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Extremal values of Dirichlet L-functions in the

half-plane of absolute convergence

par Jörn STEUDING

Résumé. On démontre que, pour tout θ réel, il existe une infinité
de s = σ + it avec σ → 1+ et t → +∞ tel que

Re {exp(iθ) log L(s, χ)} ≥ log
log log log t

log log log log t
+ O(1).

La démonstration est basée sur une version effective du théorème
de Kronecker sur les approximations diophantiennes.

Abstract. We prove that for any real θ there are infinitely many
values of s = σ + it with σ → 1+ and t → +∞ such that

Re {exp(iθ) log L(s, χ)} ≥ log
log log log t

log log log log t
+ O(1).

The proof relies on an effective version of Kronecker’s approxima-
tion theorem.

1. Extremal values

Extremal values of the Riemann zeta-function in the half-plane of abso-
lute convergence were first studied by H. Bohr and Landau [1]. Their results
rely essentially on the diophantine approximation theorems of Dirichlet and
Kronecker. Whereas everything easily extends to Dirichlet series with real
coefficients of one sign (see [7], §9.32) the question of general Dirichlet se-
ries is more delicate. In this paper we shall establish quantitative results
for Dirichlet L-functions.

Let q be a positive integer and let χ be a Dirichlet character mod q. As
usual, denote by s = σ + it with σ, t ∈ R, i2 = −1, a complex variable.
Then the Dirichlet L-function associated to the character χ is given by

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1− χ(p)

ps

)−1

,

where the product is taken over all primes p; the Dirichlet series, and so
the Euler product, converge absolutely in the half-plane σ > 1. Denote by
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χ0 the principal character mod q, i.e., χ0(n) = 1 for all n coprime with q.
Then

(1) L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
.

Thus we may interpret the well-known Riemann zeta-function ζ(s) as the
Dirichlet L-function to the principal character χ0 mod 1. Furthermore, it
follows that L(s, χ0) has a simple pole at s = 1 with residue 1. On the
other side, any L(s, χ) with χ 6= χ0 is regular at s = 1 with L(1, χ) 6= 0 (by
Dirichlet’s analytic class number-formula). Since L(s, χ) is non-vanishing
in σ > 1, we may define the logarithm (by choosing any one of the values
of the logarithm). It is easily shown that for σ > 1

(2) log L(s, χ) =
∑

p

∑
k≥1

χ(p)k

kpks
=
∑

p

χ(p)
ps

+ O(1).

Obviously, | log L(s, χ)| ≤ L(σ, χ0) for σ > 1. However

Theorem 1.1. For any ε > 0 and any real θ there exists a sequence of
s = σ + it with σ > 1 and t → +∞ such that

Re {exp(iθ) log L(s, χ)} ≥ (1− ε) log L(σ, χ0) + O(1).

In particular,

lim inf
σ>1,t≥1

|L(s, χ)| = 0 and lim sup
σ>1,t≥1

|L(s, χ)| = ∞.

In spite of the non-vanishing of L(s, χ) the absolute value takes arbitrarily
small values in the half-plane σ > 1!

The proof follows the ideas of H. Bohr and Landau [1] (resp. [8], §8.6)
with which they obtained similar results for the Riemann zeta-function
(answering a question of Hilbert). However, they argued with Dirichlet’s
homogeneous approximation theorem for growth estimates of |ζ(s)| and
with Kronecker’s inhomogeneous approximation theorem for its reciprocal.
We will unify both approaches.

Proof. Using (2) we have for x ≥ 2

(3) Re {exp(iθ) log L(s, χ)}

≥
∑
p≤x

χ0(p)
pσ

Re {exp(iθ)χ(p)p−it} −
∑
p>x

χ0(p)
pσ

+ O(1).
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Denote by ϕ(q) the number of prime residue classes mod q. Since the val-
ues χ(p) are ϕ(q)-th roots of unity if p does not divide q, and equal to zero
otherwise, there exist integers λp (uniquely determined mod ϕ(q)) with

χ(p) =

{
exp

(
2πi

λp

ϕ(q)

)
if p 6 |q,

0 if p|q.

Hence,

Re {exp(iθ)χ(p)p−it} = cos
(

t log p− 2π
λp

ϕ(q)
− θ

)
.

In view of the unique prime factorization of the integers the logarithms of
the prime numbers are linearly independent. Thus, Kronecker’s approxi-
mation theorem (see [8], §8.3, resp. Theorem 3.2 below) implies that for
any given integer ω and any x there exist a real number τ > 0 and integers
hp such that

(4)
∣∣∣∣ τ

2π
log p− λp

ϕ(q)
− θ

2π
− hp

∣∣∣∣ < 1
ω

for all p ≤ x.

Obviously, with ω → ∞ we get infinitely many τ with this property. It
follows that

(5) cos
(

τ log p− 2π
λp

φ(q)
− θ

)
≥ cos

(
2π

ω

)
for all p ≤ x,

provided that ω ≥ 4. Therefore, we deduce from (3)

Re {exp(iθ) log L(σ + iτ, χ)} ≥ cos
(

2π

ω

)∑
p≤x

χ0(p)
pσ

−
∑
p>x

χ0(p)
pσ

+ O(1),

resp.

(6) Re {exp(iθ) log L(σ + iτ, χ)}

≥ cos
(

2π

ω

)
log L(σ, χ0)− 2

∑
p>x

1
pσ

+ O(1)

in view of (2). Obviously, the appearing series converges. Thus, sending ω
and x to infinity gives the inequality of Theorem 1.1. By (1) we have

(7) log L(σ, χ0) = log
(

1
σ − 1

+ O(1)
)

= log
1

σ − 1
+ o(1)

for σ → 1+. Therefore, with θ = 0, resp. θ = π, and σ → 1+ the further
assertions of the theorem follow. �

The same method applies to other Dirichlet series as well. For example,
one can show that the Lerch zeta-function is unbounded in the half-plane
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of absolute convergence:

lim sup
σ>1,t≥1

∞∑
n=0

exp(2πiλn)
(n + α)s

= +∞

if α > 0 is transcendental; note that in the case of transcendental α the
Lerch zeta-function has zeros in σ > 1 (see [3] and [4]).

In view of Theorem 1.1 we have to ask for quantitative estimates. Let
π(x) count the prime numbers p ≤ x. By partial summation,∑

x<p≤y

1
pσ

=
π(y)
yσ

− π(x)
xσ

+ σ

∫ y

x

π(u)
uσ+1

du.

The prime number theorem implies for x ≥ 2∑
x<p≤y

1
pσ

∼
(

y1−σ

log y
− x1−σ

log x

)
+ σ

∫ y

x

du

uσ log u
.

By the second mean-value theorem,∫ y

x

du

uσ log u
du =

1
log ξ

∫ y

x

du

uσ
=

x1−σ − y1−σ

(σ − 1) log ξ

for some ξ ∈ (x, y). Thus, substituting ξ by x and sending y → ∞, we
obtain the estimate ∑

x<p

1
pσ

≤ (1 + o(1))
x1−σ

(σ − 1) log x

as x →∞. This gives in (6)

(8) Re {exp(iθ) log L(σ + iτ, χ)}

≥ cos
(

2π

ω

)
log L(σ, χ0)− (2 + o(1))

x1−σ

(σ − 1) log x
+ O(1).

Substituting (7) in formula (8) yields

Re {exp(iθ) log L(σ + iτ, χ)}

≥ (1 + O(ω−2)) log
1

σ − 1
− (2 + o(1))

x1−σ

(σ − 1) log x
+ O(1).

Let

x = exp
(

1
σ − 1

log
1

σ − 1

)
,

then x tends to infinity as σ → 1+. We obtain for x sufficiently large

(9) Re {exp(iθ) log L(σ + iτ, χ)} ≥ (1 + O(ω−2)) log
log x

log log x
+ O(1).

The question is how the quantities ω, x and τ depend on each other.
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2. Effective approximation

H. Bohr and Landau [2] (resp. [8], §8.8) proved the existence of a τ with
0 ≤ τ ≤ exp(N6) such that

cos(τ log pν) < −1 +
1
N

for ν = 1, . . . , N,

where pν denotes the ν-th prime number. This can be seen as a first effective
version of Kronecker’s approximation theorem, with a bound for τ (similar
to the one in Dirichlet’s approximation theorem). In view of (5) this yields,
in addition with the easier case of bounding |ζ(s)| from below, the existence
of infinite sequences s± = σ±+ it± with σ± → 1+ and t± → +∞ for which

(10) |ζ(s+)| ≥ A log log t+ and
1

|ζ(s−)|
≥ A log log t−,

where A > 0 is an absolute constant. However, for Dirichlet L-functions we
need a more general effective version of Kronecker’s approximation theorem.
Using the idea of Bohr and Landau in addition with Baker’s estimate for
linear forms, Rieger [6] proved the remarkable

Theorem 2.1. Let v,N ∈ N, b ∈ Z, 1 ≤ ω, U ∈ R. Let p1 < . . . < pN be
prime numbers (not necessarily consecutive) and

uν ∈ Z, 0 < |uν | ≤ U, βν ∈ R for ν = 1, . . . , N.

Then there exist hν ∈ Z, 0 ≤ ν ≤ N, and an effectively computable number
C = C(N, pN ) > 0, depending on N and pN only, with

(11)
∣∣∣h0

uν

v
log pν − βν − hν

∣∣∣ < 1
ω

for ν = 1, . . . , N

and b ≤ h0 ≤ b + (2Uvω)C .

We need C explicitly. Therefore we shall give a sketch of Rieger’s proof
and add in the crucial step a result on an explicit lower bound for linear
forms in logarithms due to Waldschmidt [9].

Let K be a number field of degree D over Q and denote by LK the set
of logarithms of the elements of K \ {0}, i.e.,

LK = {` ∈ C : exp(`) ∈ K}.
If a is an algebraic number with minimal polynomial P (X) over Z, then
define the absolute logarithmic height of a by

h(a) =
1
D

∫ 1

0
log |P (exp(2πiφ))|dφ;

note that h(a) = log a for integers a ≥ 2. Waldschmidt proved
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Theorem 2.2. Let `ν ∈ LK and βν ∈ Q for ν = 1, . . . , N , not all equal
zero. Define aν = exp(`ν) for ν = 1, . . . , N and

Λ = β0 + β1 log a1 + . . . + βN log aN .

Let E,W and Vν , 1 ≤ ν ≤ N, be positive real numbers, satisfying

W ≥ max
1≤ν≤N

{h(βν)},

1
D
≤ V1 ≤ . . . ≤ VN ,

Vν ≥ max
{

h(aν),
| log aν |

D

}
for ν = 1, . . . , N

and

1 < E ≤ min
{

exp(V1), min
1≤ν≤N

{
4DVν

| log aν |

}}
.

Finally, define V +
ν = max{Vν , 1} for ν = N and ν = N − 1, with V +

1 = 1
in the case N = 1. If Λ 6= 0, then

|Λ| > exp
(
− c(N)DN+2(W + log(EDV +

N )) log(EDV +
N−1)×

× (log E)−N−1
N∏

ν=1

Vν

)
with c(N) ≤ 28N+51N2N .

This leads to

Theorem 2.3. With the notation of Theorem 2.1 and under its assump-
tions there exists an integer h0 such that (11) holds and

b ≤ h0 ≤ b + 2 + ((3ωU(N + 2) log pN )4 + 2)N+2×

× exp

(
28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
;(12)

if pN is the N -th prime number, then, for any ε > 0 and N sufficiently
large,

(13) b ≤ h0 ≤ b + (ωU)(4+ε)N exp
(
N (2+ε)N

)
.

Proof. For t ∈ R define

f(t) = 1 + exp(t) +
N∑

ν=1

exp
(
2πi

(
t
uν

v
log pν − βν

))
.
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With γ−1 := 0, β−1 := 0, γ0 := 1, β0 := 0 and γν := uν
v log pν , 1 ≤ ν ≤ N,

we have

(14) f(t) =
N∑

ν=−1

exp(2πi(tγν − βν)).

By the multinomial theorem,

f(t)k =
∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !

exp

(
2πi

N∑
ν=−1

jν(tγν − βν)

)
.

Hence, for 0 < B ∈ R and k ∈ N

J :=
∫ b+B

b
|f(t)|2kdt

=
∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !

∑
jν′≥0

j′−1+...+j′
N

=k

k!
j′−1! · · · j′N !

∫ b+B

b
exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt.

By the theorem of Lindemann
N∑

ν=−1

(jν − j′ν)γν

vanishes if and only if jν = j′ν for ν = −1, 0, . . . , N . Thus, integration gives∫ b+B

b
exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt = B

if jν = j′ν , ν = −1, 0, . . . , N , and∣∣∣∣∣
∫ b+B

b
exp

(
2πi

(
N∑

ν=−1

(jν − j′ν)γνt−
N∑

ν=−1

(jν − j′ν)βν

))
dt

∣∣∣∣∣
≤ 1

π

∣∣∣∣∣
N∑

ν=−1

(jν − j′ν)γν

∣∣∣∣∣
−1

if jν 6= j′ν for some ν ∈ {−1, 0, . . . , N}. In the latter case there exists by
Baker’s estimate for linear forms an effectively computable constant A such
that ∣∣∣∣∣

N∑
ν=−1

(jν − j′ν)γν

∣∣∣∣∣
−1

< A.
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Setting β0 = j0 − j′0, βν = uν
v (jν − j′ν) and aν = pν for ν = 1, . . . , N , we

have, with the notation of Theorem 2.2,

Λ =
N∑

ν=−1

(jν − j′ν)γν .

We may take E = 1, W = log pN , V1 = 1 and Vν = log pν for ν = 2, . . . , N .
If N ≥ 2, Theorem 2.2 gives

|Λ| > exp

(
−28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
.

Thus we may take

(15) A = exp

(
28N+51N2N (1 + 2 log pN )(1 + log pN−1)

N∏
ν=2

log pν

)
.

Hence, we obtain

(16) J ≥ B
∑
jν≥0

j−1+...+jN =k

(
k!

j−1! · · · jN !

)2

− A

π

∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !

∑
jν′≥0

j′−1+...+j′
N

=k

k!
j′−1! · · · j′N !

.

Since ∑
jν≥0

j−1+...+jN =k

1 ≤ (k + 1)N+2,

application of the Cauchy Schwarz-inequality to the first multiple sum and
of the multinomial theorem to the second multiple sum on the right hand
side of (16) yields

J ≥
(

B

(k + 1)N+2
− A

π

) ∑
jν≥0

j−1+...+jN =k

k!
j−1! · · · jN !


2

≥
(

B

(k + 1)N+2
− A

π

)
(N + 2)2k.

Setting B = A(k + 1)N+2 and with τ ∈ [b, b + B] defined by

|f(τ)| = max
t∈[b,b+B]

|f(t)|,

we obtain
B(N + 2)2k

2(k + 1)N+2
≤ J ≤ B|f(τ)|2k.
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This gives

(17) |f(τ)| > N + 2− 2µ, where µ :=
(N + 2)2 log k

3k
;

note that µ < 1 for k ≥ 11. By definition

f(t) = 1 + exp(2πi(tγν − βν)) +
N∑

m=0
m6=ν

exp(2πi(tγm − βm)).

Therefore, using the triangle inequality,

|f(t)| ≤ N + |1 + exp(2πi(τγν − βν))| for ν = 0, . . . , N,

and arbitrary t ∈ R. Thus, in view of (17)

|1 + exp(2πi(τγν − βν))| > 2− 2µ for ν = 0, . . . , N.

If hν denotes the nearest integer to τγν − βν , then

|τγν − βν − hν | <
√

µ

2
for ν = 0, . . . , N.

For ν = 0 this implies |τ − h0| <
√

µ. Replacing τ by h0 yields

|h0γν − βνhν | <
√

µ

(
1 + max

ν=1,...,N
|γν |
)

for ν = 1, . . . , N.

Putting k = [(3wU(N + 2) log pN )4] + 1 we get

b− 1 ≤ h0 ≤ b + 1 + B = b + 1 + A([(3ωU(N + 2) log pN )4] + 2)N+2.

Substituting (15) and replacing b−1 by b, the assertion of Theorem 2.1 fol-
lows with the estimate (12) of Theorem 2.3; (13) can be proved by standard
estimates. �

3. Quantitative results

We continue with inequality (9). Let pN be the N -th prime. Then, using
Theorem 2.3 with N = π(x), v = uν = 1, and

βν =
λpν

ϕ(q)
+

θ

2π
for ν = 1, . . . , N,

yields the existence of τ = 2πh0 with

(18) b ≤ τ

2π
≤ b + ω(4+ε)N exp(N (2+ε)N )

such that (4) holds, as N and x tend to infinity. We choose ω = log log x,
then the prime number theorem and (18) imply

log x = log N + O(log log N), log N ≥ log log log τ + O(log log log log τ).

Substituting this in (9) we obtain
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Theorem 3.1. For any real θ there are infinitely many values of s = σ+ it
with σ → 1+ and t → +∞ such that

Re {exp(iθ) log L(s, χ)} ≥ log
log log log t

log log log log t
+ O(1).

Using the Phragmén-Lindelöf principle, it is even possible to get quantita-
tive estimates on the abscissa of absolute convergence. We write f(x) =
Ω(g(x)) with a positive function g(x) if

lim inf
x→∞

|f(x)|
g(x)

> 0;

hence, f(x) = Ω(g(x)) is the negation of f(x) = o(g(x)). Then, by the
same reasoning as in [8], §8.4, we deduce

L(1 + it, χ) = Ω
(

log log log t

log log log log t

)
,

and
1

L(1 + it, χ)
= Ω

(
log log log t

log log log log t

)
.

However, the method of Ramachandra [5] yields better results. As for the
Riemann zeta-function (10) it can be shown that

L(1 + it, χ) = Ω(log log t), and
1

L(1 + it, χ)
= Ω(log log t),

and further that, assuming Riemann’s hypothesis, this is the right order
(similar to [8], §14.8). Hence, it is natural to expect that also in the half-
plane of absolute convergence for Dirichlet L-functions similar growth es-
timates as for the Riemann zeta-function (10) should hold. We give a
heuristical argument. Weyl improved Kronecker’s approximation theorem
by

Theorem 3.2. Let a1, . . . , aN ∈ R be linearly independent over the field of
rational numbers, and let γ be a subregion of the N -dimensional unit cube
with Jordan volume Γ. Then

lim
T→∞

1
T

meas{τ ∈ (0, T ) : (a1t, . . . , aN t) ∈ γ mod 1} = Γ.

Since the limit does not depend on translations of the set γ, we do not
expect any deep influence of the inhomogeneous part to our approximation
problem (4) (though it is a question of the speed of convergence). Thus, we
may conjecture that we can find a suitable τ ≤ exp(N c) with some positive
constant c instead of (13), as in Dirichlet’s homogeneous approximation
theorem. This would lead to estimates similar to (10).
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We conclude with some observations on the density of extremal values
of log L(s, χ). First of all note that if

|L(1 + iτ, χ)|±1 ≥ f(T )

holds for a subset of values τ ∈ [T, 2T ] of measure µT , where f(T ) is any
function which tends with T to infinity, then∫ 2T

T
|L(1 + it, χ)|±2dt ≥ µTf(T )2.

In view of well-known mean-value formulae we have µ = 0, which implies

lim
T→∞

1
T

meas{τ ∈ [0, T ] : |L(σ + iτ)|±1 ≥ f(T )} = 0.

This shows that the set on which extremal values are taken is rather thin.
The situation is different for fixed σ > 1. Let Q be the smallest prime p

for which χ0(p) 6= 0. Then

| log L(s, χ)| ≤ log L(σ, χ0) = Q−σ

(
1 + O

((
Q

Q + 1

)σ))
;

note that the right hand side tends to 0+ as σ → +∞, and that Q ≤ q +1.

Theorem 3.3. Let 0 < δ < 1
2 . Then, for arbitrary θ and fixed σ > 1,

lim inf
M→∞

1
M

]{m ≤ M : (1−δ) log L(σ, χ0)−Re {exp(iθ) log L(σ+2πim, χ)}}

≥ Q−2σ

(
1 +

24
σ

)
≥ δ2Q2+8(2Q)−8Q2−32 exp

(
−23Q2+51Q4Q2+2

)
.

Proof. We omit the details. First, we may replace (2) by∣∣∣∣∣log L(s, χ)−
∑

p

χ(p)
ps

∣∣∣∣∣ ≤ ∑
p,k≥2

χ0(p)
kpkσ

.

This gives with regard to (8)

Re {exp(iθ) log L(σ+2πim, χ)} ≥ (1−δ) log L(σ, χ0)−2
x1−σ

σ − 1
−8

Q2−2σ

2σ(σ − 1)

for some integer h0 = m, satisfying (12), where N = π(x) and cos 2π
ω = 1−δ.

Putting x = Q2, proves (after some simple computation) the theorem. �

For example, if χ is a character with odd modulus q, then the quantity of
Theorem 3.3 is bounded below by

≥ δ16

2128 exp (281)
.
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σ = 1. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1910), 303–330.
[2] H. Bohr, E. Landau, Nachtrag zu unseren Abhandlungen aus den Jahren 1910 und 1923.

Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1924), 168–172.

[3] H. Davenport, H. Heilbronn, On the zeros of certain Dirichlet series I, II. J. London
Math. Soc. 11 (1936), 181–185, 307–312.
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