Kazhdan Constants and Matrix Coefficients of $Sp(n, \mathbf{R})$

Markus Neuhauser*

Communicated by Alain Valette

Abstract. An infinitesimal Kazhdan constant of Sp $(2, \mathbf{R})$ is computed. The methods used to prove this can also be employed to determine a quantitative estimate of the asymptotics of the matrix coefficients of Sp (n, \mathbf{R}) in an elementary manner. An application of the result gives explicit Kazhdan constants for Sp (n, \mathbf{R}) , $n \geq 2$.

1. Introduction

A locally compact group G has Kazhdan's property T, if for a compact subset $Q \subset G$ and an $\varepsilon > 0$, every unitary representation π which has a (Q, ε) -invariant vector, i. e. a vector $\xi \in H_{\pi}$ such that $\|\pi(g)\xi - \xi\| < \varepsilon \|\xi\|$ for all $g \in Q$, has in fact a nonzero invariant vector. If such (Q, ε) for a group exists it is called a Kazhdan pair. This group theoretic property introduced in [9] has remarkable applications, for an account see [5] and [12].

In this paper, by "representation" we shall always mean "unitary representation". Let G be a connected Lie group. If π is a representation of G, a vector $\xi \in H_{\pi}$ is called a C^{∞} -vector if $g \mapsto \langle \pi(g) \xi, \eta \rangle$ is a C^{∞} -function for all $\eta \in H_{\pi}$, cf. for example [14]. The space of C^{∞} -vectors is denoted by H_{π}^{∞} . Let Kbe a maximal compact subgroup of G. A vector $\xi \in H_{\pi}$ is K-finite if the linear span of $\pi(K)\xi$ is finite-dimensional. We denote by $H_{\pi,K}^{\infty}$ the space of K-finite, C^{∞} -vectors in H_{π} .

Let X_1, \ldots, X_m be a basis of the Lie algebra of G, then $\Delta = -\sum_{k=1}^m X_k^2$ denotes the Laplacian. If π is a representation of G, let $d\pi$ denote the derived representation of the Lie algebra. It can be extended to the universal enveloping algebra.

In [1, Theorem 3.10], it was shown that property T for a connected Lie group G, is equivalent to the existence of an $\varepsilon > 0$ such that

$$\langle d\pi (\Delta) \xi, \xi \rangle \ge \varepsilon \|\xi\|^2$$

for every $\xi \in H^{\infty}_{\pi}$ and every π without nonzero fixed vector.

*Supported by grant 20-65060.01 of the Swiss National Fund for Scientific Research.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

In [2, page 94], it was shown that restriction to the space $H^{\infty}_{\pi,K}$ is possible, namely:

Theorem 1.1. The connected Lie group G has property T if and only if there exists a constant $\varepsilon > 0$ such that

$$\inf\left\{\left\langle d\pi\left(\Delta\right)\xi,\xi\right\rangle:\xi\in H^{\infty}_{\pi,K}, \|\xi\|=1\right\}\geq\varepsilon$$

for any unitary representation π of G without nonzero fixed vector.

We define the infinitesimal Kazhdan constant as

$$\kappa_{K}\left(\Delta,G\right) = \inf\left\{\left\langle d\pi\left(\Delta\right)\xi,\xi\right\rangle:\xi\in H^{\infty}_{\pi,K}, \|\xi\| = 1, \pi \neq 1\right\}.$$

The symplectic group $\operatorname{Sp}(n, \mathbf{R}) \subset \operatorname{GL}(2n, \mathbf{R})$ is the group of isometries of the skew symmetric bilinear form induced by

$$J = \left(\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array}\right),$$

where I_n is the $n \times n$ identity matrix. So

$$\operatorname{Sp}(n, \mathbf{R}) = \left\{ g \in \operatorname{GL}(2n, \mathbf{R}) : g^T J g = J \right\}.$$

In the following $G = \text{Sp}(n, \mathbf{R})$ and $K = \text{Sp}(n, \mathbf{R}) \cap \text{SO}(2n)$ is the standard maximal compact subgroup of G.

Let π be a strongly continuous representation of G on a Hilbert space H_{π} . A vector $\xi \in H_{\pi}$ is called K-finite if the linear span of the set $\pi(K)\xi$ in H_{π} is finite-dimensional. Denote this dimension by $\delta(\xi) = \dim \langle \pi(K)\xi \rangle$.

Theorem 1.2. For every $\operatorname{Sp}(2, \mathbf{R}) \cap \operatorname{SO}(4)$ -finite unit C^{∞} -vector η and every representation π of $\operatorname{Sp}(2, \mathbf{R})$ without nonzero invariant vectors

$$\langle d\pi \left(\Delta \right) \eta, \eta \rangle \ge \frac{1}{4\pi} \sup_{0 < \vartheta < \pi/2} \frac{\left(\sin \left(2\vartheta \right) \right)^2}{\vartheta} > 0.11532$$

for a suitable Laplacian Δ on Sp $(2, \mathbf{R})$, described after Theorem 3.5.

By Theorem 1.1, this implies that $\text{Sp}(2, \mathbf{R})$ has Kazhdan's property T which was shown for any local field in [4] and [13] and with an elementary proof in [3].

The group G can be decomposed as G = KAK, where

$$A = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) : a = \operatorname{diag}\left(a_1, \dots, a_n \right) \right\},\$$

the subgroup of the diagonal matrices in G. In fact, the matrices in A in the decomposition can be chosen more specially as $G = KA^+K$, where

$$A^{+} = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) : \begin{array}{c} a = \operatorname{diag} \left(a_{1}, \dots, a_{n} \right), \\ a_{1} \ge a_{2} \ge \dots \ge a_{n} \ge 1 \end{array} \right\}.$$

This can be achieved by suitable conjugation of an element of A by permutation matrices contained in K.

The asymptotics of the matrix coefficients will be given for the dense subspace of K-finite vectors of a representation π .

The quantitative estimate of the asymptotic of matrix coefficients will be given in terms of the Harish-Chandra function Ξ defined by

$$\Xi \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) = \frac{1}{2\pi} a^{-1} \int_0^{2\pi} \left| a^{-4} \left(\cos \vartheta \right)^2 + \left(\sin \vartheta \right)^2 \right|^{-1/2} \, d\vartheta,$$

cf. for example [7, page 215].

Let $g \in G$ with the decomposition $g = k_1 h k_2, k_1, k_2 \in K$,

$$h = \text{diag}(a_1, \dots, a_n, a_1^{-1}, \dots, a_n^{-1}) \in A^+,$$

then define

$$\Psi(g) = \Xi \left(\begin{array}{cc} \sqrt{a_1 a_2} & 0\\ 0 & \sqrt{a_1 a_2}^{-1} \end{array}\right).$$

The next theorem gives a quantitative estimate for the asymptotics of matrix coefficients.

Theorem 1.3. Let π be a strongly continuous representation of $\text{Sp}(n, \mathbf{R})$, $n \geq 2$, without nonzero invariant vectors, then

$$\left|\varphi_{\xi,\eta}\left(g\right)\right| \leq \left\|\xi\right\| \left\|\eta\right\| \sqrt{\delta\left(\xi\right)\delta\left(\eta\right)}\Psi\left(g\right)$$

for two K-finite vectors $\xi, \eta \in H_{\pi}$, where $\varphi_{\xi,\eta}(g) = \langle \pi(g) \xi, \eta \rangle$.

Here the main application of this theorem is the proof of Kazhdan's property T of Sp (n, \mathbf{R}) , $n \geq 2$, with an explicit Kazhdan pair.

Theorem 1.4. Let $0 < \delta < 1$, $\varepsilon = 0.32 \times \sqrt{2\delta}$, and $Q = \Psi^{-1}([1 - \delta, 1])$, then (Q, ε) is a Kazhdan pair of Sp (n, \mathbf{R}) .

It is a pleasure to thank M. B. Bekka, H. Führ, G. Schlichting, A. Valette, and the referee for their comments and suggestions. Financial support form the Centre de Coopération Universitaire Franco-Bavarois is acknowledged.

2. Preliminaries

A set in the dual space of $S^2(\mathbf{R}^2)$ is determined, where $S^2(\mathbf{R}^2)$ is identified with the vector space of the symmetric 2 × 2-matrices. This set will be important for the computation of an explicit estimate of the infinitesimal Kazhdan constant of Sp (2, **R**) in Section 3 and for the determination of an explicit quantitative estimate of the asymptotics of matrix coefficients of Sp (n, \mathbf{R}) in Section 5. The asymptotics will be employed in the last section to obtain a Kazhdan pair for Sp (n, \mathbf{R}) .

For $SL(3, \mathbf{R})$ M. B. Bekka and M. Mayer in [2] have determined a lower bound of the infinitesimal Kazhdan constant associated with a Laplacian.

Let π be a representation of Sp (2, **R**) on H_{π} . The strategy for establishing the estimates consists in considering the restriction of π to SL (2, **R**) $\ltimes S^2$ (**R**²).

There is a spectral measure on the dual group \widehat{N} corresponding to $\pi|_N$ where $N = S^2(\mathbf{R}^2)$ is an abelian subgroup. The main problem here will be to find a set $W \subset \widehat{N}$ of which the spectral measure can be computed and estimated under the action of a suitably defined one parameter subgroup.

The subgroup

$$P = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{T-1} \end{array} \right) : a \in \mathrm{SL}\left(2, \mathbf{R}\right), ab^{T} = ba^{T} \right\} \cong \mathrm{SL}\left(2, \mathbf{R}\right) \ltimes S^{2}\left(\mathbf{R}^{2}\right)$$

will be considered. If ξ is a vector fixed by the subgroup

$$N = \left\{ \begin{pmatrix} 1 & 0 & x & y \\ 0 & 1 & y & z \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbf{R} \right\} \cong \mathbf{R}^3,$$

then ξ is a fixed vector of Sp (2, **R**), cf. for example [10, page 88].

So it can be supposed that π has no nonzero *N*-invariant vector. Let *E* be the spectral measure of \hat{N} . Then $\pi|_N = \int_{\hat{N}} \chi \, dE(\chi)$ and $E(\{0\}) = 0$. For Borel sets $W \subset \hat{N}$ we have $E(a \cdot W) = \pi(a) E(W) \pi(a)^{-1}$ for all $a \in \text{SL}(2, \mathbb{R})$.

Let ρ denote the action of $\operatorname{SL}(2, \mathbf{R})$ on $S^2(\mathbf{R}^2)$ by $\rho(a) b = aba^T$. We have that $a^T = \omega a^{-1} \omega^{-1}$ for $\omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $a \in \operatorname{SL}(2, \mathbf{R})$. So the dual operation on \widehat{N} is equivalent to the usual operation ρ since tr $(ba^T ca) = \operatorname{tr}(aba^T c)$. The following basis

$$s_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, s_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, s_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

of $S^{2}(\mathbf{R}^{2})$ is chosen. The isomorphism

$$\begin{pmatrix} x\\ y\\ z \end{pmatrix} \mapsto xs_1 + ys_2 + zs_3 = \begin{pmatrix} x+y & z\\ z & x-y \end{pmatrix}$$

yields an identification between $\widehat{N} \cong N \cong S^2(\mathbf{R}^2)$ and \mathbf{R}^3 . The spectral measure E is now considered to be defined on \mathbf{R}^3 .

For an angle $0 < \vartheta < \pi$ and $h \in \mathbf{R}$ define

$$S_{h}^{+}(\vartheta) = \left\{ \left(\begin{array}{c} x \\ hx + y\cos\beta \\ y\sin\beta \end{array} \right) : x \in \mathbf{R}, y > 0, -\vartheta < \beta \le \vartheta \right\}.$$

For $0 < \vartheta < \frac{\pi}{2}$ one has

$$S_{h}^{+}(\vartheta) = \left\{ \left(\begin{array}{c} x \\ hx + y \\ y \tan \beta \end{array} \right) : x \in \mathbf{R}, y > 0, -\vartheta < \beta \le \vartheta \right\}.$$

137

Let $g_0(\alpha) = \begin{pmatrix} \cos(\alpha/2) & -\sin(\alpha/2) \\ \sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}$. Then in the chosen basis $g_0(\alpha)$ acts on \mathbf{R}^3 by

$$\left(\begin{array}{rrr}1 & 0 & 0\\ 0 & \cos\alpha & -\sin\alpha\\ 0 & \sin\alpha & \cos\alpha\end{array}\right).$$

Hence

$$g_0(\alpha) \cdot S_0^+(\vartheta) = \left\{ \begin{pmatrix} x \\ y\cos\beta \\ y\sin\beta \end{pmatrix} : x \in \mathbf{R}, y > 0, -\vartheta + \alpha < \beta \le \vartheta + \alpha \right\}.$$

This implies that $g_0(2\vartheta) \cdot S_0^+(\vartheta)$ and $S_0^+(\vartheta)$ are disjoint.

Let ξ be a unit eigenvector of the image $\pi(K)$, then $\pi(g_0(\alpha))\xi = e^{in\alpha/2}\xi$ for an $n \in \mathbb{Z}$. As $g_0(\alpha) \in \mathrm{SL}(2, \mathbb{R})$,

$$\pi (g_0 (\alpha)) E (S_0^+ (\vartheta)) \xi = \pi (g_0 (\alpha)) E (S_0^+ (\vartheta)) \pi (g_0 (\alpha))^{-1} \pi (g_0 (\alpha)) \xi$$

= $E (g_0 (\alpha) \cdot S_0^+ (\vartheta)) \pi (g_0 (\alpha)) \xi$
= $e^{in\alpha/2} E (g_0 (\alpha) \cdot S_0^+ (\vartheta)) \xi$

and so

$$\|E\left(S_{0}^{+}\left(\vartheta\right)\right)\xi\| = \|\pi\left(g_{0}\left(\alpha\right)\right)E\left(S_{0}^{+}\left(\vartheta\right)\right)\xi|$$
$$= \|E\left(g_{0}\left(\alpha\right)\cdot S_{0}^{+}\left(\vartheta\right)\right)\xi\|.$$

On the other hand $S_0^+(\vartheta)$ and $g_0(\alpha) \cdot S_0^+(\vartheta)$ are disjoint for $2\vartheta \leq \alpha \leq 2\pi - 2\vartheta$. Hence $E(S_0^+(\vartheta)) E(g_0(\alpha) \cdot S_0^+(\vartheta)) = 0$ and $E(S_0^+(\vartheta)) \xi$ is orthogonal to $E(g_0(\alpha) \cdot S_0^+(\vartheta)) \xi$.

Let now $n \ge 2$, $\vartheta = \pi/n$, and $\alpha_j = 2\pi j/n$ for $0 \le j \le n-1$, then

$$\mathbf{R}^{3} \setminus \{0\} = \bigcup_{j=0}^{n-1} g_{0}\left(\alpha_{j}\right) \cdot S_{0}^{+}\left(\vartheta\right)$$

where the union is disjoint. So $\sum_{j=0}^{n-1} E\left(g_0(\alpha_j) \cdot S_0^+(\vartheta)\right) = \mathrm{id}_{H_{\pi}}$. This way ξ can be decomposed into vectors of equal length $\xi = \sum_{j=0}^{n-1} E\left(g_0(\alpha_j) \cdot S_0^+(\vartheta)\right) \xi$. If ξ is a unit vector

$$\left\| E\left(S_0^+\left(\vartheta\right)\right)\xi\right\|^2 = 1/n = \vartheta/\pi.$$

This equality can be extended first to all $\vartheta = r\pi$ with $r \in \mathbf{Q} \cap]0,1[$ and then to all $r \in]0,1[$. This proves the following.

Lemma 2.1. For $0 < \vartheta < \pi$:

$$\left\| E\left(S_0^+\left(\vartheta\right)\right)\xi\right\|^2 = \vartheta/\pi.$$

Let now

$$S_{h}^{-}(\vartheta) = \left\{ \begin{pmatrix} x \\ hx + y\cos\beta \\ y\sin\beta \end{pmatrix} : x \in \mathbf{R}, y < 0, -\vartheta < \beta \le \vartheta \right\}$$
$$= g_{0}(\pi) \cdot S_{-h}^{+}(\vartheta),$$

 $\begin{array}{l} \text{then } \left\| E\left(S_{0}^{-}\left(\vartheta\right)\right)\xi\right\|^{2}=\left\| E\left(S_{0}^{+}\left(\vartheta\right)\right)\xi\right\|^{2}=\vartheta/\pi\,.\\ \text{ Let } S_{0}\left(\vartheta\right)\ =\ S_{0}^{+}\left(\vartheta\right)\cup S_{0}^{-}\left(\vartheta\right),\ W^{+}\left(\vartheta\right)\ =\ S_{1}^{+}\left(\vartheta\right)\cap S_{0}^{+}\left(2\vartheta\right),\ W^{-}\left(\vartheta\right)\ =\ S_{1}^{-}\left(\vartheta\right)\cap S_{0}^{-}\left(2\vartheta\right),\ \text{and } W\left(\vartheta\right)=W^{-}\left(\vartheta\right)\cup W^{+}\left(\vartheta\right)\ \text{for } 0<\vartheta<\pi/2. \end{array}$

The determination of the spectral measure of $W(\vartheta)$ is a more difficult task. This will be done in the next section.

3. Kazhdan constants associated with a Laplacian

The next proposition is an important step in the determination of the infinitesimal Kazhdan constant associated with Δ .

Proposition 3.1. For $0 < \vartheta < \pi/2$ and a unit K-eigenvector ξ the spectral measure is $||E(W(\vartheta))\xi||^2 = 2\vartheta/\pi$.

The proof is postponed to Appendix A.

Now it will be investigated how $W(\vartheta)$ behaves under the action of the one parameter group $g_1(t) = \begin{pmatrix} \exp(t/2) & 0 \\ 0 & \exp(-t/2) \end{pmatrix}$. Then $g_1(t)$ acts on $S^2(\mathbf{R}^2)$ with the above basis by with the above basis by

$$\begin{pmatrix} \cosh t & \sinh t & 0 \\ \sinh t & \cosh t & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence

$$g_{1}(t) \cdot S_{1}^{+}(\vartheta) = \left\{ \begin{pmatrix} x \\ x+y \\ ye^{t} \tan \beta \end{pmatrix} : x \in \mathbf{R}, y > 0, -\vartheta < \beta \le \vartheta \right\}$$
$$= S_{1}^{+} \left(\arctan\left(e^{t} \tan \vartheta\right) \right)$$

and

$$g_1(t) \cdot W^{\pm}(\vartheta) = S_1^{\pm} \left(\arctan\left(e^t \tan \vartheta\right) \right) \cap \left(g_1(t) \cdot S_0^{\pm}(2\vartheta) \right).$$

Here

$$g_{1}(t) \cdot S_{0}^{\pm}(\vartheta) = \left\{ \begin{pmatrix} x \cosh t + y \cos \beta \sinh t \\ x \sinh t + y \cos \beta \cosh t \\ y \sin \beta \end{pmatrix} : x \in \mathbf{R}, \pm y > 0, -\vartheta < \beta \le \vartheta \right\}.$$

Since $x \in \mathbf{R}$ is arbitrary, replace x by $\frac{x-y\cos\beta\sinh t}{\cosh t}$. Then the first coordinate becomes x and the second $(x-y\cos\beta\sinh t)\tanh t + y\cos\beta\cosh t = x\tanh t + y$ $\frac{y\cos\beta}{\cosh t}$. So

$$g_{1}(t) \cdot S_{0}^{\pm}(\vartheta) = \left\{ \begin{pmatrix} x \\ x \tanh t + \frac{y \cos \beta}{\cosh t} \\ y \sin \beta \end{pmatrix} : x \in \mathbf{R}, \pm y > 0, -\vartheta < \beta \le \vartheta \right\}$$
$$= S_{\tanh t}^{\pm} \left(\arctan\left(\cosh t \tan \vartheta\right) \right).$$

The next proposition determines a ϑ_t dependent of t and ϑ such that $W(\vartheta_t)$ is contained in $g_1(t) \cdot W(\vartheta)$ giving in the corollary below a lower bound for the spectral measure of $W(\vartheta_t)$ as an immediate consequence.

Proposition 3.2. For $0 < \vartheta < \pi/2$ and t > 0 holds $g_1(t) \cdot W(\vartheta) \supseteq W(\arctan(e^t \tan \vartheta))$.

The proof is postponed to Appendix B.

Corollary 3.3. For $0 < \vartheta < \pi/2$ and t > 0,

$$\left|E\left(g_{1}\left(t\right)\cdot W\left(\vartheta\right)\right)\xi\right\|^{2} \geq \frac{2}{\pi}\arctan\left(e^{t}\tan\vartheta\right).$$

The purpose of all this is to obtain an estimate of $||d\pi(Y_1)\xi||$, where $Y_1 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, for a smooth SO(2)-finite unit vector ξ . Observe that $g_1(t) = \exp(tY_1)$.

Proposition 3.4. Let π be a representation of $SL(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, then

$$\left\| d\pi \left(Y_1 \right) \xi \right\| \ge \frac{1}{2\sqrt{2\pi}} \frac{\sin \left(2\vartheta \right)}{\sqrt{\vartheta}}$$

for every smooth SO (2)-eigenvector ξ with $\|\xi\| = 1$.

Proof. For ξ smooth of norm 1:

$$\|E(g_1(t) \cdot W(\vartheta))\xi\| = \|\pi(g_1(t)) E(W(\vartheta))\pi(g_1(-t))\xi\|$$

= $\|E(W(\vartheta))\pi(g_1(-t))\xi\|.$

Differentiating at t = 0 yields

$$\frac{d}{dt} \left\| E\left(g_{1}\left(t\right) \cdot W\left(\vartheta\right)\right) \xi \right\|^{2} \right|_{t=0}$$

$$= \left. \frac{d}{dt} \left\| E\left(W\left(\vartheta\right)\right) \pi\left(g_{1}\left(-t\right)\right) \xi \right\|^{2} \right|_{t=0}$$

$$= -\left\langle d\pi\left(Y_{1}\right) \xi, E\left(W\left(\vartheta\right)\right) \xi \right\rangle - \left\langle E\left(W\left(\vartheta\right)\right) \xi, d\pi\left(Y_{1}\right) \xi \right\rangle.$$

If f is a real function differentiable at 0 with f(0) = 0 and $f(x) \ge 0$ for $x \ge 0$, then $f'(0) \ge 0$. Together with Corollary 3.3 this implies

$$\frac{d}{dt} \left\| E\left(g_{1}\left(t\right) \cdot W\left(\vartheta\right)\right) \xi \right\|^{2} \right\|_{t=0}$$

$$\geq \frac{2}{\pi} \frac{d}{dt} \arctan\left(e^{t} \tan \vartheta\right) \Big|_{t=0} = \frac{2}{\pi} \frac{1}{1 + (\tan \vartheta)^{2}} \tan \vartheta$$

$$= \frac{2}{\pi} (\cos \vartheta)^{2} \tan \vartheta = \frac{2}{\pi} \cos \vartheta \sin \vartheta = \frac{1}{\pi} \sin\left(2\vartheta\right).$$

Hence

$$2 \|d\pi (Y_1)\xi\| \sqrt{\frac{2\vartheta}{\pi}} \geq -\langle d\pi (Y_1)\xi, E(W(\vartheta))\xi \rangle - \langle E(W(\vartheta))\xi, d\pi (Y_1)\xi \rangle$$
$$= \frac{d}{dt} \|E(g_1(t) \cdot W(\vartheta))\xi\|^2\Big|_{t=0}$$
$$\geq \frac{1}{\pi} \sin (2\vartheta)$$

and

$$\|d\pi(Y_1)\xi\| \ge \frac{1}{2\sqrt{2\pi}} \frac{\sin(2\vartheta)}{\sqrt{\vartheta}}$$

for every smooth K-eigenvector ξ of norm 1.

For $Y_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, conjugate to Y_1 , the same equality holds. Together with $Y_0 = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, the three elements Y_0, Y_1, Y_2 form a basis of the Lie algebra of SL (2, **R**) orthogonal with respect to the Killing form. The corresponding Casimir operator is $C = \frac{1}{2} (Y_1^2 + Y_2^2 - Y_0^2)$ and the corresponding Laplacian is $\Delta = -Y_1^2 - Y_2^2 - Y_0^2 = -2C - 2Y_0^2$.

Theorem 3.5. Let π be a representation of SL $(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, then

$$\langle d\pi \left(\Delta \right) \eta, \eta \rangle \geq \frac{1}{4\pi} \sup_{0 < \vartheta < \pi/2} \frac{\left(\sin \left(2\vartheta \right) \right)^2}{\vartheta}$$

for every smooth SO (2)-finite unit vector η .

Proof. Let $\eta = \sum_{k=1}^{r} \xi_k$ be the orthogonal decomposition of η into $d\pi(Y_0)$ eigenvectors, then the observation that C commutes with Y_0 implies

$$\langle d\pi (\Delta) \eta, \eta \rangle$$

$$= \langle d\pi (-2Y_0^2) \eta, \eta \rangle + \langle d\pi (-2C) \eta, \eta \rangle$$

$$= \sum_{k=1}^r \langle d\pi (-2Y_0^2) \xi_k, \xi_k \rangle + \langle d\pi (-2C) \xi_k, \xi_k \rangle = \sum_{k=1}^r \langle d\pi (\Delta) \xi_k, \xi_k \rangle$$

$$\geq \sum_{k=1}^r 2 \left(\frac{1}{2\sqrt{2\pi}} \frac{\sin(2\vartheta)}{\sqrt{\vartheta}} \right)^2 \|\xi_k\|^2 = \frac{1}{4\pi} \frac{\sin^2(2\vartheta)}{\vartheta} \|\eta\|^2.$$

The following basis of the Lie algebra $\operatorname{sp}(2, \mathbf{R})$ will be considered which contains elements corresponding to Y_1 and Y_2 . The Lie algebra $\operatorname{sp}(2, \mathbf{R})$ admits a Cartan decomposition into $\operatorname{sp}(2, \mathbf{R}) = k \oplus p$ where $k = \operatorname{so}(4, \mathbf{R}) \cap \operatorname{sp}(2, \mathbf{R})$ and $p = S^2(\mathbf{R}^2) \cap \operatorname{sp}(2, \mathbf{R})$. With

$$X_{0} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, X_{1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$X_{2} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}, X_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

140

and

$$\begin{aligned} X_4 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, X_5 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \\ X_6 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, X_7 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \\ X_8 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, X_9 &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

the Casimir operator satisfies

$$C = 2\left(X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2 + X_6^2 - \left(X_7^2 + X_8^2 + X_9^2 + X_0^2\right)\right).$$

The elements X_0, X_7, X_8, X_9 form a basis of k and $X_1, X_2, X_3, X_4, X_5, X_6$ form a basis of p. Let η be a smooth Sp $(2, \mathbf{R}) \cap$ SO (4)-finite unit vector, then

$$\langle d\pi (\Delta) \eta, \eta \rangle \ge \langle d\pi (\Delta_1) \eta, \eta \rangle,$$

with $\Delta_1 = -X_0^2 - X_1^2 - X_2^2 = -2X_0^2 - 2C_1$ where $C_1 = \frac{1}{2}(-X_0^2 + X_1^2 + X_2^2)$ is the Casimir operator of a Lie subalgebra isomorphic to $\operatorname{sl}(2, \mathbf{R})$. By Theorem 3.5 this shows that $\langle d\pi (\Delta) \eta, \eta \rangle \geq (4\pi)^{-1} (\sin (2\vartheta))^2 / \vartheta$ for every smooth Sp $(2, \mathbf{R}) \cap$ SO (4)-finite unit vector η of a representation π without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors.

To conclude the proof of Theorem 1.2 let π be a representation of Sp (2, **R**) without nonzero invariant vector. If the restriction to $S^2(\mathbf{R}^2)$ would have a nonzero invariant vector this would imply the contradiction that Sp (2, **R**) would have a nonzero invariant vector by an argument similar to the one for SL (2, **R**) in [10, page 88]. For more details see also the proof of Theorem 4.3. In the notation used there a nonzero $S^2(\mathbf{R}^2)$ -invariant vector would imply a nonzero vector invariant under $G_{1,1}$, $G_{1,2}$, and $G_{2,2}$ (see next section). But these three subgroups together generate Sp (2, **R**).

By Theorem 3.5 now only the maximum of the function $\vartheta \mapsto (\sin (2\vartheta))^2 / \vartheta$ has to be considered which is obtained at approximately $\vartheta \approx 0.582781$ so

$$\frac{1}{4\pi} \sup_{0 < \vartheta < \pi/2} \frac{\left(\sin\left(2\vartheta\right)\right)^2}{\vartheta} \approx 0.115325 > 0.11532.$$

4. Vanishing of matrix coefficients

In this section the qualitative behavior of the matrix coefficients of $\text{Sp}(n, \mathbf{R})$ will be analyzed in an elementary manner. The case $\text{SL}(n, \mathbf{R})$ was done in [7].

The following notion will be used.

Let X be a Hausdorff topological space. A complex valued function f is said to vanish at infinity if for every $\varepsilon > 0$ there exists a compact set $C \subset X$ such that $|f(x)| < \varepsilon$ for all $x \in X \setminus C$.

A sequence goes to ∞ in X if it has no limit point in X. If X is second countable a complex valued function f vanishes at ∞ if $\lim_{m\to\infty} f(x) = 0$ for every sequence $(x_m)_{m\in\mathbb{N}}$ in X going to ∞ . This will be used for $\operatorname{Sp}(n, \mathbb{R})$.

The following is easily deduced from the fact that $\operatorname{Sp}(n, \mathbf{R}) = KA^{+}K$ and $\pi(K)$ is compact.

Lemma 4.1. Let π be a representation of Sp (n, \mathbf{R}) on H_{π} such that the matrix coefficients do not vanish at infinity; then there are $\xi, \eta \in H_{\pi}$ and a sequence $(g_m)_{m \in \mathbf{N}}$ with $g_m \in A^+$ and $g_m \to \infty$ such that $(\langle \pi(g_m)\xi, \eta \rangle)_{m \in \mathbf{N}}$ does not converge to 0.

The subgroup

$$N_1 = \left\{ \begin{pmatrix} 1 & 0 & x & y^T \\ 0 & I & y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & I \end{pmatrix} : x \in \mathbf{R}, y \in \mathbf{R}^{n-1} \right\}$$

of Sp (n, \mathbf{R}) will be important. The following proposition shows that a representation of Sp (n, \mathbf{R}) which has a matrix coefficient that does not vanish at ∞ has in fact a nonzero vector which is N_1 -invariant. The next theorem will show this vector is in fact invariant by proving that some specific subgroups generate Sp (n, \mathbf{R}) .

Proposition 4.2. Let π be a strongly continuous unitary representation of $\operatorname{Sp}(n, \mathbf{R})$ on H_{π} and suppose that a matrix coefficient of π does not vanish at ∞ , then there is a nonzero N_1 -invariant vector.

Proof. By Lemma 4.1 there is a sequence $(g_m)_{m \in \mathbf{N}}$ which goes to infinity with $g_m \in A^+$ and a $\xi \in H_{\pi}$ such that the sequence $(\pi (g_m) \xi)_{m \in \mathbf{N}}$ does not converge weakly to 0. After passing to a subsequence it can be assumed that $(\pi (g_m) \xi)_{m \in \mathbf{N}}$ converges in the weak topology to $\eta \neq 0$ since $\pi (g_m)$ is unitary and the unit ball is compact in the weak topology.

Let
$$g_m = \begin{pmatrix} a_m & 0 \\ 0 & a_m^{-1} \end{pmatrix}$$
 with
 $a_m = \operatorname{diag}(a_{m,1}, \dots, a_{m,n}), a_{m,1} \ge \dots \ge a_{m,n} \ge 1.$

As $a_m \to \infty$, we have $a_{m,1}^{-1} \to 0$. The elements $g_m^{-1}hg_m$ converge to the identity I_n for $m \to \infty$ and $h \in N_1$ as

$$\left(\begin{array}{cc}a^{-1} & 0\\0 & a\end{array}\right)\left(\begin{array}{cc}I_n & b\\0 & I_n\end{array}\right)\left(\begin{array}{cc}a & 0\\0 & a^{-1}\end{array}\right) = \left(\begin{array}{cc}I_n & a^{-1}ba^{-1}\\0 & I_n\end{array}\right)$$

with a diagonal and $b \in S^2(\mathbf{R}^n)$,

$$\begin{pmatrix} a_{m,1}^{-1} & 0\\ 0 & d_m^{-1} \end{pmatrix} \begin{pmatrix} x & y^T\\ y & 0 \end{pmatrix} \begin{pmatrix} a_{m,1}^{-1} & 0\\ 0 & d_m^{-1} \end{pmatrix} = \begin{pmatrix} a_{m,1}^{-2}x & a_{m,1}^{-1}y^Td_m^{-1}\\ a_{m,1}^{-1}d_m^{-1}y & 0 \end{pmatrix}$$

with $d_m = \text{diag}(a_{m,2}, \ldots, a_{m,n})$ and so $a_{m,1}^{-2}x \to 0$ and $a_{m,1}^{-1}d_m^{-1}y \to 0$ because $a_{m,j} \ge 1$ for all j.

Next it is proven that $\eta \in H_{\pi}$ is N_1 -invariant. Let $h \in N_1$ with $h = \begin{pmatrix} I & b \\ 0 & I \end{pmatrix}$, then

$$\begin{aligned} |\langle \pi (h) \eta - \eta, \zeta \rangle| &= \lim_{m \to \infty} |\langle \pi (h) \pi (g_m) \xi - \pi (g_m) \xi, \zeta \rangle| \\ &= \lim_{m \to \infty} |\langle \pi (g_m) \left(\pi \left(g_m^{-1} h g_m \right) \xi - \xi \right), \zeta \rangle| \\ &\leq \lim_{m \to \infty} \left\| \pi (g_m) \left(\pi \left(g_m^{-1} h g_m \right) \xi - \xi \right) \right\| \|\zeta\| \\ &= \lim_{m \to \infty} \left\| \pi \left(g_m^{-1} h g_m \right) \xi - \xi \right\| \|\zeta\| = 0 \end{aligned}$$

for all $\zeta \in H_{\pi}$ because of the strong continuity of π . So $\pi(h)\eta = \eta$.

With the help of the last proposition the following yields an elementary proof that the matrix coefficients of $Sp(n, \mathbf{R})$ vanish at infinity.

Let $E_{j,k} \in \mathbf{R}^{n \times n}$ be the matrix which is zero in every entry except for the one at (j,k) which is 1. Let $\rho_{j,k} : \mathrm{SL}(2,\mathbf{R}) \to \mathrm{Sp}(n,\mathbf{R})$ be the homomorphisms

$$\rho_{j,k} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} I_n + (a-1)(E_{j,j} + E_{k,k}) & b(E_{j,k} + E_{k,j}) \\ c(E_{j,k} + E_{k,j}) & I_n + (d-1)(E_{j,j} + E_{k,k}) \end{pmatrix}$$

for $j, k = 1, ..., n, \ j \neq k$,

$$\rho_{k,k} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} I_n + (a-1) E_{k,k} & b E_{k,k} \\ c E_{k,k} & I_n + (d-1) E_{k,k} \end{array} \right)$$

for k = 1, ..., n, and $\tilde{\rho}_{j,k} : \mathrm{SL}(2, \mathbf{R}) \to \mathrm{SL}(n, \mathbf{R})$ the homomorphisms

$$\tilde{\rho}_{j,k} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = I_n + (a-1) E_{j,j} + bE_{j,k} + cE_{k,j} + (d-1) E_{k,k}$$

for j, k = 1, ..., n. Let

$$G_{j,k} = \rho_{j,k} \left(\operatorname{SL} \left(2, \mathbf{R} \right) \right),$$

$$\tilde{G}_{j,k} = \left\{ \begin{pmatrix} \tilde{\rho}_{j,k} \left(g \right) & 0 \\ 0 & \left(\tilde{\rho}_{j,k} \left(g \right)^T \right)^{-1} \end{pmatrix} : g \in \operatorname{SL} \left(2, \mathbf{R} \right) \right\}$$

for j, k = 1, ..., n be the corresponding subgroups.

The first proof of the following was given in [6].

Theorem 4.3. Let π be a unitary representation of $\text{Sp}(n, \mathbf{R})$ which does not contain the trivial representation, then the matrix coefficients of π vanish at infinity.

Proof. Assume by contradiction that at least one coefficient of π does not vanish at infinity.

For n = 1 a vector which is N_1 -invariant is also invariant for $\text{Sp}(n, \mathbf{R}) = \text{SL}(2, \mathbf{R})$, see for example [10, page 88].

Now suppose $n \ge 2$, then by Lemma 4.2 there is an N_1 -invariant ξ . The case n = 1 implies that this vector is also $G_{1,k}$ -invariant for $k = 1, \ldots, n$. Let G be the subgroup of $\operatorname{Sp}(n, \mathbf{R})$ generated by these subgroups. It will be shown that $G = \operatorname{Sp}(n, \mathbf{R})$.

Let

$$\omega = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \omega_{j,k} = \rho_{j,k}(\omega), \tilde{\omega}_{j,k} = \tilde{\rho}_{j,k}(\omega)$$

for $j, k = 1, \ldots, n$. Then $\omega_{1,k}\rho_{1,1}(g) \omega_{1,k}^{-1} = \left(\rho_{k,k}(g)^T\right)^{-1}$ for $k = 2, \ldots, n$. This implies $G_{k,k} \subset G$. Since $\omega_{1,1}\rho_{1,k}(g) \omega_{1,1}^{-1} = \left(\tilde{\rho}_{1,k}(g)^T\right)^{-1}$ for $k = 2, \ldots, n$, we have $\tilde{G}_{1,k} \subset G$. Also $\tilde{\omega}_{1,j}\tilde{\rho}_{1,k}(g) \tilde{\omega}_{1,j}^{-1} = \tilde{\rho}_{j,k}(g)$ for $j, k = 2, \ldots, n, j \neq k$ which gives $\tilde{G}_{j,k} \subset G$. Finally $\tilde{\omega}_{1,j}\rho_{1,k}(g) \tilde{\omega}_{1,j}^{-1} = \rho_{j,k}(g)$ for $j, k = 2, \ldots, n, j \neq k$ and $G_{j,k} \subset G$.

This implies $G = \text{Sp}(n, \mathbf{R})$, see [8, Section 6.9]. So ξ is G-invariant.

5. An estimate for the decay of the matrix coefficients

Before studying the decay of the matrix coefficients of Sp (n, \mathbf{R}) the matrix coefficients of the semi-direct product SL $(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ are considered. A set in the unitary dual $\widehat{S^2(\mathbf{R}^2)}$ of the additive group of $S^2(\mathbf{R}^2)$ will help to determine an estimate for the matrix coefficients of the representations of SL $(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors.

Theorem 5.1. Let π be a representation of SL $(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ on H_{π} without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, then

$$\left|\varphi_{\xi,\eta}\left(g_{0}\left(\alpha\right)g_{1}\left(t\right)g_{0}\left(\beta\right)\right)\right| = \left|\left\langle\pi\left(g_{0}\left(\alpha\right)g_{1}\left(t\right)g_{0}\left(\beta\right)\right)\xi,\eta\right\rangle\right| \le c_{\xi,\eta}e^{-t/2}$$

for $\xi, \eta \in H_{\pi,K}$ and $c_{\xi,\eta}$ is a constant depending only on ξ and η .

Proof. Let $\Phi : \mathbf{R}^3 \to \widehat{S^2(\mathbf{R}^2)}$ be the isomorphism

$$\left(\Phi\left(x,y,z\right)\right)\left(u\right) = \exp\left(i\operatorname{tr}\left(\left(\begin{array}{cc}x+z & y\\ y & z\end{array}\right)u\right)\right)$$

for $u \in S^2(\mathbf{R}^2)$. We identify \mathbf{R}^3 with $\widehat{S^2(\mathbf{R}^2)}$ via Φ . Let s > 1 and

$$X_s = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : s^{-2} < y^2 + z^2 < s^2 \right\},$$

then $\bigcup_{s>1} X_s = \mathbf{R}^3 \setminus \{0\}$. As π has no nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, $E(X_s) \eta$ converges to η for $\eta \in H_{\pi}$ where E is the spectral measure associated to $\pi|_{S^2(\mathbf{R}^2)}$. So it is enough to prove the statement for eigenvectors $\xi, \eta \in E(X_s) H_{\pi}$ of $\pi(K)$ as the matrix coefficients are sesquilinear in ξ and η .

Let $t > 2 \ln s$, then

$$\varphi_{\xi,\eta}(g_1(t)) = \langle \pi(g_1(t))\xi,\eta \rangle = \langle \pi(g_1(t))E(X_s)\xi, E(X_s)\eta \rangle$$

= $\langle E(g_1(t) \cdot X_s)\pi(g_1(t))\xi, E(X_s)\eta \rangle$
= $\langle \pi(g_1(t))\xi, E((g_1(t) \cdot X_s) \cap X_s)\eta \rangle$.

By the Cauchy–Schwarz inequality:

$$|\varphi_{\xi,\eta}(g_1(t))| \le ||\xi|| ||E((g_1(t) \cdot X_s) \cap X_s)\eta||.$$

The one-parameter subgroup generated by $g_1(t)$ operates in the following way on \mathbf{R}^3 . Then

$$g_{1}(-t)\begin{pmatrix} x+z & y\\ y & z \end{pmatrix}g_{1}(-t) = \begin{pmatrix} e^{-t}(x+z) & y\\ y & e^{t}z \end{pmatrix}$$
$$= \begin{pmatrix} e^{-t}x - 2z\sinh t + e^{t}z & y\\ y & e^{t}z \end{pmatrix}$$

so by the isomorphism Φ

$$g_1(t) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} e^{-t}x - 2z\sinh t \\ y \\ e^tz \end{pmatrix}$$

Hence

$$g_1(t) \cdot X_s = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : s^{-2} < y^2 + e^{-2t}z^2 < s^2 \right\} \subset \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : |z| < e^t s \right\}.$$

As

$$(g_1(t) \cdot X_s) \cap X_s \subset \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : y^2 + z^2 > s^{-2}, |z| < e^t s \right\}$$

we have $|z| \left(\sqrt{y^2 + z^2}\right)^{-1} < e^t s (s^{-1})^{-1} = e^t s^2$. Now $z = r \cos \beta$ with $r = \sqrt{y^2 + z^2}$ where $|\cos \beta| < e^t s^2$. Let $\vartheta = \arccos(e^t s^2)$, then $-\pi < \beta < \pi$ if and only if $-\pi < \beta < -\vartheta$ or $\vartheta < \beta < \pi$. By definition of $S_h(\vartheta)$ and $W(\vartheta)$, cf. Section 3,

$$\begin{aligned} |\varphi_{\xi,\eta}\left(g_{1}\left(t\right)\right)| &\leq \sqrt{1 - \left\|E\left(S_{1}\left(\vartheta\right)\right)\xi\right\|^{2}} \leq \sqrt{1 - \left\|E\left(W\left(\vartheta\right)\right)\xi\right\|^{2}} \\ &= \sqrt{1 - \frac{2}{\pi}\arccos\left(e^{-t}s^{2}\right)} = \sqrt{\frac{2}{\pi}\arcsin\left(e^{-t}s^{2}\right)} \\ &\leq se^{-t/2}. \end{aligned}$$

Finally for $t \leq 2 \ln s$, $|\varphi_{\xi,\eta}(g_1(t))| \leq 1 \leq se^{-t/2}$ holds.

145

There is an estimate for the matrix coefficients of the regular representation of SL $(2, \mathbf{R})$ which depends on the Harish-Chandra Ξ function, cf. for example [7, page 217]. For $t \in \mathbf{R}$:

$$\Xi(g_1(t)) = (2\pi)^{-1} e^{-t/2} \int_0^{2\pi} \left| e^{-2t} (\cos \vartheta)^2 + (\sin \vartheta)^2 \right|^{-1/2} d\vartheta.$$

Theorem 5.2. Let π be a representation of SL $(2, \mathbf{R}) \ltimes S^2(\mathbf{R}^2)$ without nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, then for the matrix coefficient of any two vectors $\xi, \eta \in H_{\pi}$ there is the pointwise estimate

 $\left|\varphi_{\xi,\eta}\left(g_{1}\left(t\right)\right)\right| \leq \left\|\xi\right\| \left\|\eta\right\| \sqrt{\dim\left\langle\pi\left(K\right)\xi\right\rangle \dim\left\langle\pi\left(K\right)\eta\right\rangle}\Xi\left(g_{1}\left(t\right)\right),$

where $\langle \pi(K) \xi \rangle$ is the subspace spanned by the orbit $\pi(K) \xi$.

The proof can be copied word by word form [7, page 226] replacing the corresponding statement by Theorem 5.1.

Hence it is possible to prove Theorem 1.3, which describes the asymptotics of matrix coefficients of $\text{Sp}(n, \mathbf{R})$.

Proof of Theorem 1.3. Consider the subgroups

$$\tilde{G}_{1,2} = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & a^{T-1} & 0 \\ 0 & 0 & 0 & I \end{pmatrix} : a \in \operatorname{SL}(2, \mathbf{R}) \right\},\$$

$$P_{1,2} = \left\{ \begin{pmatrix} a & 0 & b & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & a^{T-1} & 0 \\ 0 & 0 & 0 & I \end{pmatrix} : a \in \operatorname{SL}(2, \mathbf{R}), ab^{T} = ba^{T} \right\},\$$

isomorphic to $SL(2, \mathbf{R})$ and $SL(2, \mathbf{R}) \ltimes S^{2}(\mathbf{R}^{2})$ respectively.

Let π be a representation of Sp (n, \mathbf{R}) without nonzero invariant vectors, then the representation $\pi_{1,2} = \pi|_{P_{1,2}}$ also has no nonzero $S^2(\mathbf{R}^2)$ -invariant vectors, as the matrix coefficients of π and hence the ones of $\pi_{1,2}$ vanish at ∞ , as shown in Theorem 4.3.

To $\tilde{G}_{1,2} \subset \text{Sp}(n, \mathbf{R})$ the estimate of Theorem 5.2 is applied. Let

$$K_{1,2} = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & I \end{pmatrix} : a \in \mathrm{SO}\left(2, \mathbf{R}\right) \right\}$$

be a maximal compact subgroup of $\tilde{G}_{1,2}$.

Let
$$\omega = \begin{pmatrix} I - E_{2,2} & -E_{2,2} \\ E_{2,2} & I - E_{2,2} \end{pmatrix} \in K$$
, then
 $\omega g \omega^{-1} = \operatorname{diag} \left(a_1, a_2^{-1}, a_3, \dots, a_n, a_1^{-1}, a_2, a_3^{-1}, \dots, a_n^{-1} \right).$

Now

$$\begin{pmatrix} \sqrt{a_1 a_2} & 0\\ 0 & \sqrt{a_1 a_2}^{-1} \end{pmatrix} \begin{pmatrix} \sqrt{a_1/a_2} & 0\\ 0 & \sqrt{a_1/a_2} \end{pmatrix} = \begin{pmatrix} a_1 & 0\\ 0 & a_2^{-1} \end{pmatrix}.$$

Let

$$\tilde{g} = \operatorname{diag} \left(\sqrt{a_1 a_2}, \sqrt{a_1 a_2}^{-1}, 1, \dots, 1, \sqrt{a_1 a_2}^{-1}, \sqrt{a_1 a_2}, 1, \dots, 1 \right), h = \operatorname{diag} \left(\sqrt{a_1 / a_2}, \sqrt{a_1 / a_2}, a_3, \dots, a_n, \sqrt{a_2 / a_1}, \sqrt{a_2 / a_1}, a_3^{-1}, \dots, a_n^{-1} \right),$$

then

$$\begin{aligned} |\varphi_{\xi,\eta}(g)| &= |\langle \pi(g)\,\xi,\eta\rangle| = |\langle \pi(\tilde{g})\,\pi(h\omega)\,\xi,\pi(\omega)\,\eta\rangle| \\ &\leq \|\xi\|\,\|\eta\|\,\sqrt{\delta\,(\xi)\,\delta\,(\eta)}\Xi\left(\begin{array}{cc}\sqrt{a_1a_2} & 0\\ 0 & \sqrt{a_1a_2}^{-1}\end{array}\right) \end{aligned}$$

by Theorem 5.2, as π is unitary,

$$\dim \langle \pi (K_{1,2}) \pi (h\omega) \xi \rangle = \dim \langle \pi (h) \pi (K_{1,2}) \pi (\omega) \xi \rangle$$
$$= \dim \langle \pi (K_{1,2}) \pi (\omega) \xi \rangle,$$

and $K_{1,2}\omega \subset K$.

6. Kazhdan pairs

For $g \in \text{Sp}(n, \mathbf{R})$ there are $k_1, k_2 \in K$ and

$$h = \text{diag}\left(a_1, a_2, \dots, a_n, a_1^{-1}, a_2^{-1}, \dots, a_n^{-1}\right) \in A^+$$

such that $g = k_1 h k_2$. This implies

$$\begin{aligned} |\varphi_{\xi,\eta}(g)| &= \left| \left\langle \pi\left(h\right) \pi\left(k_{2}\right) \xi, \pi\left(k_{1}\right)^{-1} \eta \right\rangle \right| \\ &\leq \left\| \xi \right\| \left\| \eta \right\| \sqrt{\delta\left(\xi\right) \delta\left(\eta\right)} \Xi\left(g_{1}\left(\ln\left(a_{1}a_{2}\right)\right)\right). \end{aligned}$$

Let Ψ be defined by $\Psi(g) = \Xi(g_1(\ln(a_1a_2))).$

Theorem 6.1. Let $0 < \varepsilon < 1$ and $\delta = \left(4\sin\left(\frac{\arcsin\varepsilon}{2}\right) + \varepsilon\right)^2/2 < 1$, then $\left(\Psi^{-1}\left(\left[1-\delta,1\right]\right),\varepsilon\right)$ is a Kazhdan pair of $\operatorname{Sp}(n,\mathbf{R})$.

The proof can again be copied word by word from [7, page 230–231] replacing SL (n, \mathbf{R}) by Sp (n, \mathbf{R}) , δ by $1 - \delta$, and the corresponding statement by Theorem 5.2.

For given δ the ε in the last theorem can be estimated. We can now prove Theorem 1.4.

Proof of Theorem 1.4. Let at first $0 < \varepsilon < 1$ be arbitrary. The Taylor expansion of $x \mapsto \sqrt{1+x}$ at 0 shows

$$4\sin\left(\left(\arcsin\varepsilon\right)/2\right) = 2\sqrt{2}\sqrt{1-\sqrt{1-\varepsilon^2}}$$
$$\geq 2\sqrt{2}\sqrt{1-(1-\varepsilon^2/2)} = 2\varepsilon$$

for $0 < \varepsilon < 1$, hence $4\sin((\arcsin \varepsilon)/2) + \varepsilon \ge 3\varepsilon \ge \sqrt{2}$ for $\varepsilon \ge \sqrt{2}/3$. So $\varepsilon < \sqrt{2}/3$ can be assumed. Again with the above mentioned Taylor expansion we have $\sqrt{1+x} \le 1+x/2$ for $x \ge -1$ and so

$$\sqrt{1+x} = \sqrt{1-\frac{x}{1+x}}^{-1} \ge \left(1-\frac{x}{2+2x}\right)^{-1} = 1+\frac{x}{2+x}$$

By letting $x = -\varepsilon^2$ this yields

$$\sqrt{1 - \sqrt{1 - \varepsilon^2}}$$

$$\leq \sqrt{1 - \left(1 - \frac{\varepsilon^2}{2 - \varepsilon^2}\right)} = \frac{\varepsilon}{\sqrt{2}} \sqrt{\frac{1}{1 - \varepsilon^2/2}} = \frac{\varepsilon}{\sqrt{2}} \sqrt{1 + \frac{\varepsilon^2/2}{1 - \varepsilon^2/2}}$$

$$\leq \frac{\varepsilon}{\sqrt{2}} \left(1 + \frac{\varepsilon^2/2}{2 - \varepsilon^2}\right) = \frac{\varepsilon}{\sqrt{2}} \left(1 + \frac{1}{4\varepsilon^{-2} - 2}\right) < \frac{\varepsilon}{\sqrt{2}} \frac{17}{16}$$

for $0 < \varepsilon < \sqrt{2}/3$ and hence $4\sin((\arcsin \varepsilon)/2) + \varepsilon < (17/8 + 1)\varepsilon = (25/8)\varepsilon$. Now let $0 < \varepsilon = (8/25)\sqrt{2\delta} < \sqrt{2}/3$, then $4\sin((\arcsin \varepsilon)/2) + \varepsilon < \sqrt{2\delta}$

and the last theorem shows that (Q, ε) is a Kazhdan pair.

A Proof of Proposition 3.1

The idea is to decompose $W(\vartheta)$ suitably such that it can be rearranged to $S_0(\vartheta)$ using only rotations $g_0(\alpha)$.

The union $W(\vartheta) = W^{-}(\vartheta) \cup W^{+}(\vartheta)$ is disjoint and

$$W(\vartheta) \cap S_0(\vartheta) = \left(W^+(\vartheta) \cap S_0^+(\vartheta)\right) \cup \left(W^-(\vartheta) \cap S_0^-(\vartheta)\right)$$

and

$$W(\vartheta) \setminus S_0(\vartheta) = (W^+(\vartheta) \cup W^-(\vartheta)) \setminus S_0(\vartheta)$$

= $(W^+(\vartheta) \setminus S_0(\vartheta)) \cup (W^-(\vartheta) \setminus S_0(\vartheta))$
= $(W^+(\vartheta) \setminus S_0^+(\vartheta)) \cup (W^-(\vartheta) \setminus S_0^-(\vartheta)).$

Hence $\|E(W(\vartheta))\xi\|^2 = \|E(W(\vartheta) \cap S_0(\vartheta))\xi\|^2 + \|E(W(\vartheta) \setminus S_0(\vartheta))\xi\|^2$,

$$\|E\left(W\left(\vartheta\right)\cap S_{0}\left(\vartheta\right)\right)\xi\|^{2}$$

= $\|E\left(W^{+}\left(\vartheta\right)\cap S_{0}^{+}\left(\vartheta\right)\right)\xi\|^{2} + \|E\left(W^{-}\left(\vartheta\right)\cap S_{0}^{-}\left(\vartheta\right)\right)\xi\|^{2},$

and

$$\|E(W(\vartheta) \setminus S_0(\vartheta))\xi\|^2$$

= $\|E(W^+(\vartheta) \setminus S_0^+(\vartheta))\xi\|^2 + \|E(W^-(\vartheta) \setminus S_0^-(\vartheta))\xi\|^2.$

Then

$$W^{\pm}(\vartheta) \setminus S_{0}^{\pm}(\vartheta) = \left(S_{1}^{\pm}(\vartheta) \cap S_{0}^{\pm}(2\vartheta)\right) \setminus S_{0}^{\pm}(\vartheta)$$
$$= S_{1}^{\pm}(\vartheta) \cap \left(S_{0}^{\pm}(2\vartheta) \setminus S_{0}^{\pm}(\vartheta)\right)$$

where the sign is either everywhere + or everywhere - and

$$S_0^{\pm}(2\vartheta) \setminus S_0^{\pm}(\vartheta) = g_0\left(\frac{3\vartheta}{2}\right) \cdot S_0^{\pm}\left(\frac{\vartheta}{2}\right) \cup g_0\left(-\frac{3\vartheta}{2}\right) \cdot S_0^{\pm}\left(\frac{\vartheta}{2}\right)$$

and the union is again disjoint.

We have

$$S_{0}^{+}(\vartheta) = \left(W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta)\right)$$
$$\cup g_{0}\left(\pi + 2\vartheta\right) \cdot \left(S_{1}^{-}(\vartheta) \cap g_{0}\left(-\frac{3\vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)$$
$$\cup g_{0}\left(\pi - 2\vartheta\right) \cdot \left(S_{1}^{-}(\vartheta) \cap g_{0}\left(\frac{3\vartheta}{2}\right) \cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)$$

where the union is again disjoint. The validity of this equality for $S_0^+(\vartheta)$ can be deduced from the following equalities for the three sets. It can be shown that

$$W^{+}(\vartheta) \cap S_{0}^{+}(\vartheta) = \left\{ \begin{pmatrix} x \\ x+y \\ y\tan\beta \end{pmatrix} : x > 0, y > 0, -\vartheta < \beta \le \vartheta \right\}$$
$$\cup \left\{ \begin{pmatrix} x \\ y \\ y\tan\beta \end{pmatrix} : x \le 0, y > 0, -\vartheta < \beta \le \vartheta \right\},$$

$$g_0 \left(\pi + 2\vartheta \right) \cdot \left(S_1^- \left(\vartheta \right) \cap g_0 \left(-\frac{3\vartheta}{2} \right) \cdot S_0^- \left(\frac{\vartheta}{2} \right) \right)$$
$$= \left\{ \left(\begin{array}{c} x \\ hx + y \\ y \tan \vartheta \end{array} \right) : x > 0, 0 \le h < 1, y > 0 \right\}$$

and

$$g_0 \left(\pi - 2\vartheta \right) \cdot \left(S_1^- \left(\vartheta \right) \cap g_0 \left(\frac{3\vartheta}{2} \right) \cdot S_0^- \left(\frac{\vartheta}{2} \right) \right)$$
$$= \left\{ \left(\begin{array}{c} x \\ hx + y \\ -y \tan \vartheta \end{array} \right) : x > 0, 0 < h \le 1, y > 0 \right\}.$$

An analogous statement holds for $S_0^-(\vartheta)$.

Now $W(\vartheta)$ will be decomposed accordingly and put together again from rotated pieces to $S_0(\vartheta)$. With the above

$$\begin{split} \|E\left(W\left(\vartheta\right)\right)\xi\|^{2} &= \|E\left(W^{+}\left(\vartheta\right)\cap S_{0}^{+}\left(\vartheta\right)\right)\xi\|^{2} \\ &+ \left\|E\left(W^{+}\left(\vartheta\right)\cap g_{0}\left(\frac{3\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &+ \left\|E\left(W^{+}\left(\vartheta\right)\cap g_{0}\left(-\frac{3\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &+ \left\|E\left(W^{-}\left(\vartheta\right)\cap S_{0}^{-}\left(\vartheta\right)\right)\xi\right\|^{2} \\ &+ \left\|E\left(W^{-}\left(\vartheta\right)\cap g_{0}\left(\frac{3\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &+ \left\|E\left(W^{-}\left(\vartheta\right)\cap g_{0}\left(-\frac{3\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \end{split}$$

and by the K-invariance

$$\begin{aligned} \left\| E\left(W^{+}\left(\vartheta\right)\cap g_{0}\left(\frac{3\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &= \left\| E\left(g_{0}\left(\pi-2\vartheta\right)\cdot\left(S_{1}^{+}\left(\vartheta\right)\cap g_{0}\left(\frac{3\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\right)\xi\right\|^{2} \\ &= \left\| E\left(g_{0}\left(\pi-2\vartheta\right)\cdot S_{1}^{+}\left(\vartheta\right)\cap g_{0}\left(-\frac{\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \end{aligned}$$

and analogously

$$\begin{aligned} \left\| E\left(W^{+}\left(\vartheta\right)\cap g_{0}\left(-\frac{3\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &= \left\| E\left(g_{0}\left(\pi+2\vartheta\right)\cdot S_{1}^{+}\left(\vartheta\right)\cap g_{0}\left(\frac{\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2}, \\ &\left\| E\left(W^{-}\left(\vartheta\right)\cap g_{0}\left(\frac{3\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &= \left\| E\left(g_{0}\left(\pi-2\vartheta\right)\cdot S_{1}^{-}\left(\vartheta\right)\cap g_{0}\left(-\frac{\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2}, \\ &\left\| E\left(W^{-}\left(\vartheta\right)\cap g_{0}\left(-\frac{3\vartheta}{2}\right)\cdot S_{0}^{-}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2} \\ &= \left\| E\left(g_{0}\left(\pi+2\vartheta\right)\cdot S_{1}^{-}\left(\vartheta\right)\cap g_{0}\left(\frac{\vartheta}{2}\right)\cdot S_{0}^{+}\left(\frac{\vartheta}{2}\right)\right)\xi\right\|^{2}. \end{aligned}$$

This yields

$$\begin{split} \|E\left(W\left(\vartheta\right)\right)\xi\|^{2} &= \|E\left(S_{0}^{+}\left(\vartheta\right)\right)\xi\|^{2} + \|E\left(S_{0}^{-}\left(\vartheta\right)\right)\xi\|^{2} \\ &= 2\|E\left(S_{0}^{+}\left(\vartheta\right)\right)\xi\|^{2} = \frac{2\vartheta}{\pi}. \end{split}$$

A more detailed proof can be found in [11, page 59–68].

B Proof of Proposition 3.2

It is enough to prove that

$$W^{\pm}(\vartheta) \supseteq g_1(-t) \cdot W^{\pm} \left(\arctan\left(e^t \tan \vartheta\right)\right)$$

where either both signs are + or both -. Therefore it has to be shown that

$$S_{1}^{\pm}(\vartheta) \cap S_{0}^{\pm}(2\vartheta) \supseteq S_{1}^{\pm}(\vartheta) \cap S_{-\tanh t}^{\pm}\left(\arctan\left(\cosh t \tan\left(2\arctan\left(e^{t} \tan \vartheta\right)\right)\right)\right).$$

So let

$$\begin{pmatrix} x\\ x+y\\ y\tan\beta \end{pmatrix} \in S_1^+(\vartheta) \cap S_{-\tanh t}^+\left(\arctan\left(\cosh t \tan\left(2\arctan\left(e^t \tan\vartheta\right)\right)\right)\right)$$

with $x \in \mathbf{R}$, y > 0 and $-\vartheta < \beta \le \vartheta$. Then there is z > 0 and α with

$$-\arctan\left(\cosh t \tan\left(2\arctan\left(e^{t} \tan\vartheta\right)\right)\right)$$

<
$$\alpha \leq \arctan\left(\cosh t \tan\left(2\arctan\left(e^{t} \tan\vartheta\right)\right)\right)$$

such that $x + y = -x \tanh t + z$ and $y \tan \beta = z \tan \alpha$. If $x \ge 0$, then x + y > 0, since y > 0. Hence $0 < \frac{y \tan \beta}{x+y} \le \tan \beta \le \tan \vartheta$ for $0 < \beta \le \vartheta$ and $0 \ge \frac{y \tan \beta}{x+y} \ge \tan \beta > -\tan \vartheta$ for $-\vartheta < \beta \le 0$. So $\begin{pmatrix} x \\ x+y \\ y \tan \beta \end{pmatrix} \in S_0^+(2\vartheta)$. If x < 0, then $x + y = -x \tanh t + z > 0$. If $0 < \beta \le \vartheta$ and $y \ge -2x (\cos \vartheta)^2$, then

$$0 < \frac{y \tan \beta}{x + y} = \left(1 + \frac{-x}{x + y}\right) \tan \beta$$

$$\leq \left(1 + \frac{1}{-1 + 2(\cos \vartheta)^2}\right) \tan \beta = \frac{2(\cos \vartheta)^2}{\cos(2\vartheta)} \tan \beta$$

$$\leq \frac{2(\cos \vartheta)^2}{\cos(2\vartheta)} \tan \vartheta = \tan(2\vartheta).$$

If $-\vartheta < \beta \leq 0$, holds analogously

$$0 \geq \frac{y \tan \beta}{x+y} = \left(1 + \frac{-x}{x+y}\right) \tan \beta$$

$$\geq \left(1 + \frac{1}{-1+2(\cos \vartheta)^2}\right) \tan \beta = \frac{2(\cos \vartheta)^2}{\cos(2\vartheta)} \tan \beta$$

$$> -\frac{2(\cos \vartheta)^2}{\cos(2\vartheta)} \tan \vartheta = -\tan(2\vartheta).$$

For
$$z \leq -x \frac{\tanh t}{\cosh t \tan(2 \arctan(e^t \tan \vartheta)) - \tan(2\vartheta)} \tan(2\vartheta)$$
 and

$$0 < \alpha \le \arctan\left(\cosh t \tan\left(2 \arctan\left(e^t \tan\vartheta\right)\right)\right)$$

holds

$$0 < \frac{z \tan \alpha}{-x \tanh t + z} = \left(1 - \frac{-x \tanh t}{-x \tanh t + z}\right) \tan \alpha$$

$$\leq \left(1 - \frac{1}{1 + \frac{1}{\cosh t \tan(2 \arctan(e^t \tan \vartheta)) - \tan(2\vartheta)}} \tan(2\vartheta)\right) \tan \alpha$$

$$= \frac{\tan(2\vartheta)}{\cosh t \tan(2 \arctan(e^t \tan \vartheta))} \tan \alpha \leq \tan(2\vartheta).$$

For $-\arctan\left(\cosh t \tan\left(2\arctan\left(e^t \tan \vartheta\right)\right)\right) < \alpha \leq 0$ analogously

$$0 \geq \frac{z \tan \alpha}{-x \tanh t + z} = \left(1 - \frac{-x \tanh t}{-x \tanh t + z}\right) \tan \alpha$$

$$\geq \left(1 - \frac{1}{1 + \frac{1}{\cosh t \tan(2 \arctan(e^t \tan \vartheta)) - \tan(2\vartheta)}} \tan(2\vartheta)\right) \tan \alpha$$

$$= \frac{\tan(2\vartheta)}{\cosh t \tan(2 \arctan(e^t \tan \vartheta))} \tan \alpha > -\tan(2\vartheta).$$

But,

$$(\cosh t) \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right) - \tan \left(2\vartheta\right)$$

$$= (\cosh t) \frac{2e^{t} \tan \vartheta}{1 - (e^{t} \tan \vartheta)^{2}} - \tan \left(2\vartheta\right)$$

$$= (\cosh t) \frac{e^{t} \tan \left(2\vartheta\right)}{1 - (e^{t} \tan \vartheta)^{2}} \left(1 - (\tan \vartheta)^{2}\right) - \tan \left(2\vartheta\right)$$

$$= \left((\cosh t) \frac{e^{t}}{1 - (e^{t} \tan \vartheta)^{2}} \left(1 - (\tan \vartheta)^{2}\right) - 1\right) \tan \left(2\vartheta\right)$$

and hence

$$= \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^{t} \tan \vartheta\right)\right) - \tan \left(2\vartheta\right)} \tan \left(2\vartheta\right)$$

$$= \frac{\tanh t}{\left(\cosh t\right) \frac{e^{t}}{1 - \left(e^{t} \tan \vartheta\right)^{2}} \left(1 - \left(\tan \vartheta\right)^{2}\right) - 1}{\left(1 - \left(e^{t} \tan \vartheta\right)^{2}\right) \tanh t}$$

$$= \frac{\left(1 - \left(e^{t} \tan \vartheta\right)^{2}\right) \tanh t}{\left(\cosh t\right) e^{t} \left(1 - \left(\tan \vartheta\right)^{2}\right) - 1 + \left(e^{t} \tan \vartheta\right)^{2}}.$$

Now

$$(\cosh t) e^{t} \left(1 - (\tan \vartheta)^{2}\right) - 1 + \left(e^{t} \tan \vartheta\right)^{2}$$
$$= (\cosh t) e^{t} - 1 + e^{t} (\tan \vartheta)^{2} \left(-(\cosh t) + e^{t}\right)$$
$$= \frac{e^{2t} - 1}{2} + e^{t} (\tan \vartheta)^{2} \frac{e^{t} - e^{-t}}{2}$$
$$= e^{t} \sinh t + e^{t} (\tan \vartheta)^{2} \sinh t = e^{t} \frac{\sinh t}{\cos^{2} \vartheta}.$$

This implies

$$= \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^t \tan \vartheta\right)\right) - \tan \left(2\vartheta\right)} \tan \left(2\vartheta\right)$$
$$= \frac{\left(1 - \left(e^t \tan \vartheta\right)^2\right) \tanh t}{e^t \frac{\sinh t}{\cos^2 \vartheta}} = \frac{\left(1 - \left(e^t \tan \vartheta\right)^2\right) \cos^2 \vartheta}{e^t \cosh t}$$
$$= \frac{e^{-t} \cos^2 \vartheta - e^t \sin^2 \vartheta}{\cosh t}.$$

Since $y \ge -2x(\cos \vartheta)^2$, one has $x + y \ge -x(-1 + 2(\cos \vartheta)^2) = -x\cos(2\vartheta)$ and

$$z \leq -x \frac{\tanh t}{\cosh t \tan \left(2 \arctan \left(e^t \tan \vartheta\right)\right) - \tan \left(2\vartheta\right)} \tan \left(2\vartheta\right)$$
$$= -x \frac{e^{-t} \cos^2 \vartheta - e^t \sin^2 \vartheta}{\cosh t},$$

$$-x \tanh t + z \le -x \left(\tanh t + \frac{e^{-t} \cos^2 \vartheta - e^t \sin^2 \vartheta}{\cosh t} \right).$$

 \mathbf{SO}

Also

$$\begin{aligned} \tanh t + \frac{e^{-t}\cos^2\vartheta - e^t\sin^2\vartheta}{\cosh t} \\ &= \frac{\sinh t + e^{-t}\cos^2\vartheta - e^t\sin^2\vartheta}{\cosh t} \\ &= \frac{(1 - 2\cos^2\vartheta)\sinh t + e^t\cos^2\vartheta - e^t\sin^2\vartheta}{\cosh t} \\ &= \frac{-\cos\left(2\vartheta\right)\sinh t + e^t\cos\left(2\vartheta\right)}{\cosh t} = \frac{\cos\left(2\vartheta\right)\left(-\sinh t + e^t\right)}{\cosh t} \\ &= \cos\left(2\vartheta\right). \end{aligned}$$

So $-x \tanh t + z \leq -x \cos(2\vartheta)$. Hence $\begin{pmatrix} x \\ x+y \\ y \tan \beta \end{pmatrix} = \begin{pmatrix} x \\ -x \tanh t + z \\ z \tan \alpha \end{pmatrix} \in S_0^+(2\vartheta).$

The inclusion $g_1(t) \cdot W^-(\vartheta) \supseteq W^-(\arctan(e^t \tan \vartheta))$ holds analogously. Therefore $g_1(t) \cdot W(\vartheta) \supseteq W(\arctan(e^t \tan \vartheta))$.

References

- Bekka, M. E. B., P.-A. Cherix, and P. Jolissaint, Kazhdan constants associated with a Laplacian on connected Lie groups, Journal of Lie Theory 8 (1998), 95–110.
- Bekka, M. E. B., and M. Mayer, On Kazhdan's property (T) and Kazhdan constants associated to a Laplacian for SL(3,R), Journal of Lie Theory 10 (2000), 93–105.
- [3] Bekka, M. B., and M. Neuhauser, On Kazhdan's property (T) for $Sp_2(k)$, Journal of Lie Theory **12** (2002), 31–39.
- [4] Delaroche, C., and A. Kirillov, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'aprés D. A. Kajdan), in "Séminaire Bourbaki, Vol. 10", Exp. No. 343, 507–528, Soc. Math. France, Paris, 1995.
- [5] de la Harpe, P., and A. Valette, "La propriété (T) de Kazhdan pour les groupes localement compacts"," Volume 175 of Astérisque, Soc. Math. France, 1989.
- [6] Howe, R. E., and C. C. Moore, *Asymptotic properties of unitary representations*, Journal of Functional Analysis **32** (1979), 72–96.
- [7] Howe, R., and E. C. Tan, "Non-Abelian harmonic analysis," Universitext, Springer-Verlag, 1992.
- [8] Jacobson, N., "Basic algebra I," Freeman, 1985.
- [9] Kazhdan, D. A., Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. **1** (1967), 63–65.
- [10] Margulis, G. A., "Discrete subgroups of semisimple Lie groups," Volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Springer-Verlag, 1991.

- [11] Neuhauser, M., "Neue Methoden zur Bestimmung expliziter Schranken von Kazhdan-Konstanten", Dissertation, Technische Universität München, 2001 [tumb1.biblio.tu-muenchen.de/publ/diss/ma/2001/neuhauser.html].
- [12] Valette, A., Old and new about Kazhdan's property (T), in: Baldoni, V. and M. A. Picardello, Editors, "Representations of Lie groups and quantum groups," Volume **311** of Pitman Research Notes in Mathematics Series, 271–333. Longman Scientific & Technical, 1994.
- [13] Vasershtein, L. N., On groups possessing property T, Functional Anal. Appl. **2** (1968), 86.
- [14] Warner, G., "Harmonic analysis on semi-simple Lie groups I", Volume 188 of die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Springer-Verlag, 1972.

M. Neuhauser Technische Universität München Zentrum Mathematik Arcisstr. 21 D-80290 München Germany neuhausm@mathematik.tumuenchen.de Current address: Institut de Mathématiques Université de Neuchâtel Rue Emile Argand 11 CH-2007 Neuchâtel Suisse (Switzerland)

Received October 4, 2001 and in final form January 9, 2002