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Diophantine equations with linear recurrences

An overview of some recent progress

par Umberto Zannier

Résumé. Nous discutons quelques problèmes habituels concer-
nant l’arithmétique des suites récurrentes linéaires. Après avoir
brièvement rappelé les questions et résultats anciens concernant
les zéros, nous nous focalisons sur les progrès récents pour le
“problème quotient” (resp. “problème de la racine d-ième”), qui,
pour faire court, demande si l’intégralité des valeurs du quotient
(resp. racine d-ième) de deux (resp. d’une) suites récurrentes
linéaires entraine que ce quotient (resp. racine d-ième) est lui-
même une suite récurrente linéaire. Nous relions également ces
questions à certaines équations diophantiennes naturelles, qui par
ailleurs proviennent du cas non résolu le plus simple de la conjec-
ture de Vojta sur les points entiers des variétés algébriques.

Abstract. We shall discuss some known problems concerning
the arithmetic of linear recurrent sequences. After recalling briefly
some longstanding questions and solutions concerning zeros, we
shall focus on recent progress on the so-called ”quotient problem”
(resp. ”d-th root problem”), which in short asks whether the
integrality of the values of the quotient (resp. d-th root) of two
(resp. one) linear recurrences implies that this quotient (resp.
d-th root) is itself a recurrence. We shall also relate such questions
with certain natural diophantine equations, which in turn come
from the simplest unknown cases of Vojta’s conjecture for integral
points on algebraic varieties.

The linear recurrences have an ancient tradition in Number Theory and
diophantine questions about them go back to long ago. In modern times
they have been widely studied, for their own sake but also as auxiliary tools
toward other diophantine problems. We shall not even attempt here to give
a complete overview of these developments, but rather we shall concentrate
on a few typical aspects where some recent progress has been made. We
start by recalling some standard definitions and properties.

A sequence {f(n)}n∈N of complex numbers is called a linear recurrence
(or sometimes just recurrence) if there exist a0, . . . , ar−1 ∈ C, (r ≥ 1),
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a0 6= 0, such that

f(n + r) = a0f(n) + a1f(n + 1) . . . + ar−1f(n + r − 1), for all n ∈ N.

The minimum integer r with this property is called the order of the recur-
rence.

Consider the generating function F (X) =
∑∞

n=0 f(n)Xn; one verifies at
once that for n ≥ 0 the coefficient of Xn+r in the product (1−ar−1X−. . .−
a0X

r)F (X) is f(n + r)− ar−1f(n + r − 1)− . . .− a0f(n), which vanishes;
hence the product is a polynomial (of degree ≤ r − 1) and F (X) is a
rational function (vanishing at ∞). Conversely, the Laurent coefficients
of the expansion (at 0) of a rational function coincide with a recurrence
from a certain point onwards. The partial fraction decomposition for F (X)
immediately shows that there exists an expression, essentially unique,

f(n) =
s∑

i=1

ci(n)ρn
i , ∀n ∈ N, (1)

where the ci ∈ C[X] are nonzero polynomials and where the ρi ∈ C∗

are distinct. Reciprocally, the right-hand side of (1) defines a recurrence
sequence. The ρi’s are called the roots of the recurrence; they are roots of
Xr − ar−1X

r−1 − . . . − a0. The recurrence is said to be simple if all the
ci(n) are constant (and the right-hand side of (1) is then said power sum)
and nondegenerate when no ratio of distinct roots is a root of unity. (We
agree that the zero recurrence is degenerate.)

When k is a field such that in (1) ci(X) ∈ k[X] and ρi ∈ k for i = 1, . . . , s,
we shall say that f is defined over k. Normally we shall consider only
recurrences defined over the field Q of algebraic numbers, but many results
remain true for arbitrary complex recurrences; the corresponding proofs
may be often reduced to the algebraic case by specialization (see e.g. the
papers [R]).

For a power sum f defined over a number field k, (1) shows that all the
values f(n) are sums of a bounded number of S-units, for a suitable finite
set S ⊂ Mk (as usual we shall denote by Ok,S , O∗k,S the S-integers and
S-units in k, respectively): it suffices that the ci and ρj all lie in O∗k,S ;
this remark already shows that S-unit theory may be relevant here. In
fact, a fundamental tool in this context, as well as for S-unit equations,
has been the Subspace Theorem of Wolfgang M. Schmidt, especially its
versions with several places by H.P. Schlickewei. These results may be
roughly described as multi-dimensional versions of Roth’s and Ridout’s
results for the diophantine approximation to algebraic numbers. We shall
not give here any complete statement of the Subspace Theorem, referring
e.g. to [S2] and [Z]; however in the sequel we shall see in some detail an
application of it.
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Actually, (1) shows that diophantine equations with recurrences fall in
the realm of polynomial-exponential equations. Here we have a remarkable
finiteness general theorem by M. Laurent, obtained around 1986, relying
again on the Subspace Theorem. Its statement requires however certain
definitions, and so we do not recall it here, referring instead to [S2, Thm.
7.1]. We stress that an important special case, also relevant for recur-
rences, had been obtained previously, independently by Evertse and van
der Poorten-Schlickewei: For a given finitely generated subgroup G ⊂ C∗,
the equation x1 + . . . + xn = 1 with xi ∈ G has only finitely many solu-
tions such that no subsum of the xi vanishes. (See [S2, Lemma 8.3].) On
expressing the xi as products of powers of a set of generators for G, we see
that the linear equation is transformed in a purely exponential one, making
the connection with (1) apparent.

These results apply for instance to the old problem of describing the
zeros, i.e. the n ∈ N such that f(n) = 0. Simple examples like f(n) =
1+(−1)n show that their set may be infinite if f is degenerate, even if f 6= 0.
Without special assumptions, the nondegenerate case is far from obvious
in general; one can easily reduce to this case by partitioning N in a finite
number of suitable arithmetic progressions and studying the restriction to
each progression separately.

From the qualitative point of view, this problem was completely solved
by Skolem, Mahler and Lech, independently, who proved that (see [vdP]):
The set of zeros of a recurrence f is the union of a finite set with a finite
union of arithmetic progressions. If f is nondegenerate, it is a finite set.
(A nice application of this to cubic Thue’s equations was given by Skolem;
see e.g. [Z].)

Their proof consisted in suitably viewing a linear recurrence as the re-
striction to N of a p-adic analytic function. A different proof follows from
the mentioned result by Evertse et al., in the case of simple recurrences,
and from Laurent’s Theorem in the general case (see [S2, Cor. 7.2]). This
approach also yieds certain sharpenings and quantitative bounds which es-
cape from the p-adic method. Actually, the recent quantitative versions
of the Subspace Theorem, obtained by Evertse, Schlickewei, Schmidt, have
enabled Schmidt to solve a longstanding conjecture on the zeros, which
represented the main problem in the context. Namely, for a nondegenerate
recurrence, the number of zeros is bounded only in terms of the order (see
[S], where an explicit bound is given).

We cannot pause here on the many other papers in the area, some of them
containing quite striking bounds for special cases of Schmidt’s Theorem;
instead, we refer e.g. to [S2].

Another application of Laurent’s Theorem concerns the problem of
“equal values” of recurrences, i.e. describing the solutions (r, s) ∈ N2
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to f(r) = g(s), for given recurrences f, g. The theorem leads to an almost
complete classification of the cases with an infinity of solutions, as shown
by Schmidt and Schlickewei (see [S2, Thm. 11.2] and [S2, p. 11/6]). By
almost we mean that f, g are supposed not to be of the form P (n)αn for a
polynomial P and a root of unity α. This may seem a mild restriction, but
it excludes fairly natural problems, like the one of perfect powers in a recur-
rence sequence. And the so-called quotient problem of the integral values for
f(n)/g(n) falls out as well. From now on we shall concentrate precisely on
these questions, which have been the object of several researches. They are
certainly special ones, but they are rather typical, and also embody some
of the fundamental difficulties which appear in more general instances.

The quotient problem. Given recurrences f, g, the so-called Hadamard
quotient f(n)/g(n) is not a recurrence in general. A necessary condition
for being a recurrence is of course that all the values f(n)/g(n), n ∈ N,
lie in a finitely generated ring (we agree that for g(n) = 0 this means
that f(n) = 0). It was Pisot who conjectured the converse implication,
while it was van der Poorten [vdP2] who obtained a general proof (see also
[R]), after an incomplete argument by Pourchet [Po]. (See [PeZ] for partial
results with elementary means.)

The general case of this theorem is rather delicate, and the ingenious
proof by Pourchet-van der Poorten relies on an intricate auxiliary con-
struction and on certain p-adic estimates. However, even such a method
leaves open the natural question of the infinitude of the set of n ∈ N such
that f(n)/g(n) lies in Z, or more generally in a prescribed finitely generated
ring R: to assume that all the values (not merely an infinity of them) lie
in Z (or R) is crucial for those proofs.

For simple nondegenerate recurrences f, g defined over Q, the problem
is solved in [CZ1]. In this case, with the aid of the Subspace Theorem it is
established that (see Thm 1 there):

Theorem A. If f, g are simple recurrences with positive rational roots
and if the ratio f(n)/g(n) ∈ Z for infinitely many n ∈ N, then f/g is a
recurrence.

We stress that the conclusion is easy to check in practice, and can in fact
be reduced to verifying the divisibility between certain polynomials (see for
this [CZ1] or [CZ2, Lemma 2.1] or [vdP]). Also, the restriction to “positive”
roots is harmless and the method of [CZ1] often works even over Q and for
non-simple recurrences, as noted in that paper.

In general however, it is crucial for that method that g admits a
dominant root (which is automatic for positive roots in R). By this we
mean that there exists an absolute value v of Q such that g has a unique
root which is maximal for v. It may well happen that such dominant-root
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assumption, often crucial in the whole theory, is not satisfied. (Consider
e.g. the recurrence g(n + 3) + g(n + 2) + g(n + 1) = g(n)).

Coming back to Theorem A, we pause to illustrate the method of proof
in the special case when f(n) = an− 1, g(n) = bn− 1, for integers a, b > 1.
Namely, we shall give a proof of the claim:
If (an − 1)/(bn − 1) ∈ Z for infinitely many n ∈ N, then a is a power of b.

We remark that if one assumes (an − 1)/(bn − 1) ∈ Z for all n ∈ N, the
conclusion (actually a special case of van der Poorten’s mentioned theorem)
is capable of an elementary proof (see e.g. [PeZ]); and still another proof
may be obtained by means of Algebraic Number Theory, by constructing
(when the conclusion is not true) prime numbers p and integers n (of the
shape (p− 1)/h) such that p divides bn − 1 but not an − 1 (a hint is given
in [BCZ]). However none of these approaches works with the much weaker
assumption of the claim.

To prove the claim, put q(n) = (an−1)/(bn−1) and assume that q(n) ∈ Z
for all n in a certain infinite set Σ of natural numbers. To start with, fix
any integer r = ra,b such that br > a, and observe the identity

(brn − 1)q(n) = (an − 1)(1 + bn + . . . + b(r−1)n)

which may be rewritten as

brnq(n) +
∑

(i,j)∈A

(−1)iainbjn = q(n), A = {0, 1} × {0, 1, . . . , r − 1}. (2)

We now put x = x(n) = (x0, x00, . . . , x1,r−1), where x0 = x0(n) = brnq(n)
and xij = xij(n) = ainbjn for (i, j) ∈ A. Observe that for n ∈ Σ the vector
x(n) is integral. We view the left side of (2) as the value at x(n) of the
linear form L(X) = X0 +

∑
(i,j)∈A(−1)iXij . Note that, since r has been

chosen to be “large”, the euclidean length ||x(n)|| of x(n) will grow much
faster than the absolute value |L(x(n))| (i.e. |q(n)|), so we may say that
L takes rather “small” values at the vectors x(n). We want to construct
other linear forms taking small values at the x(n). We can do this if the
smallness is interpreted in the p-adic sense, for primes p dividing ab. In
fact, for these primes the values ainbjn are in general p-adically small.

More precisely, let S denote the (finite) set of absolute values of Q made
up of the usual one, denoted ∞, together with those corresponding to the
primes p dividing ab (normalized so that |p|p = p−1). For any element v
of S we now construct a set of 2r + 1 linearly independent linear forms
in the 2r + 1 variables X0, Xij ((i, j) ∈ A), as follows. We put L0,∞ = L
and Lij,∞ = Xij for all (i, j) ∈ A, while for v ∈ S \ {∞} we simply put
L0,v = X0, Lij,v = Xij for (i, j) ∈ A. We now show that the linear forms
are “on average” small at x = x(n), for n ∈ Σ, by estimating the product
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v∈S(|L0,v(x)|v

∏
(i,j)∈A |Lij,v(x)|v). Observe that, if (i, j) ∈ A we have∏

v∈S

|Lij,v(x)|v =
∏
v∈S

|xij(n)|v =
∏
v∈S

|ainbjn|v = 1;

in fact, S contains all the absolute values nontrivial on a or b, whence, for
any integers i, j,

∏
v∈S |aibj |v =

∏
all v |aibj |v = 1, because of the product

formula on Q. Further,∏
v∈S

|L0,v(x)|v = |L(x)|∞
∏

v∈S\∞

|x0(n)|v = |q(n)|
∏

v∈S\∞

|brnq(n)|v.

Now, q(n) is an integer for n ∈ Σ, whence |q(n)|v ≤ 1 for finite v; also,∏
v∈S\∞ |brn|v = b−rn, again by the definition of S and by the product

formula. Summing up, we find

∏
v∈S

|L0,v(x(n))|v
∏

(i,j)∈A

|Lij,v(x(n))|v

 ≤ |q(n)|b−rn, n ∈ Σ.

Recall now that br > a, so |q(n)| < b(r−1)n for all large n ∈ N. Then both
sides of the last displayed formula become < b−n for large n ∈ Σ. Also, we
have ||x(n)|| ≤ (2r + 1)brnan, whence, for suitable numbers c = ca,b and
δ = δa,b > 0, both independent of n, we have

∏
v∈S

|L0,v(x(n))|v
∏

(i,j)∈A

|Lij,v(x(n))|v

 ≤ c||x(n)||−δ, n ∈ Σ.

This inequality represents precisely the fundamental assumption needed
for an application of the Schmidt Subspace Theorem, in one of the versions
with several places (see e.g. the version in [CZ1], due to Schlickewei). That
result would in fact apply even to linear forms with algebraic coefficients (on
extending in some way the absolute values to Q); its conclusion states that
all the vectors x(n) in question lie in a certain finite union (independent
of n) of proper linear spaces defined over Q. In particular, recalling the
definition of x(n), we may assume that some nontrivial equation

γ0b
rn(an − 1) + (bn − 1)

 ∑
(i,j)∈A

γija
inbjn

 = 0 (3)

holds for all n in a suitable infinite subset Σ′ of Σ, where the coefficients
γ0, γij are rationals not all zero. Now, this implies that a, b are multiplica-
tively dependent, for otherwise the functions n 7→ an, n 7→ bn, n ∈ Σ′ would
be algebraically independent (because Σ′ is infinite), whence (3) would lead
to the identity γ0V

r(U−1)+(V −1)(
∑

(i,j)∈A γijU
iV j) = 0 in the variables

U, V . However it is immediate to check that this yields the vanishing of all
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the coefficients γ0, γij , a contradiction. Hence we may write a = cp, b = cq

for some integer c > 1 and some positive integers p, q and we then have
just to show that q divides p. Write p = mq + s for integers m, s with
0 ≤ s < q. Then an = (cqn)m · csn ≡ csn (mod cqn − 1). Therefore, since
cqn− 1 = bn− 1 divides an− 1 for all n ∈ Σ, we find that cqn− 1 divides in
fact csn − 1 for all n ∈ Σ. This is however plainly impossible if 0 < s < q,
whence s = 0 as desired.

As remarked above such an argument works in far greater generality;
however we need the mentioned “dominant root” assumption in order to
construct an identity analogous to (2), i.e. a non-obvious linear form which
is small at the relevant vectors. (The “obvious” forms are just the vari-
ables X0, Xij , whose values at the x(n) are small at suitable p-adic places.)
In the general case, a small linear form may be constructed out of sev-
eral dominant roots (instead of a single dominant root), but the inequality
so obtained turns out to be too weak for an application of the Subspace
Theorem. Nevertheless, a somewhat surprising device allows to produce
many small linear forms out of a single one (one multiplies the initial linear
form by many monomials in the dominant roots) and this procedure finally
enables to eliminate the annoying assumption about the dominant root.
The arguments appear in [CZ2] in full detail; since the construction is a
bit technical we do not reproduce it here, but rather just state the main
theorem of [CZ2] as:

Theorem B. Let f, g be recurrences defined over a number field k. Suppose
that S is a finite set of places of k such that f(n)/g(n) ∈ Ok,S for infinitely
many n ∈ N. Then there exist a nonzero polynomial P (n) and positive
integers q, r such that both P (n)f(qn + r)/g(qn + r) and g(qn + r)/P (n)
are recurrences.

In practice the conclusion says that, over a suitable arithmetic progres-
sion, the recurrence g divides f up to a polynomial factor. Often one can
take P = 1: this occurs e.g. when g is simple, and hence we get a sub-
stantial extension of Theorem A. However this is not generally the case, as
shown by examples like (2n − 2)/n; now the quotient is integral whenever
n is a prime, hence for a fairly dense set in N. In an appendix to [CZ2]
a density conclusion is shown in this direction, which in particular imme-
diately yields a sharpening of van der Poorten’s Theorem. Still in other
words, these results say that a divisibility relation between infinitely many
pairs of values f(n), g(n) may always be explained by algebraic identities.
This is rather easy to prove for polynomials f, g; we may view the above
statements as analogues for polynomial-exponential functions.

Actually, the method of [CZ1] (or [CZ2]) yields, more precisely, a non-
trivial bound for the cancellation in the quotient f(n)/g(n), i.e. for the
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g.c.d.(f(n), g(n)). In some cases, like (an − 1)/(bn − 1), it is possible with
more effort to get a nearly best-possible conclusion in this direction: in
[BCZ] the following is proved:

Theorem C. If a, b ∈ Z are multiplicatively independent, then for all ε > 0
we have the estimate (an − 1, bn − 1) �ε exp(εn).

Note that the relevant g.c.d. may often be quite large; in fact, the lower
bound (an−1, bn−1) > exp(exp(c log n/ log log n)) (some c > 0) is valid for
infinitely many integers n (see Prop. 10 in Adleman, Pomerance, Rumely,
Annals of Math. 117 (1983), 173-206).

The methods of [BCZ] combined with the Lang-Liardet results about
points on the intersection of curves in G2

m with finitely generated groups
actually lead to a similar, more general, conclusion, when an, bn are replaced
by arbitrary S-units u, v ∈ Z (see [CZ3, Remark 1] and [Z, Thm. IV.3]).
In turn, this yields in particular a proof of a (sharp form of a) conjecture
by Györy-Sarkozy-Stewart; in [CZ3] we prove that:

Theorem D. For integers a > b > c > 0, the greatest prime factor of
(ab + 1)(ac + 1) tends to infinity with a.

The original conjecture predicted the same conclusion for (ab + 1)
(ac + 1)(bc + 1). The result may be seen as a uniform version of the well-
known theorem (due to Pólya) that the greatest prime factor of the values
at integers of a quadratic polynomial with distinct rational roots tends to
infinity. The link with the previous context is provided by the observation
that, if u := ab + 1 and v := ac + 1 have all their prime factors in a pre-
scribed finite set S, then u, v are S-units such that g.c.d.(u− 1, v − 1) ≥ a
is “large”.

Further applications of the methods, e.g. to study the length of the
continued fraction for quotients f(n)/g(n) of power-sums over Q, have
been given in [CZ4]. For instance we have:

Theorem E. If a, b are multiplicatively independent positive integers, then
the length of the euclidean algorithm for (an− 1) : (bn− 1) tends to infinity
as n tends to infinity.

Note that Theorems C and E express in different terms the complexity of
the relevant rational fractions. Theorem E appears as Corollary 3 in [CZ4],
obtained therein as an application of a general statement for arbitrary pairs
of power sums with rational coefficients and roots. (See also [Z, I,IV]; the
case an : bn was a result by Pourchet, after a question by Mendès-France;
see [CZ4].)
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The d-th root problem. This concerns perfect d-th powers in a recur-
rence sequence. In addition to the mentioned “Hadamard quotient conjec-
ture” (solved by van der Poorten), Pisot formulated a “d-root conjecture”:
If all the values f(n) of a recurrence are d-th powers in a given number
field k, then f is identically a d-th power of a recurrence. After some
partial results by several authors, a complete proof was given in [Z2] by
means of congruence considerations; one applies the Lang-Weil bound for
points on varieties over finite fields, but first one has to reduce exponential
congruences to polynomial ones.

In analogy with the case of the Pisot Quotient-conjecture, the arguments
in [Z2] do not help in establishing the more fundamental question of the
finiteness of the solutions of f(n) = yd, n ∈ Z, y ∈ k, for a given integer d ≥
2 and a general recurrence f satisfying appropriate necessary assumptions.
In special cases (e.g. for binary recurrences or when f has a dominant
root and d is large enough with respect to f) this has been worked out
by several authors, like Pethö, Shorey, Stewart, Tijdeman (see e.g. [ShSt]
and [ShT]); they used Baker’s method, obtaining, whenever the arguments
applied, effective conclusions.1 However, when f has three or more roots,
such considerations seem not to extend to the case of general d (e.g. to the
case d = 2).

For unrestricted (but fixed) d, the first finiteness results valid for any
number of roots have been obtained in [CZ1], in the general case of simple
recurrences defined over Q. That paper actually considers arbitrary alge-
braic equations F (y, f(n)) = 0, where F is a polynomial and where f is a
simple recurrence over Q. It is also observed that the same arguments often
apply to simple recurrences over Q with the sole assumption of a dominant
root. A result in this direction appears as Theorem 2 in [CZ5]. Here we
shall mention, more generally, the problem of classifying the perfect d-th
powers which may be written as sums of a bounded number of S-units;
we shall work under the crucial assumption that some term in the sum is
dominant.

We shall use the language of the algebraic group Gn
m and its algebraic

subgroups or translates. Recall that Gn
m is just the affine variety (A1\{0})n

equipped with the coordinatewise multiplicative group law; if X1, . . . , Xn

are coordinates on Gn
m, then every algebraic subgroup (resp. translate) is

defined by some finite set of equations of the shape Xa1
1 · · ·Xan

n = 1 (resp.
Xa1

1 · · ·Xan
n = c 6= 0), for integers ai.

For an algebraic point x = (x1, . . . , xn) ∈ Gn
m(Q) = (Q∗)n we shall

denote by H(x) the Weil height of the projective point (x1 : . . . : xn). Also,

1On the contrary the present arguments do not lead to effective conclusions; it is however
rather easy to estimate the number of solutions, using suitable versions of the Subspace Theorem.
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we let k be a number field, S ⊂ Mk be a finite set containing all the infinite
places and we pick a ν ∈ S. We have:
Theorem F. Let d ∈ N, δ > 0. Let Σ be a set of points x = (x1, . . . , xn) ∈
(O∗S)n such that:

(i) |x1|ν ≥ (maxj≥2 |xj |ν)H(x)δ.
(ii) There exists y = yx ∈ k with x1 + . . . + xn = yd.
Then Σ is contained in a finite union of algebraic translates uH ⊂

Gn
m, u ∈ (O∗S)n, H ⊂ Gn

m an algebraic subgroup, such that, for a P =
PuH ∈ k[X±1

1 , . . . , X±1
n ] and a c = cuH ∈ k, we have X1 + . . . + Xn =

cX1P (X1, . . . , Xn)d, as functions in k[uH].

Condition (i) on the “dominant term” is probably not needed, but it
seems a very difficult problem to remove it. Note that the conclusion is
rather restrictive on the relevant translates uH, and admits a partial con-
verse. (In fact, since the values of x1 modulo d-th powers in k have finitely
many possibilities, the identity implies that all the sums x1 + . . . + xn are,
for xi ∈ O∗S and (x1, . . . , xn) ∈ uH, d-th powers in a fixed finite extension
of k.)

A complete proof of this theorem is given in [Z] (see Theorem IV.5). One
starts by approximating ν-adically the d-th root of x1+. . .+xn by means of
the binomial theorem (it is here that the dominant term is needed). Then
the Subspace Theorem is applied, more or less as in the above example for
the quotient problem.

The points (y, x1, . . . , xn) satisfying (ii) are S-integral points (see e.g. [Z]
for definitions) for the hypersurface in Ga×Gn

m defined by Y d = X1+ . . .+
Xn. We recall that the description of the S-integral points on subvarieties of
Gn

m is nowadays well-known, thanks to another theorem of M. Laurent (see
[Z, Ch. II]): their Zariski closure is a finite union of algebraic translates.
However, the addition of a “Ga-piece” makes the situation considerably
more difficult and largely unknown at present. Theorem F and analogous
ones that can be obtained by similar ideas represent a first step in the
direction of a complete description. An ideal conclusion could be as follows:
Let V be an irreducible subvariety of Ga ×Gn

m with a Zariski-dense set of
S-integral points, such that the projection π : V → Gn

m is finite. Then
π(V ) is an algebraic translate uH and there exist an isogeny σ : H → H
and a morphism τ : H → V such that uσ = π ◦ τ . The difficult point
in this conjecture is the existence of σ, τ ; in Theorem F this corresponds
to the algebraic identity holding on uH, appearing in the conclusion. For
dim V = 1 the conjecture is true; it follows e.g. from Siegel’s Theorem on
integral points on curves (see [Z, Ex. III.10] and [Z, IV]).

A simple application of Theorem F yields the following corollary for per-
fect power values of recurrences. (See [Z] for a detailed proof and also [CZ1,
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Thm. 2] and [CZ5, Thm. 2] for algebraic equations, involving recurrences,
more general than yd = f(n).)

Theorem G. Let f(n) be a simple recurrence defined over a number field
k, with roots ρ1, . . . , ρs ∈ k∗. Suppose that for a place ν ∈ Mk we have
|ρ1|ν > maxs

i=2 |ρi|ν and that there exist infinitely many n ∈ N such that
f(n) is a d-th power in k. Then there exist positive integers q, r and a
recurrence g(n) (defined over k) such that g(n)d = f(qn+ r) for all n ∈ N.

Like many of the previous statements, this theorem too (which admits
an obvious converse) says that an infinity of “special” values (now, the
perfect d-th powers) may be often explained by an algebraic identity. We
also note that in concrete cases the existence of such an identity may be
easily checked, using the structure theorems on the ring of recurrences (see
[vdP], [S2], [Z]). For instance, consider the perfect squares in the sequence
3n + 2n + 1; in view of the algebraic independence of the functions n 7→
2n, n 7→ 3n, their finiteness follows from Theorem G and the fact that
3rXq

1 + 2rXq
2 + 1 is not a square in Q[X±1

1 , X±1
2 ], no matter the positive

integers q, r.

I owe to Attila Pethö the remark that, by combining results like Theorem
G with the above alluded conclusions on d-th powers in recurrences for
large d (e.g. those in [ShSt]), one may obtain a description of the d-th
power values for variable d. For instance: If f(qn+r) is never identically
a d-th power recurrence for d ≥ 2, where f is as in Theorem G, then
the equation f(n) = yd has only a finite number of solutions (d, n, y) ∈
(N \ {0, 1}) × N × k. This conclusion follows immediately by applying
[ShSt] if d is larger than a certain df depending on f and Theorem G for
d ≤ df .

Results like Theorem G have yielded in particular a solution to prob-
lems by M. Yasumoto concerning Universal Hilbert Sets of exponential
shape; we recall that a Universal Hilbert Subset (UHS) of Z is an infinite
set H of integers such that, for any polynomial P (X, Y ) ∈ Q[X, Y ] irre-
ducible in Q[X, Y ], the polynomial P (h, Y ) is irreducible in Q[Y ] for all but
finitely many elements h ∈ H (the finite exceptional set depending on P ).
M. Yasumoto conjectured in 1987 (J. Number Theory, 26) that sets like
{2n + n : n ∈ N} or {2n + 3n : n ∈ N} are UHS. Partial results were
obtained in [DZ], where it was proved that e.g. {2n + n : n ∈ N} and
{2n + 5n : n ∈ N} are UHS. Yasumoto’s questions were completely
answered affirmatively in [CZ1], where a characterization was proved on
the UHS of the shape {f(n) : n ∈ N}, for a simple recurrence f defined
over Q (see Thm. 4 therein). As a corollary it was proved that:
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Theorem H. For multiplicatively independent positive integers a1, . . . , as

(s ≥ 2) and nonzero integers c1, . . . , cs, the set {c1a
n
1 + . . . + csa

n
s : n ∈ N}

is a Universal Hilbert Set.

We conclude with a few remarks on some special diophantine equation.
As we have noted, Theorem G above (or even Thm. H) proves in particular
that equations like y2 = 1+2n+3n have only finitely many solutions (n, y) ∈
N× k. An application of Theorem F with respect to two distinct places ν
sometimes yields a finiteness conclusion by adding a further variable; e.g.,
we have: The equation y2 = 1 + 2m + 6n has only finitely many solutions
(m,n, y) ∈ N2× k. (See the paper [CZ6] for rather more general equations
in three variables. Recently the special equation y2 = 1+2m +2n has been
completely solved by L. Szalay.)

In this example it is crucial that 2, 6 are not coprime (so Thm. F may be
applied with ν = ∞ or ν = 2, according as m/n lies “near” or not to 0 or
∞). In fact, it seems not known whether an equation like y2 = 1+2m +3n

may have an infinity of solutions (m,n, y) ∈ N2 × k.2 We now illustrate
how such equations happen to be less artificial than they perhaps appear
(though they are certainly special ones). Actually, they represent a typical
instance of the problem of the S-integral points on a variety P2 \D, where
D is a divisor which is the sum of two lines and a conic in general position.
To see the link, say that the lines and conic are given by X0 = 0, X1 = 0
and X2

2 = X2
0 + X0X1, and that S = {∞, 2, 3}. Then the S-integral points

(x0 : x1 : x2) are those such that both u = x1/x0 and v = (x2/x0)2 −
1− (x1/x0) are S-units. That is, they correspond to S-units u, v such that
1 + u + v is a perfect square. On the other hand, u, v have the shape
±2a3b, and the connection with the above equations becomes clear. In
particular, by known results one may show that an infinite set of solutions
(m, n, y) ∈ N3 to y2 = 1 + 2m + 3n would produce a Zariski-dense set of
S-integral points for P2 \D.

Now, a broad conjecture by Lang and Vojta (see [HS, p. 486]) predicts
in particular that removing from P2 a divisor D with normal crossings
and of degree (at least) four leaves a variety whose set of S-integral points
is not Zariski dense. This is known when D is the sum of four lines in
general position; the next simplest case, presently unknown, occurs just
when D has the above mentioned shape. Thus the above equations arise
in one of the simplest unknown cases of the Lang-Vojta conjecture. This
again illustrates a relation of some of the problems in question with central
themes from Diophantine Geometry, providing further motivations for the
subject.

2This is excluded by a conjecture of Lang and Vojta, as we show in a moment. From Thm. F
one can deduce that for any possible infinite sequence of solutions the ratio m/n → log 3/ log 2.
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Bordeaux.
[CZ5] P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem, Compositio

Math. 131 (2002), 319–340.

[CZ6] P. Corvaja, U. Zannier, On the diophantine equation f(am, y) = bn. Acta Arith. 94.1
(2000), 25–40.
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