{1,2}\right) \pi(\omega) \xi\right\rangle,
\end{aligned}
$$

and $K_{1,2} \omega \subset K$.

6. Kazhdan pairs

For $g \in \operatorname{Sp}(n, \mathbf{R})$ there are $k_{1}, k_{2} \in K$ and

$$
h=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}, a_{1}^{-1}, a_{2}^{-1}, \ldots a_{n}^{-1}\right) \in A^{+}
$$

such that $g=k_{1} h k_{2}$. This implies

$$
\begin{aligned}
\left|\varphi_{\xi, \eta}(g)\right| & =\left|\left\langle\pi(h) \pi\left(k_{2}\right) \xi, \pi\left(k_{1}\right)^{-1} \eta\right\rangle\right| \\
& \leq\|\xi\|\|\eta\| \sqrt{\delta(\xi) \delta(\eta)} \Xi\left(g_{1}\left(\ln \left(a_{1} a_{2}\right)\right)\right) .
\end{aligned}
$$

Let Ψ be defined by $\Psi(g)=\Xi\left(g_{1}\left(\ln \left(a_{1} a_{2}\right)\right)\right)$.
Theorem 6.1. Let $0<\varepsilon<1$ and $\delta=\left(4 \sin \left(\frac{\arcsin \varepsilon}{2}\right)+\varepsilon\right)^{2} / 2<1$, then $\left(\Psi^{-1}([1-\delta, 1]), \varepsilon\right)$ is a Kazhdan pair of $\operatorname{Sp}(n, \mathbf{R})$.

The proof can again be copied word by word from [7, page 230-231] replacing $\operatorname{SL}(n, \mathbf{R})$ by $\operatorname{Sp}(n, \mathbf{R}), \delta$ by $1-\delta$, and the corresponding statement by Theorem 5.2.

For given δ the ε in the last theorem can be estimated. We can now prove Theorem 1.4.

Proof of Theorem 1.4. Let at first $0<\varepsilon<1$ be arbitrary. The Taylor expansion of $x \mapsto \sqrt{1+x}$ at 0 shows

$$
\begin{aligned}
4 \sin ((\arcsin \varepsilon) / 2) & =2 \sqrt{2} \sqrt{1-\sqrt{1-\varepsilon^{2}}} \\
& \geq 2 \sqrt{2} \sqrt{1-\left(1-\varepsilon^{2} / 2\right)}=2 \varepsilon
\end{aligned}
$$

for $0<\varepsilon<1$, hence $4 \sin ((\arcsin \varepsilon) / 2)+\varepsilon \geq 3 \varepsilon \geq \sqrt{2}$ for $\varepsilon \geq \sqrt{2} / 3$. So $\varepsilon<\sqrt{2} / 3$ can be assumed. Again with the above mentioned Taylor expansion we have $\sqrt{1+x} \leq 1+x / 2$ for $x \geq-1$ and so

By letting $x=-\varepsilon^{2}$ this yields

$$
\begin{aligned}
& \sqrt{1-\sqrt{1-\varepsilon^{2}}} \\
\leq & \left.\sqrt{1-\left(1-\frac{\varepsilon^{2}}{2-\varepsilon^{2}}\right.}\right)
\end{aligned}=\frac{\varepsilon}{\sqrt{2}} \sqrt{\frac{1}{1-\varepsilon^{2} / 2}}=\frac{\varepsilon}{\sqrt{2}} \sqrt{1+\frac{\varepsilon^{2} / 2}{1-\varepsilon^{2} / 2}}
$$

for $0<\varepsilon<\sqrt{2} / 3$ and hence $4 \sin ((\arcsin \varepsilon) / 2)+\varepsilon<(17 / 8+1) \varepsilon=(25 / 8) \varepsilon$.
Now let $0<\varepsilon=(8 / 25) \sqrt{2 \delta}<\sqrt{2} / 3$, then $4 \sin ((\arcsin \varepsilon) / 2)+\varepsilon<\sqrt{2 \delta}$ and the last theorem shows that (Q, ε) is a Kazhdan pair.

A Proof of Proposition 3.1

The idea is to decompose $W(\vartheta)$ suitably such that it can be rearranged to $S_{0}(\vartheta)$ using only rotations $g_{0}(\alpha)$.

The union $W(\vartheta)=W^{-}(\vartheta) \cup W^{+}(\vartheta)$ is disjoint and

$$
W(\vartheta) \cap S_{0}(\vartheta)=\left(W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)\right) \cup\left(W^{-}(\vartheta) \cap S_{0}^{-}(\vartheta)\right)
$$

and

$$
\begin{aligned}
W(\vartheta) \backslash S_{0}(\vartheta) & =\left(W^{+}(\vartheta) \cup W^{-}(\vartheta)\right) \backslash S_{0}(\vartheta) \\
& =\left(W^{+}(\vartheta) \backslash S_{0}(\vartheta)\right) \cup\left(W^{-}(\vartheta) \backslash S_{0}(\vartheta)\right) \\
& =\left(W^{+}(\vartheta) \backslash S_{0}^{+}(\vartheta)\right) \cup\left(W^{-}(\vartheta) \backslash S_{0}^{-}(\vartheta)\right) .
\end{aligned}
$$

Hence $\|E(W(\vartheta)) \xi\|^{2}=\left\|E\left(W(\vartheta) \cap S_{0}(\vartheta)\right) \xi\right\|^{2}+\left\|E\left(W(\vartheta) \backslash S_{0}(\vartheta)\right) \xi\right\|^{2}$,

$$
\begin{aligned}
& \left\|E\left(W(\vartheta) \cap S_{0}(\vartheta)\right) \xi\right\|^{2} \\
= & \left\|E\left(W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}+\left\|E\left(W^{-}(\vartheta) \cap S_{0}^{-}(\vartheta)\right) \xi\right\|^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|E\left(W(\vartheta) \backslash S_{0}(\vartheta)\right) \xi\right\|^{2} \\
= & \left\|E\left(W^{+}(\vartheta) \backslash S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}+\left\|E\left(W^{-}(\vartheta) \backslash S_{0}^{-}(\vartheta)\right) \xi\right\|^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
W^{ \pm}(\vartheta) \backslash S_{0}^{ \pm}(\vartheta) & =\left(S_{1}^{ \pm}(\vartheta) \cap S_{0}^{ \pm}(2 \vartheta)\right) \backslash S_{0}^{ \pm}(\vartheta) \\
& =S_{1}^{ \pm}(\vartheta) \cap\left(S_{0}^{ \pm}(2 \vartheta) \backslash S_{0}^{ \pm}(\vartheta)\right)
\end{aligned}
$$

where the sign is either everywhere + or everywhere - and

$$
S_{0}^{ \pm}(2 \vartheta) \backslash S_{0}^{ \pm}(\vartheta)=g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{ \pm}\left(\frac{\vartheta}{2}\right) \cup g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{ \pm}\left(\frac{\vartheta}{2}\right)
$$

and the union is again disjoint.

We have

$$
\begin{aligned}
S_{0}^{+}(\vartheta)= & \left(W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)\right) \\
& \cup g_{0}(\pi+2 \vartheta) \cdot\left(S_{1}^{-}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \\
& \cup g_{0}(\pi-2 \vartheta) \cdot\left(S_{1}^{-}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)
\end{aligned}
$$

where the union is again disjoint. The validity of this equality for $S_{0}^{+}(\vartheta)$ can be deduced from the following equalities for the three sets. It can be shown that

$$
\begin{aligned}
W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)= & \left\{\left(\begin{array}{c}
x \\
x+y \\
y \tan \beta
\end{array}\right): x>0, y>0,-\vartheta<\beta \leq \vartheta\right\} \\
& \cup\left\{\left(\begin{array}{c}
x \\
y \\
y \tan \beta
\end{array}\right): x \leq 0, y>0,-\vartheta<\beta \leq \vartheta\right\} \\
& g_{0}(\pi+2 \vartheta) \cdot\left(S_{1}^{-}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \\
= & \left\{\left(\begin{array}{c}
x \\
h x+y \\
y \tan \vartheta
\end{array}\right): x>0,0 \leq h<1, y>0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& g_{0}(\pi-2 \vartheta) \cdot\left(S_{1}^{-}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \\
= & \left\{\left(\begin{array}{c}
x \\
h x+y \\
-y \tan \vartheta
\end{array}\right): x>0,0<h \leq 1, y>0\right\} .
\end{aligned}
$$

An analogous statement holds for $S_{0}^{-}(\vartheta)$.
Now $W(\vartheta)$ will be decomposed accordingly and put together again from rotated pieces to $S_{0}(\vartheta)$. With the above

$$
\begin{aligned}
\|E(W(\vartheta)) \xi\|^{2}= & \left\|E\left(W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)\right) \xi\right\|^{2} \\
& +\left\|E\left(W^{+}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
& +\left\|E\left(W^{+}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
& +\left\|E\left(W^{-}(\vartheta) \cap S_{0}^{-}(\vartheta)\right) \xi\right\|^{2} \\
& +\left\|E\left(W^{-}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
& +\left\|E\left(W^{-}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2}
\end{aligned}
$$

and by the K-invariance

$$
\begin{aligned}
& \left\|E\left(W^{+}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
= & \left\|E\left(g_{0}(\pi-2 \vartheta) \cdot\left(S_{1}^{+}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\right) \xi\right\|^{2} \\
= & \left\|E\left(g_{0}(\pi-2 \vartheta) \cdot S_{1}^{+}(\vartheta) \cap g_{0}\left(-\frac{\vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2}
\end{aligned}
$$

and analogously

$$
\begin{aligned}
& \left\|E\left(W^{+}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
= & \left\|E\left(g_{0}(\pi+2 \vartheta) \cdot S_{1}^{+}(\vartheta) \cap g_{0}\left(\frac{\vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2}, \\
& \left\|E\left(W^{-}(\vartheta) \cap g_{0}\left(\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
= & \left\|E\left(g_{0}(\pi-2 \vartheta) \cdot S_{1}^{-}(\vartheta) \cap g_{0}\left(-\frac{\vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2}, \\
= & \left\|E\left(W^{-}(\vartheta) \cap g_{0}\left(-\frac{3 \vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right) \xi\right\|^{2} \\
= & \left.g_{0}(\pi+2 \vartheta) \cdot S_{1}^{-}(\vartheta) \cap g_{0}\left(\frac{\vartheta}{2}\right) \cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right) \xi \|^{2} .
\end{aligned}
$$

This yields

$$
\begin{aligned}
\|E(W(\vartheta)) \xi\|^{2} & =\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}+\left\|E\left(S_{0}^{-}(\vartheta)\right) \xi\right\|^{2} \\
& =2\left\|E\left(S_{0}^{+}(\vartheta)\right) \xi\right\|^{2}=\frac{2 \vartheta}{\pi} .
\end{aligned}
$$

A more detailed proof can be found in [11, page 59-68].

B Proof of Proposition 3.2

It is enough to prove that

$$
W^{ \pm}(\vartheta) \supseteq g_{1}(-t) \cdot W^{ \pm}\left(\arctan \left(e^{t} \tan \vartheta\right)\right)
$$

where either both signs are + or both - . Therefore it has to be shown that

$$
S_{1}^{ \pm}(\vartheta) \cap S_{0}^{ \pm}(2 \vartheta) \supseteq S_{1}^{ \pm}(\vartheta) \cap S_{-\tanh t}^{ \pm}\left(\arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right)\right)
$$

So let

$$
\left(\begin{array}{c}
x \\
x+y \\
y \tan \beta
\end{array}\right) \in S_{1}^{+}(\vartheta) \cap S_{-\tanh t}^{+}\left(\arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right)\right)
$$

with $x \in \mathbf{R}, y>0$ and $-\vartheta<\beta \leq \vartheta$. Then there is $z>0$ and α with

$$
\begin{aligned}
& -\arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right) \\
< & \alpha \leq \arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right)
\end{aligned}
$$

such that $x+y=-x \tanh t+z$ and $y \tan \beta=z \tan \alpha$. If $x \geq 0$, then $x+y>0$, since $y>0$. Hence $0<\frac{y \tan \beta}{x+y} \leq \tan \beta \leq \tan \vartheta$ for $0<\beta \leq \vartheta$ and $0 \geq \frac{y \tan \beta}{x+y} \geq$ $\tan \beta>-\tan \vartheta$ for $-\vartheta<\beta \leq 0$. So $\left(\begin{array}{c}x \\ x+y \\ y \tan \beta\end{array}\right) \in S_{0}^{+}(2 \vartheta)$. If $x<0$, then $x+y=-x \tanh t+z>0$. If $0<\beta \leq \vartheta$ and $y \geq-2 x(\cos \vartheta)^{2}$, then

$$
\begin{aligned}
0 & <\frac{y \tan \beta}{x+y}=\left(1+\frac{-x}{x+y}\right) \tan \beta \\
& \leq\left(1+\frac{1}{-1+2(\cos \vartheta)^{2}}\right) \tan \beta=\frac{2(\cos \vartheta)^{2}}{\cos (2 \vartheta)} \tan \beta \\
& \leq \frac{2(\cos \vartheta)^{2}}{\cos (2 \vartheta)} \tan \vartheta=\tan (2 \vartheta) .
\end{aligned}
$$

If $-\vartheta<\beta \leq 0$, holds analogously

$$
\begin{aligned}
0 & \geq \frac{y \tan \beta}{x+y}=\left(1+\frac{-x}{x+y}\right) \tan \beta \\
& \geq\left(1+\frac{1}{-1+2(\cos \vartheta)^{2}}\right) \tan \beta=\frac{2(\cos \vartheta)^{2}}{\cos (2 \vartheta)} \tan \beta \\
& >-\frac{2(\cos \vartheta)^{2}}{\cos (2 \vartheta)} \tan \vartheta=-\tan (2 \vartheta)
\end{aligned}
$$

For $z \leq-x \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta)$ and

$$
0<\alpha \leq \arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right)
$$

holds

$$
\begin{aligned}
0 & <\frac{z \tan \alpha}{-x \tanh t+z}=\left(1-\frac{-x \tanh t}{-x \tanh t+z}\right) \tan \alpha \\
& \leq\left(1-\frac{1}{1+\frac{1}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta)}\right) \tan \alpha \\
& =\frac{\tan (2 \vartheta)}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)} \tan \alpha \leq \tan (2 \vartheta) .
\end{aligned}
$$

For $-\arctan \left(\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)\right)<\alpha \leq 0$ analogously

$$
\begin{aligned}
0 & \geq \frac{z \tan \alpha}{-x \tanh t+z}=\left(1-\frac{-x \tanh t}{-x \tanh t+z}\right) \tan \alpha \\
& \geq\left(1-\frac{1}{1+\frac{1}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta)}\right) \tan \alpha \\
& =\frac{\tan (2 \vartheta)}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)} \tan \alpha>-\tan (2 \vartheta)
\end{aligned}
$$

But,

$$
\begin{aligned}
& (\cosh t) \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta) \\
= & (\cosh t) \frac{2 e^{t} \tan \vartheta}{1-\left(e^{t} \tan \vartheta\right)^{2}}-\tan (2 \vartheta) \\
= & (\cosh t) \frac{e^{t} \tan (2 \vartheta)}{1-\left(e^{t} \tan \vartheta\right)^{2}}\left(1-(\tan \vartheta)^{2}\right)-\tan (2 \vartheta) \\
= & \left((\cosh t) \frac{e^{t}}{1-\left(e^{t} \tan \vartheta\right)^{2}}\left(1-(\tan \vartheta)^{2}\right)-1\right) \tan (2 \vartheta)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta) \\
= & \frac{\tanh t}{(\cosh t) \frac{e^{t}}{1-\left(e^{t} \tan \vartheta\right)^{2}}\left(1-(\tan \vartheta)^{2}\right)-1} \\
= & \frac{\left(1-\left(e^{t} \tan \vartheta\right)^{2}\right) \tanh t}{(\cosh t) e^{t}\left(1-(\tan \vartheta)^{2}\right)-1+\left(e^{t} \tan \vartheta\right)^{2}} .
\end{aligned}
$$

Now

$$
\begin{aligned}
& (\cosh t) e^{t}\left(1-(\tan \vartheta)^{2}\right)-1+\left(e^{t} \tan \vartheta\right)^{2} \\
= & (\cosh t) e^{t}-1+e^{t}(\tan \vartheta)^{2}\left(-(\cosh t)+e^{t}\right) \\
= & \frac{e^{2 t}-1}{2}+e^{t}(\tan \vartheta)^{2} \frac{e^{t}-e^{-t}}{2} \\
= & e^{t} \sinh t+e^{t}(\tan \vartheta)^{2} \sinh t=e^{t} \frac{\sinh t}{\cos ^{2} \vartheta} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta) \\
= & \frac{\left(1-\left(e^{t} \tan \vartheta\right)^{2}\right) \tanh t}{e^{t} \frac{\sinh t}{\cos ^{2} \vartheta}}=\frac{\left(1-\left(e^{t} \tan \vartheta\right)^{2}\right) \cos ^{2} \vartheta}{e^{t} \cosh t} \\
= & \frac{e^{-t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh t} .
\end{aligned}
$$

Since $y \geq-2 x(\cos \vartheta)^{2}$, one has $x+y \geq-x\left(-1+2(\cos \vartheta)^{2}\right)=-x \cos (2 \vartheta)$ and

$$
\begin{aligned}
z & \leq-x \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right)-\tan (2 \vartheta)} \tan (2 \vartheta) \\
& =-x \frac{e^{-t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh t}
\end{aligned}
$$

so

$$
-x \tanh t+z \leq-x\left(\tanh t+\frac{e^{-t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh t}\right) .
$$

Also

$$
\begin{aligned}
& \tanh t+\frac{e^{-t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh t} \\
= & \frac{\sinh t+e^{-t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh ^{2}} \\
= & \frac{\left(1-2 \cos ^{2} \vartheta\right) \sinh t+e^{t} \cos ^{2} \vartheta-e^{t} \sin ^{2} \vartheta}{\cosh t} \\
= & \frac{-\cos (2 \vartheta) \sinh t+e^{t} \cos (2 \vartheta)}{\cosh t}=\frac{\cos (2 \vartheta)\left(-\sinh t+e^{t}\right)}{\cosh t} \\
= & \cos (2 \vartheta) .
\end{aligned}
$$

So $-x \tanh t+z \leq-x \cos (2 \vartheta)$. Hence $\left(\begin{array}{c}x \\ x+y \\ y \tan \beta\end{array}\right)=\left(\begin{array}{c}x \\ -x \tanh t+z \\ z \tan \alpha\end{array}\right) \in$ $S_{0}^{+}(2 \vartheta)$.

The inclusion $g_{1}(t) \cdot W^{-}(\vartheta) \supseteq W^{-}\left(\arctan \left(e^{t} \tan \vartheta\right)\right)$ holds analogously. Therefore $g_{1}(t) \cdot W(\vartheta) \supseteq W\left(\arctan \left(e^{t} \tan \vartheta\right)\right)$.

References

[1] Bekka, M. E. B., P.-A. Cherix, and P. Jolissaint, Kazhdan constants associated with a Laplacian on connected Lie groups, Journal of Lie Theory 8 (1998), 95-110.
[2] Bekka, M. E. B., and M. Mayer, On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL(3,R), Journal of Lie Theory 10 (2000), 93-105.
[3] Bekka, M. B., and M. Neuhauser, On Kazhdan's property (T) for $S p_{2}(k)$, Journal of Lie Theory 12 (2002), 31-39.
[4] Delaroche, C., and A. Kirillov, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'aprés D. A. Kajdan), in "Séminaire Bourbaki, Vol. 10", Exp. No. 343, 507-528, Soc. Math. France, Paris, 1995.
[5] de la Harpe, P., and A. Valette, "La propriété (T) de Kazhdan pour les groupes localement compacts"," Volume 175 of Astérisque, Soc. Math. France, 1989.
[6] Howe, R. E., and C. C. Moore, Asymptotic properties of unitary representations, Journal of Functional Analysis 32 (1979), 72-96.
[7] Howe, R., and E. C. Tan, "Non-Abelian harmonic analysis," Universitext, Springer-Verlag, 1992.
[8] Jacobson, N., "Basic algebra I," Freeman, 1985.
[9] Kazhdan, D. A., Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967), 63-65.
[10] Margulis, G. A., "Discrete subgroups of semisimple Lie groups," Volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Springer-Verlag, 1991.
[11] Neuhauser, M., „Neue Methoden zur Bestimmung expliziter Schranken von Kazhdan-Konstanten ", Dissertation, Technische Universität München, 2001 [tumb1.biblio.tu-muenchen.de/publ/diss/ma/2001/neuhauser.html].
[12] Valette, A., Old and new about Kazhdan's property (T), in: Baldoni, V. and M. A. Picardello, Editors, "Representations of Lie groups and quantum groups," Volume 311 of Pitman Research Notes in Mathematics Series, 271-333. Longman Scientific \& Technical, 1994.
[13] Vasershtein, L. N., On groups possessing property T, Functional Anal. Appl. 2 (1968), 86.
[14] Warner, G., "Harmonic analysis on semi-simple Lie groups I", Volume 188 of die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Springer-Verlag, 1972.
M. Neuhauser

Technische Universität München
Zentrum Mathematik
Arcisstr. 21
D-80290 München
Germany
neuhausm@mathematik.tumuenchen.de

Received October 4, 2001
and in final form January 9, 2002

Current address:
Institut de Mathématiques
Université de Neuchâtel
Rue Emile Argand 11
CH-2007 Neuchâtel
Suisse (Switzerland)

[^0]: *Supported by grant 20-65060.01 of the Swiss National Fund for Scientific Research.

