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Abstract. Under fairly general conditions, we extend the 5-sequence of
cohomology for nilpotent Lie algebras a step further. We then derive some
consequences of the construction.
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1. Introduction

We begin with the following definitions from [2].

Definition 1.1. A pair of Lie algebras (K,M) is a defining pair for L if

1. L ∼= K/M

2. M ⊂ Z(K) ∩K2

Definition 1.2. (K,M) is a maximal defining pair if the dimension of K is
maximal. For these maximal defining pairs, K is called a cover for L and M , is
called the multiplier for L and is denoted M/L .

In her dissertation on the Lie algebra version of the Schur multiplier, Peggy
Batten showed M(L) ∼= H2(L, F ) and extended, under certain conditions, the
5-sequence of cohomology for Lie algebras a step further. In particular, if L is a
Lie algebra over a field F,H is an ideal in L and F is a trivial L-module, the
5-sequence is:

0 −→ Hom (L/H,F )
Inf−→ Hom(L, F )

Res−→

Hom(H,F )
Tra−→ H2 (L/H,F )

Inf−→ H2(L, F )

As is known and is shown in [1], H2(L, F ) is the multiplier of L . When H is central
and L is nilpotent, the exact sequence extends by δ : H2(L, F )→ L/L2⊗H . This
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result has been used in [5] in further investigations of the multiplier. Using group
results [8] as a guide, another possible extension should exist when L is nilpotent
of class n and δ : H2(L, F )→ L/Zn−1 ⊗ Ln where Zj and Lj are the j th terms
in the upper and lower central series of L . Showing that this is the case is one of
the objectives of this paper. In fact, we show a Theorem which contains both of
the results as consequences. We then obtain a number of corollaries which are in
the form of inequalities. Finally, we record an example which shows that several of
the inequalities are the best possible. Further discussions of multipliers are found
in [1], [2], [3], [5] and [7].

2. The Main Result

Theorem 2.1. Let L be a nilpotent Lie algebra over a field F . Let A and B
be ideals of L with L2 ⊆ A and B ⊆ Z(L). If f(A,B) = 0 for all f ∈ Z2(L, F ),
then there exists a homomorphism δ , defined below, such that

H2(L/B, F )
Inf−→ H2(L, F )

δ−→ Bil(L/A,B : F )

is exact.

Proof. Let x ∈ L, y ∈ B and f ′ ∈ Z2(L, F ). Define f
′′ ∈ Bil(L/A,B : F ) by

f
′′
(x+A, y) = f ′(x, y). Since f ′(A,B) = 0, it follows that f

′′
is well defined. Let

δ′ : Z2(L, F )→ Bil(L/A,B : F ) be defined by δ′(f ′) = f
′′
.

If f ′ ∈ B2(L, F ), then there exists a linear function g : L → F such that
f ′(x, y) = −g([x, y]). For y ∈ B , f

′′
(x + A, y) = f ′(x, y) = −g([x, y]) = 0.

Hence, δ′(f ′) = 0. Therefore, δ′ induces δ : H2(L, F ) → Bil(L/A,B : F ) by
δ(f ′ +B2(L, F )) = f

′′
.

We now show exactness. For f ∈ Z2 (L/B, F ), let f ′(x, y) = f(x+ B, y +
B). Recall that Inf:H2 (L/B, F )→ H2(L, F ) is given by Inf(f +B2(L/B, F )) =
f ′ +B2(L, F ) and is induced by I : Z2(L/B, F )→ Z2(L, F ) where I(f) = f ′ .

For x ∈ L, y ∈ B , it follows that f(x+B, y +B) = f ′(x, y) = f ′′(x+A, y)
where f ∈ Z2(L/B, F ) and f ′ and f ′′ are induced. Now δ(Inf(f+B2(L/B, F ))) =
δ(f +B2(L, F )) = 0 with f ′′(x+A, y) = f(x+B, y+B) = 0. Hence, f ′′ = 0 and
Image(Inf) ⊆ Ker(δ).

Now let f ′ ∈ Z2(L, F ) be such that f ′ + B2(L, F ) ∈ Ker(δ). Then
δ(f ′ + B2(L, F )) = f ′′ = 0. Let x ∈ L, y ∈ B . Then 0 = f ′′(x + A, y) = f ′(x, y).
By anti-symmetry, it follows that f ′(y, x) = 0. Set g(x+B, y +B) = f ′(x, y). In
order to see that g is well defined, let x+B = x1 +B and y+B = y1 +B . Then
x1 = x+ b, y1 = y + c for b, c ∈ B . Then

g(x1 +B, y1 +B) = f ′(x1, y1) = f ′(x+ b, y + c) =

f ′(x, y) + f ′(b, y) + f ′(x, c) + f ′(b, c) = f ′(x, y) = g(x+B, y +B).

Hence, g is well defined. Furthermore, g satisfies the cocycle condition since
f ′ does and g(x + B, y + B) = f ′(x, y). Therefore, g ∈ Z2(L/B, F ). By the
definition of I , I(g) = f ′ and, therefore, Inf(g + B2(L/B, F )) = f ′ + B2(L, F ).
Thus, Ker(δ) ⊆ Image(Inf) and the sequence is exact.

Since Bil(L/A,B : F ) ' L/A ⊗ B , the extension can be written as

H2(L, F )
δ−→ L/A⊗B with exactness at H2(L, F ).
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3. Applications

If we let A = L2 and B = Z ⊆ Z(L), then Theorem 2.1 provides an alternate
way to prove Theorem 4.1 on p. 45 in [1].

Proposition 3.1. Let L be nilpotent and Z ⊆ Z(L). Then

H2(L/Z, F )
Inf−→ H2(L, F )

δ−→ L/L2 ⊗Z

is exact.

Proof. All that needs to be verified is that f(L2,Z) = 0 for all f ∈ Z2(L, F ).
But f(L2,Z) = f([L,Z], L) + f([Z, L], L) = 0.

It should be noted that Proposition 3.1 was used to show [5], Proposition 2.

Corollary 3.2. If L is nilpotent, finite dimensional with Z ⊆ Z(L) ∩ L2 and
dimZ = 1, then

dimH2(L, F ) + 1 ≤ dimH2(L/Z, F ) + dim(L/L2)

The next result is an analogue of a theorem of Vermani’s in group theory [8].

Theorem 3.3. Let L be nilpotent of class n. Then

H2(L/Ln, F )
Inf−→ H2(L, F )

δ−→ L/Zn−1 ⊗ Ln

is exact.

Proof. Since Ln ⊆ /Z(L) and L2 ⊆ Zn−1 , it remains to verify the cocycle
condition in Theorem 2.1.

First, note that [Ls,Zi] ⊆ Zi−s . This holds for s = 1 and is shown generally
by induction on s .

To obtain that f(Zs−1, L
s) = 0 for all s , we use induction. For s =

1, f(Z0, L) = 0. Suppose that the result holds for s = k . Now,

f(Zk, Lk+1) = f([L,Lk],Zk)

= f([Lk,Zk], L) + f([Zk, L], Lk)

= f(Z0, L) + f(Zk−1, L
k)

= 0

Therefore, Theorem 3.3 follows from Theorem 2.1.
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Corollary 3.4. Let L be nilpotent of class n and finite dimensional. Then

dimH2(L, F ) ≤ dimH2(L/Ln, F ) + dimLn dim(L/Zn−1)− dimLn .

Proof. Set q = dim Hom(Ln, F ), r = dimH2(L/Ln, F ), s = dimH2(L, F ) and
t = dim(L/Zn−1 ⊗ Ln) where the terms are from the extended 5-sequence:

Hom(L, F )
Res−→ Hom(Ln, F )

Tra−→ H2(L/Ln, F )
Inf−→ H2(L, F )

δ−→ L/Zn−1 ⊗ Ln

Since F n = 0 for all n ≥ 2, for any f ∈ Hom(L, F ), f : Ln → F n = 0. Thus,
Res(f) = 0 = Ker(Tra). Hence, q = dim(Image(Tra)) = dim(Ker(Inf)). Then
r − q = dimH2(L/Ln, F )− dim(Ker(Inf)) = dim(Image(Inf)) ≤ s .

Also, dimH2(L, F )− dim(Ker(δ)) = dim(Image(δ)) ≤ t .

Therefore, s− dim(Ker(δ)) ≤ t . Since r− q = dim(Image(Inf)) = dim(Ker(δ)), it
follows that s− (r − q) ≤ t . Hence,

dimH2(L, F ) ≤ dimH2(L/Ln, F )

+ dim(L/Zn−1 ⊗ Ln)− dim(Hom(Ln, F ))

= dimH2(L/Ln, F ) + dim(L/Zn−1) dimLn − dimLn .

The next corollary is a Lie algebra analogue of a result of Gaschütz,
Neubüser and Yen [4].

Corollary 3.5. Let L be nilpotent and finite dimensional. Then

dimH2(L, F ) ≤ dimH2(L/L2, F ) + dimL2[dimL/Z(L)− dim(L/Z(L))2 − 1] .

Proof. We use induction on the class of L . If L is of class 1, then L2 = 0 and
the result holds. Assume the result for nilpotent Lie algebras of class less than n
and let L have class n . Note that Ln ⊆ Z(L), L2 ⊆ Zn−1(L), (L/Ln)2 = L2/Ln

and Z(L)/Ln ⊆ Z(L/Ln). For convenience, let A = (L/Ln)
/
Z (L/Ln) and

B = L/Z(L) = (L/Ln)/(Z(L)/Ln). Since A is a homomorphic image of B , it
follows that dimA/A2 ≤ dimB/B2 . By induction,

dimH2(L/Ln, F ) ≤ dimH2((L/Ln)/(L/Ln)2, F ) + dim(L/Ln)2[dim(A/A2)− 1]

≤ dimH2(L/L2, F ) + dim(L2/Ln)[dim(B/B2)− 1].

By the last corollary,

dimH2(L, F ) ≤ dimH2(L/Ln, F ) + dim(L/Zn−1) dimLn − dimLn .

Now,
dim(L/Zn−1) ≤ dim(L/(L2 + Z(L))) = dimB/B2 .

Therefore,

dimH2(L, F ) ≤ dimH2(L/L2, F )

+ dimL2[dim(B/B2)− 1]− dimLn[dim(B/B2)− 1]

+ dim(B/B2) dimLn − dimLn

which gives the result.
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Since dimB/B2 ≤ dimL/L2 , we obtain

Corollary 3.6. dimH2(L, F ) ≤ dimH2(L/L2, F ) + dimL2[dim(L/L2)− 1] .

We also write this another way.

Corollary 3.7. Let dimL = n and dimL/L2 = d. Then

dimH2(L, F ) ≤ −d
2 + d+ 2dn− 2n

2

Proof. This follows from Corollary 3.6 and the observation that

dimH2(L/L2, F ) =
1

2
d(d− 1).

For example, if d = 2, and in particular if L is of maximal class, this
becomes

Corollary 3.8. If dimL = n and d = 2, then dimH2(L, F ) ≤ n− 1.

4. Example

Let L be the nilpotent Lie algebra of dimension n+ 1 with basis r, xi, . . . , xn and
multiplication

[r, xi] = xi+1 i = 1, . . . , n− 1
[r, xn] = 0
[xi, xj] = 0

It is shown in [7] that the multiplier of L has dimension

a. n
2

+ 1 when n is even

b. n+1
2

when n is odd

and the construction provides an explicit basis. Considering Corollary 3.2 in
conjunction with this example yields, when n is even: dimH2(L, F ) = n

2
+

1, dimZ(L) = 1, dimH2(L/Z(L), F ) = n
2

and dim(L/L2) = 2. Hence, equal-
ity holds. Considering Corollary 3.4, we note further that: dim(L/Zn−1) = 2,
dimLn = 1 and dimH2(L/Ln, F ) = n

2
. Hence, equality also holds in Corollary

3.4. Note that when n is odd, the inequalities in both corollaries are strict. Note
that when n = 2, the inequalities in the other corollaries are actually equalities.
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