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Badly approximable systems of linear forms over

a field of formal series

par Simon KRISTENSEN

Résumé. Nous montrons que la dimension de Hausdorff de l’en-
semble des systèmes mal approchables de m formes linéaires en
n variables sur le corps des séries de Laurent à coefficients dans
un corps fini est maximale. Ce résultat est un analogue de la
généralisation multidimensionnelle de Schmidt du théorème de
Jarńık sur les nombres mal approchables.

Abstract. We prove that the Hausdorff dimension of the set
of badly approximable systems of m linear forms in n variables
over the field of Laurent series with coefficients from a finite field
is maximal. This is an analogue of Schmidt’s multi-dimensional
generalisation of Jarńık’s Theorem on badly approximable num-
bers.

1. Introduction

Let F denote the finite field of q = pr elements, where p is a prime and
r is a positive integer. We define

(1.1) L =

{ ∞∑
i=−n

a−iX
−i : n ∈ Z, ai ∈ F, an 6= 0

}
∪ {0}.

Under usual addition and multiplication, this set is a field, sometimes called
the field of formal Laurent series with coefficients from F or the field of
formal power series with coefficients from F. An absolute value ‖·‖ on L
can be defined by setting∥∥∥∥∥

∞∑
i=−n

a−iX
−i

∥∥∥∥∥ = qn, ‖0‖ = 0.

Under the induced metric, d(x, y) = ‖x− y‖, the space (L, d) is a complete
metric space. Furthermore the absolute value satisfies for any x, y ∈ L,

(1.2) ‖x+ y‖ ≤ max(‖x‖ , ‖y‖).
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Property (1.2) is known as the non-Archimedean property. In fact, equality
holds in (1.2) whenever ‖x‖ 6= ‖y‖.

As we will be working in finite dimensional vector spaces over L, we need
an appropriate extension of the one-dimensional absolute value.

Definition. Let h ∈ N. For any x = (x1, . . . , xh) ∈ Lh, we define the
height of x to be

‖x‖∞ = max{‖x1‖ , . . . , ‖xh‖}.

It is straightforward to see that (1.2) holds for ‖·‖∞. Of course, when
h = 1, this is the usual absolute value, and as in the one-dimensional case,
‖·‖∞ induces a metric on Lh. When we speak of balls in any of the spaces
Lh, we will mean balls in this metric. Note that topologically, balls in Lh

are both closed and open. All balls in this paper will be defined by large
inequality (rather than strict inequality).

An important consequence of (1.2) is that if C1 and C2 are balls in some
space Lh, then either C1 ∩ C2 = ∅, C1 ⊆ C2 or C2 ⊆ C1. We will refer to
this property as the ball intersection property.

In L, the polynomial ring F[X] plays a rôle analogous to the one played
by the integers in the field of real numbers. Thus, we define the polynomial
part of a non-zero element by[ ∞∑

i=−n

a−iX
−i

]
=

0∑
i=−n

a−iX
−i

whenever n ≥ 0. When n < 0, the polynomial part is equal to zero.
Likewise, the polynomial part of the zero element is itself equal to zero.
We define the set

I = {x ∈ L : ‖x‖ ≤ 1} ,
the unit ball in L.

With the above definitions, it makes sense to define the distance to F[X]h

from a point x ∈ Lh:

(1.3) |〈x〉| = min
p∈F[X]h

‖x− p‖∞ .

Since we will be concerned with matrices, we let m,n ∈ N be fixed through-
out the paper. We will need a number of unspecified constants which may
depend on m and n. To avoid cumbersome notation, for such constants,
we will only specify the dependence on parameters other than m and n.

We identify the m×n-matrices with coefficients from L with Lmn in the
usual way. Matrix products and inner products are defined as in the real
case. Matrices will be denoted by capital letters, whereas vectors will be
denoted by bold face letters.
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In this paper, we are concerned with the Hausdorff dimension (defined
below) of the set of badly approximable systems of linear forms over L,
defined as follows.

Definition. Let m and n be positive integers. The set of matrices B(m,n)
is defined to be the set of all A ∈ Lmn for which there is a K = K(A) > 0
such that for any q ∈ F[X]m \ {0},

|〈qA〉|n > K

‖q‖m
∞
.

This set is called the set of badly approximable elements in Lmn.

On taking n’th roots on either side of the defining inequality, we see that
the exponent of ‖q‖∞ on the right hand side becomes m/n. This is exactly
the critical exponent in the Laurent series analogue of the Khintchine–
Groshev theorem [5, Theorem 1]. It is natural to suspect that an analogue
of Dirichlet’s theorem exists, and indeed this is the case.

Theorem 1.1. Let A ∈ Lmn and let Q ≥ 0 be an integer with n|Qm.
There is a q ∈ F[X]m with ‖q‖∞ ≤ qQ, such that

|〈qA〉|n ≤ 1
qQm

.

We will deduce this theorem from work of Mahler [7]. Alternative proofs
may be given, see e.g. the Proposition of Appendix 1 of [2]. Here it is shown
that the enumerator on the right hand side of the inequality in Theorem
1.1 may be replaced by q−1 for m = n = 1 under the additional assumption
that ‖A‖ ≤ 1. Under those assumptions, this is best possible.

Let µ denote the Haar measure on Lmn, i.e., the mn-fold product mea-
sure of the Haar measure on L (also denoted by µ), which is characterised
by

µ ({x ∈ L : ‖x− c‖ ≤ qr}) = qr.

It is an easy consequence of [5, Theorem 1] that B(m,n) is a null-set,
i.e., µ(B(m,n)) = 0, for any m,n ∈ N. This raises the natural question
of the Hausdorff dimension of B(m,n), which is shown to be maximal
(Theorem 1.2 below), thus proving an analogue of Schmidt’s Theorem on
badly approximable systems of linear forms over the real numbers [10].
Niederreiter and Vielhaber [8] proved using continued fractions that B(1, 1)
has Hausdorff dimension 1, i.e., a formal power series analogue of Jarńık’s
Theorem [4]. The p-adic analogue of Jarńık’s Theorem was proven by
Abercrombie [1].

Hausdorff dimension in this setting is defined as follows: Let E ⊆ Lmn.
For any countable cover C of E with balls Bi = B(ci, ρi), we define the
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s-length of C as the sum

ls(C) =
∑
Bi∈C

ρs
i

for any s ≥ 0. Restricting to covers Cδ, such that for some δ > 0, any ball
Bi ∈ Cδ has radius ρi < δ , we can define an outer measure

Hs(E) = lim
δ→0

inf
covers Cδ

ls(Cδ),

commonly called the Hausdorff s-measure of E. It is straightforward to
prove that this is indeed an outer measure. Also, given a set E ⊆ Lmn, the
Hausdorff s-measure of E is either zero or infinity for all values of s ≥ 0,
except possibly one. Furthermore, the Hausdorff s-measure of a set is a
non-increasing function of s. We define the Hausdorff dimension dim(E) of
a set E ⊆ Lmn by

dim(E) = inf {s ≥ 0 : Hs(E) = 0} .

As in the real case, it can be shown that dim(E) ≤ mn for any E ⊆ Lmn.
With these definitions, we prove

Theorem 1.2. Let m and n be positive integers. Then,

dimH(B(m,n)) = mn.

We will use the method developed by Schmidt [9] to prove the analogous
one-dimensional real result, namely the so-called (α, β)-games. Schmidt
[10] subsequently used this method to prove the multi-dimensional real
analogue of Theorem 1.2.

The rest of the paper is organised as follows. In section 2, we de-
fine (α, β)-games and some related concepts and state some results due
to Mahler [7] from the appropriate analogue of the geometry of numbers in
the present setting. We will also deduce Theorem 1.1 from the results of
Mahler.

The (α, β)-game has two players, White and Black, with parameters α
and β respectively. When played, the game terminates after infinitely many
moves in a single point in the space Lmn. We prove in section 3, that for α
small enough, player White may ensure that the point in which the game
terminates is an element of B(m,n). The fundamental tools in this proof
are a transference principle and a reduction of the statement to a game
which terminates after a finite number of moves. The transference princi-
ple allows us to use the approximation properties of a matrix to study the
approximation properties of the transpose of the same matrix. The finite
game allows us to show that player White may ensure that all the undesir-
able points with ‖q‖∞ less than an appropriate bound can be avoided. This
is the most extensive part of the paper, and the proof is quite technical.
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Finally, in section 4, we use the property from section 3 to show that the
dimension of B(m,n) must be greater than or equal to mn. Together with
the above remarks, this implies Theorem 1.2.

2. Notation, definitions and preliminary results

We now define (α, β)-games, which will be our main tool in the proof of
Theorem 1.2. Let Ω = Lmn × R≥0. We call Ω the space of formal balls in
Lmn, where ω = (c, ρ) ∈ Ω is said to have centre c and radius ρ. We define
the map ψ from Ω to the subsets of Lmn, assigning a real ‖·‖∞-ball to the
abstract one defined above. That is, for ω = (c, ρ) ∈ Ω,

ψ(ω) = {x ∈ Lmn : ‖x− c‖∞ ≤ ρ} .
Definition. Let B1, B2 ∈ Ω. We say that B1 = (c1, ρ1) ⊆ B2 = (c2, ρ2) if
ρ1 + ‖c1 − c2‖∞ ≤ ρ2.

Note that if B1 ⊆ B2 in Ω, then ψ(B1) ⊆ ψ(B2) as subsets of Lmn. Also,
we define for every γ ∈ (0, 1) and B ∈ Ω:

Bγ =
{
B′ ⊆ B : ρ(B′) = γρ(B)

}
⊆ Ω,

where ρ(B) is the radius of B. We now define the following game.

Definition. Let S ⊆ Lmn, and let α, β ∈ (0, 1). Let Black and White be
two players. The (α, β;S)-game is played as follows:

• Black chooses a ball B1 ∈ Ω.
• White chooses a ball W1 ∈ Bα

1 .
• Black chooses a ball B2 ∈W β

1 .
• And so on ad infinitum.

Finally, let B∗
i = ψ(Bi) and W ∗

i = ψ(Wi). If
⋂∞

i=1B
∗
i =

⋂∞
i=1W

∗
i ⊆ S,

then White wins the game. Otherwise, Black wins the game.

Our game can be understood in the following way. Initially, Black chooses
a ball with radius ρ1. Then, White chooses a ball with radius αρ1 inside
the first one. Now, Black chooses a ball with radius βαρ1 inside the one
chosen by White, and so on. In the end, the intersection of these balls will
be non-empty by a simple corollary of Baire’s Category Theorem. White
wins the game if this intersection is a subset of S. Otherwise, Black wins.

Because of the topology of Lmn, we may construct distinct elements
(c, ρ), (c′, ρ′) ∈ Ω such that the corresponding balls in Lmn are the same,
i.e., so that ψ((c, ρ)) = ψ((c′, ρ′)) so that the map ψ is not injective.
However, we will often need to consider both the set ψ((c, ρ)) and the
formal ball (c, ρ) and will by abuse of notation denote both by

{x ∈ Lmn : ‖x− c‖∞ ≤ ρ} ,
where c and ρ are understood to be fixed, although changing these quanti-
ties could well have no effect on the set.
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The sets of particular interest to us are sets S such that White can always
win the (α, β;S)-game.

Definition. A set S ⊆ Lmn is said to be (α, β)-winning for some α, β ∈
(0, 1) if White can always win the (α, β;S)-game. The set S is said to be
α-winning for some α ∈ (0, 1) if S is (α, β)-winning for any β ∈ (0, 1).

It is a fairly straightforward matter to see that if S is α-winning for some
α and α′ ∈ (0, α], then S is α′-winning. Hence, we may define the maximal
α for which a set is α-winning.

Definition. Let S ⊆ Lmn and let S∗ = {α ∈ (0, 1) : S is α-winning}. The
winning dimension of S is defined as

windimS =

{
0 if S∗ = ∅,
supS∗ otherwise.

We will first prove that the winning dimension of B(m,n) is strictly
positive. This will subsequently be used to deduce that the Hausdorff
dimension of B(m,n) is maximal. In order to do this, we study inequalities
defined by slightly different matrices. For any A ∈ Lmn, we define the
matrices

Ã =
(
A Im
In 0

)
, Ã∗ =

(
AT In
Im 0

)
,

where Im and In denotes the m×m and n×n identity matrices respectively.
Let A(j) denote the j’th column of the matrix A. In what follows, q will
denote a vector in F[X]m+n with coordinates q = (q1, . . . , qm+n). Note that
A ∈ B(m,n) if and only if there exists a K > 0 such that

(2.1) max
1≤j≤n

(∥∥∥q · Ã(j)
∥∥∥)n

>
K

max1≤i≤m (‖qi‖)m

for any q ∈ F[X]m+n and such that the first m coordinates of q are not all
equal to zero.

These matrix inequalities allow us to examine the set B(m,n) in terms
of parallelepipeds in Lm+n, i.e., sets defined by inequalities

(2.2) ‖(xA)i‖ ≤ ci, A ∈ L(m+n)2 , ci > 0, i = 1, . . . ,m+ n,

where A is invertible and (xA)i denotes the i’th coordinate of the vector
xA. Inspired by the theory of the geometry of numbers, we define distance
functions

(2.3) FA(x) := max
1≤j≤m+n

1
cj

∥∥∥∥∥
m+n∑
i=1

xiaij

∥∥∥∥∥ .
Also, for any λ > 0, we define the sets

PA(λ) =
{
x ∈ Lm+n : FA(x) ≤ λ

}
.



Badly approximable systems of linear forms 427

Clearly, PA(1) is the set defined by (2.2). Also, for λ′ < λ, PA(λ′) ⊆ PA(λ).
In the setting of the real numbers, distance functions FA and sets PA are

studied in the geometry of numbers (see [3] for an excellent account). For
vector spaces over the field of Laurent series this theory was extensively
developed by Mahler in [7]. We will only need a few results, which we
summarise here.

Definition. Let A ∈ L(m+n)2 be invertible. We define the j’th successive
minimum λj of FA to be

λj = inf
{
λ > 0 : PA(λ) contains j linearly

independent (over L) a1, . . . ,aj ∈ F[X]m+n
}
.

We have the following lemma which is a corollary to the result in [7,
Page 489]:

Lemma 2.1. For any invertible A ∈ L(m+n)2,

(2.4) 0 < λ1 ≤ · · · ≤ λm+n.

Furthermore,

(2.5) λ1 · · ·λm+n = µ(PA(1))−1.

It should be noted that Mahler constructs the Haar measure in a different
way from Sprindžuk’s construction [11] used in [5]. However, as the Haar
measure is unique up to a scaling factor, and since the measure of the unit
‖·‖∞-ball is equal to 1 in both constructions, the measures obtained in the
two constructions must coincide.

It is easy to prove Theorem 1.1 from the above.

Proof of Theorem 1.1. Let A ∈ Lmn. The Haar measure on Lm+n is invari-
ant under linear transformations of determinant one (see [7]). Hence the
measure of the set of (x,y), x ∈ Lm, y ∈ Ln defined by the inequalities

‖xA− y‖∞ ≤ q−Qm/n, ‖x‖∞ ≤ qQ,

is equal to 1, as it is obtained by such a transformation of the unit ball.
The divisibility condition n|Qm is used to ensure this. By Lemma 2.1,
the first successive minimum of this set is less than or equal to 1, so the
set contains a non-trivial element (q,p) ∈ F[X]m+n. Furthermore, the
inequalities imply that q cannot be trivial, which completes the proof. �

We will need one additional result from [7, Page 489], relating the suc-
cessive minima of a parallelepiped to those of its so-called polar body.

Lemma 2.2. Let A ∈ L(m+n)2 be invertible, let λ1, . . . , λm+n denote the
successive minima of FA and let σ1, . . . , σm+n denote the successive minima
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of the distance function F ∗A defined by

F ∗A(y) = sup
x6=0

‖x · y‖
FA(x)

.

Then,
λmσn+1 = 1.

The definition of a polar body can be taken to be the one implicit in the
statement of Lemma 2.2, i.e.,

P ∗A(σ) = {x ∈ Lmn : F ∗A(x) ≤ σ} .
This coincides with the definition used in [7, Chapter 5].

3. The winning dimension of B(m,n)

In this section, we prove that the winning dimension of B(m,n) is strictly
positive. We will obtain an explicit lower bound on the winning dimension.
For the rest of this section, let n,m ∈ N be fixed and α, β ∈ (0, 1) be such
that γ = q−1 + αβ − (q−1 + 1)α > 0.

We now begin the game. Black starts by choosing a ball B1 of radius
ρ = ρ(B1). Clearly the set B1 is bounded, so we may fix a σ > 0 such that
for all A ∈ B1, ‖A‖∞ ≤ σ. We will construct a strategy for player White
depending on a constant R > R0(α, β, ρ, σ) ≥ 1, which we will choose later.
We use subsequently

δ = R−m(m+n)2 , δ∗ = R−n(m+n)2 , τ =
m

m+ n
.

Let Bk, Bh ⊆ Lmn be balls occurring in the (α, β)-game chosen by Black
such that ρ(Bk) < R−(m+n)(τ+i) and ρ(Bh) < R−(m+n)(1+j) for some
i, j ∈ N. We will show that White can play in such a way that the fol-
lowing properties hold for i, j ∈ N:

• For A ∈ Bk, there are no q ∈ F[X]m+n such that the inequalities

(3.1a) 0 < max
1≤l≤m

{‖ql‖} ≤ δRn(τ+i)

and

(3.1b) max
1≤l′≤n

{∥∥∥q · Ã(l′)
∥∥∥} ≤ δR−m(τ+i)−n

both hold.
• For A ∈ Bh, there are no q ∈ F[X]m+n such that the inequalities

(3.2a) 0 < max
1≤l′≤n

{‖ql′‖} ≤ δ∗Rm(1+j)

and

(3.2b) max
1≤l≤m

{∥∥∥∥q · Ã∗(l)∥∥∥∥} ≤ δ∗R−n(1+j)−m



Badly approximable systems of linear forms 429

both hold.
If a strategy such that (3.1a) and (3.1b) are avoided for all i ∈ N is followed,
White will win the (α, β;B(m,n))-game. Indeed, given a q ∈ F[X]m+n with
the first m coordinates, q1, . . . , qm say, not all equal to zero, we can find an
i ∈ N such that

(3.3) δRn(τ+i−1) < max
1≤l≤m

{‖ql‖} ≤ δRn(τ+i).

This immediately implies that (3.1a) holds for this i, so that (3.1b) must
be false. Hence, by (3.3),

max
1≤l′≤n

{∥∥∥q · Ã(l′)
∥∥∥}n

>
δm+nR−mn(τ+i)−n2+mn(τ+i)−mn

max1≤l≤m {‖ql‖}m

=
δm+nR−n2−mn

max1≤l≤m {‖ql‖}m

>
K

max1≤l≤m {‖ql‖}m

for any K ∈ (0, δm+nR−n2−mn), so the matrix A is in B(m,n) by (2.1).
For the remainder of this section, we will construct a strategy for White

ensuring that (3.1a) and (3.1b) (resp. (3.2a) and (3.2b)) cannot hold for
any i (resp. j). We define for any i ∈ N:

• Bki
to be the first ball chosen by Black with ρ(Bki

) < R−(m+n)(τ+i).
• Bhi

to be the first ball chosen by Black with ρ(Bhi
) < R−(m+n)(1+i).

Since τ < 1, these balls occur such that Bk0 ⊇ Bh0 ⊇ Bk1 ⊇ Bh1 ⊇ · · · . By
choosing R large enough, we can ensure that the inclusions are proper.

Since

δRnτ = R−m(m+n)2+nm(m+n)−1
= R−m((m+n)2− n

m+n) < 1,

(3.1a) has no solutions for i = 0. Hence, White can certainly play in such
a way that (3.1a) and (3.1b) have no polynomial solutions when A ∈ Bk0 .
We will construct White’s strategy in such a way that:

Step 1: Given the beginning of a game B1 ⊇ W1 ⊇ · · · ⊇ Bk0 ⊇ · · · ⊇ Bki

such that (3.1a) and (3.1b) have no polynomial solutions for any
A ∈ Bki

, White can play in such a way that (3.2a) and (3.2b) have
no polynomial solutions for any A ∈ Bhi

.
Step 2: Given the beginning of a game B1 ⊇ W1 ⊇ · · · ⊇ Bk0 ⊇ · · · ⊇ Bhi

such that (3.2a) and (3.2b) have no polynomial solutions for any
A ∈ Bhi

, White can play in such a way that (3.1a) and (3.1b) have
no polynomial solutions for any A ∈ Bki+1

.
Our first lemma guarantees that we need only consider solutions to the

equations in certain subspaces of Lm+n.



430 Simon Kristensen

Lemma 3.1. Let B1 ⊇ W1 ⊇ · · · ⊇ Bki
be the start of a game such that

(3.1a) and (3.1b) have no polynomial solutions for any A ∈ Bki
. The set{

q ∈ F[X]m+n : (3.2a) and (3.2b) hold for j = i for some A ∈ Bki

}
contains at most m linearly independent points.

Proof. Assume that there are linearly independent q1, . . . ,qm+1 ∈ F[X]m+n

such that (3.2a) and (3.2b) hold for A1, . . . , Am+1 ∈ Bki
. The absolute

value of the first n coordinates must be less than δ∗Rm(1+i) by (3.2a), and
as ‖Au‖∞ ≤ σ for u = 1, . . . ,m+1, (3.2b) and the structure of Ã∗u guarantee
that there is a constant K1(σ) > 0 such that

(3.4) ‖qu‖∞ ≤ K1(σ)δ∗Rm(1+i) for 1 ≤ u ≤ m+ 1.

Let C be the centre of Bki
. For any A ∈ Bki

,

(3.5)
∥∥∥∥Ã∗(l) − C̃∗

(l)
∥∥∥∥
∞
≤ ρ(Bki

) < R−(m+n)(τ+i) for 1 ≤ l ≤ m.

Now, as (3.2b) holds for the vectors q1, . . . ,qm+1, (3.4) and (3.5) imply
that for u = 1, . . . ,m+ 1,

max
1≤l≤m

{∥∥∥∥qu · C̃∗
(l)
∥∥∥∥} ≤ max

1≤l≤m

{∥∥∥∥qu · Ã∗u
(l)
∥∥∥∥ ,∥∥∥∥qu ·

(
C̃∗

(l)
− Ã∗u

(l)
)∥∥∥∥}

≤ max
{
δ∗R−n(1+i)−m,K1(σ)δ∗Rm(1+i)R−(m+n)(τ+i)

}
≤ K2(σ)δ∗R−n(1+i),

(3.6)

where K2(σ) ≥ K1(σ) > 0. If needed, we may increase the right hand side,
so that without loss of generality, K2(σ) > 1.

We define the parallelepiped

P =
{
y ∈ Lm+n : max

1≤l′≤n
{‖yl′‖} ≤ Rm(1+i),

max
1≤l≤m

{∥∥∥∥y · C̃∗(l)∥∥∥∥} ≤ R−n(1+i)

}
,

along with the corresponding distance function FC and the successive min-
ima λ1, . . . , λm+n. By (3.4) and (3.6), λm+1 ≤ K2(σ)δ∗. For n = 1,
0 < λm+1 ≤ K2(σ)R−(m+1)2 , which by Lemma 2.1 gives a contradiction by
choosing R large enough.
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Hence, we may assume that n > 1. Let

P ∗ =
{
x ∈ Lm+n : max

1≤l≤m
{‖xl‖} ≤ Rn(1+i),

max
1≤l′≤n

{∥∥∥x · C̃(l′)
∥∥∥} ≤ R−m(1+i)

}
.

This set admits the distance function F ∗C defined in Lemma 2.2 as the two
bodies, P and P ∗, are mutually polar (see [7]).

Let σ1, . . . , σm+n denote the successive minima of P ∗. By Lemma 2.1
and Lemma 2.2,

σ1 ≤ (σ1 · · ·σn−1)
1

n−1 = µ(P ∗)
−1

n−1 (σn · · ·σm+n)
−1

n−1

≤ µ(P ∗)
−1

n−1σ
−m+1

n−1
n = µ(P ∗)

−1
n−1λ

m+1
n−1

m+1 ≤ µ(P ∗)
−1

n−1 (K2(σ)δ∗)
m+1
n−1

≤ K3(σ)R−(m+n)2(m+1) = K3(σ)δR−(m+n)2 ,

where K3(σ) > 0. Hence, there is a q ∈ F[X]m+n \ {0} with

max
1≤l≤m

{‖ql‖} ≤ K3(σ)δR−(m+n)2Rn(1+i)

and

(3.7) max
1≤l′≤n

{∥∥∥q · C̃(l′)
∥∥∥} ≤ K3(σ)δR−(m+n)2R−m(1+i) < 1,

when we choose R large enough. But by (3.7), max1≤l≤m {‖ql‖} > 0, since
otherwise the last n coordinates would also be equal to 0, whence q = 0.
Hence, R may be chosen large enough that q satisfies (3.1a) and (3.1b), a
contradiction. �

In a completely analogous way, we can prove:

Lemma 3.2. Let B1 ⊇ W1 ⊇ · · · ⊇ Bhi
be the start of a game such that

(3.2a) and (3.2b) have no polynomial solutions for any A ∈ Bhi
. The set{

q ∈ F[X]m+n : (3.1a) and (3.1b)

hold with i replaced by i+ 1 for some A ∈ Bhi

}
contains at most n linearly independent points.

We will now reduce the statement that White has a strategy such that
Step 1 is possible to the statement that White can win a certain finite game.
The converse Step 2 is analogous.

Once again, we assume that B1 ⊇ W1 ⊇ · · · ⊇ Bki
is the beginning

of a game such that we have avoided polynomial solutions to all relevant
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inequalities so far. It is sufficient for White to avoid solutions q ∈ F[X]m+n

to (3.2a) and (3.2b) with

δ∗Rm(1+i−1) < max
1≤l′≤n

{‖ql′‖} ≤ δ∗Rm(1+i),

as solutions have been avoided for all vectors q with

max
1≤l′≤n

{‖ql′‖} ≤ δ∗Rm(1+i−1)

in the preceeding steps by assumption. Hence we need only consider the
q ∈ F[X]m+n for which

(3.8) δ∗Rm(1+i−1) < ‖q‖∞ .

By Lemma 3.1, the set of q satisfying (3.2a) and (3.2b) is contained in
some m-dimensional subspace. Let {y1, . . . ,ym} be a basis for this sub-
space, such that ‖yi · yi‖ = 1 for 1 ≤ i ≤ m, and such that ‖yi · yj‖ = 0
whenever i 6= j. Note that this is possible if we require that the solutions
q to be avoided are not in one of the finitely many one-dimensional linear
subspaces of Lm+n in which the integer vectors satisfy q · q = 0. This in
turn causes no loss of generality, since we can require the first ball chosen
be Black to be bounded away from all these spaces, so that solutions within
these spaces are automatically avoided. Write all q in this subspace satis-
fying (3.8) in the form q = t1y1 + · · ·+ tmym, t1, . . . , tm ∈ L. Immediately,

(3.9) δ∗Rm(1+i−1) < max
1≤l′≤m

{‖tl′‖} .

White needs to avoid solutions to the inequalities

(3.10) max
1≤l≤m

∥∥∥∥∥
m∑

l′=1

tl′

(
yl′ · Ã∗

(l)
)∥∥∥∥∥ ≤ δ∗R−n(1+i)−m.

This matrix inequality may be solved using Cramer’s Rule [6, Chapter
XIII, Theorem 4.4]. This theorem shows that (3.10) is soluble only if for
l′ = 1, . . . ,m,

‖tl′‖ ‖D‖ = ‖tl′D‖ ≤ δ∗R−n(1+i)−m max
1≤l≤m

{∥∥Dl,l′
∥∥} ,

where D denotes the determinant of the matrix with entries yl′ · Ã∗
(l)

and
Dl,l′ denotes the (l, l′)’th co-factor of this determinant. By (3.9), it is
sufficient to avoid

(3.11) ‖D‖ ≤ R−n(1+i)−m−m(1+i−1) max
1≤l,l′≤m

{∥∥Dl,l′
∥∥}

= R−(m+n)(1+i) max
1≤l,l′≤m

{∥∥Dl,l′
∥∥} .

We define the following finite game:
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Definition. Let y1, . . . ,ym ∈ Lm+n be a set of vectors, such that
‖yi · yi‖ = 1 for 1 ≤ i ≤ m, and such that ‖yi · yj‖ = 0 whenever i 6= j.
Let B ⊆ Lmn be a ball with ρ(B) < 1 such that for any A ∈ B, ‖A‖∞ ≤ σ.
Let µ > 0 and let α, β ∈ (0, 1) with q−1 +αβ − (q−1 + 1)α > 0. White and
Black take turns according to the rules of the (α, β)-game, choosing balls
inside B, but the game terminates when ρ(Bt) < µρ(B). White wins the
game if

‖D‖ > ρ(B)µ max
1≤l,l′≤m

{∥∥Dl,l′
∥∥}

for any A ∈ Bt.

If White can win the finite game for any µ ∈ (0, µ∗) for some µ∗ =
µ∗(α, β, σ) > 0, then White can guarantee that (3.11) does not hold for
any A ∈ Bhi

. To see this, let B = Bki
and let

µ =
R−(m+n)(1+i)

ρ(B)
≤ (αβ)−1R−n.

Choosing R large enough, this will be less than µ∗. It remains to be shown,
that such a µ∗ exists. We will do this by induction.

Let A ∈ Lmn, v ∈ {1, . . . ,m} and {y1, . . . ,ym} be the system of vectors
from the definition of the finite game. By considering all possible choices of
1 ≤ i1 < · · · < iv ≤ m and 1 ≤ j1 < · · · < jv ≤ m, we obtain

(
m
v

)2 matrices

(3.12)


yi1 · Ã∗

(j1)
· · · yi1 · Ã∗

(jv)

...
...

yiv · Ã∗
(j1)

· · · yiv · Ã∗
(jv)


For each v ∈ {1, . . . ,m}, we define the function Mv : Lmn → L(m

v )2

to
have as its coordinates the determinants of the matrices in (3.12) in some
arbitrary but fixed order. Furthermore, define

M−1(A) = M0(A) = (1),

the standard unit vector in L(m
0 )

2

= L. For a set K ⊆ Lmn, we define

Mv(K) = max
A∈K

‖Mv(A)‖∞ .

We will prove a series of lemmas, culminating in a proof that under ap-
propriate conditions, player White may always win the finite game (Lemma
3.5 below).

In the following, assume that v > 0 and that there exists a µv−1 such
that

(3.13) ‖Mv−1(A)‖∞ > ρ(B)µv−1Mv−2(Biv−1)

for all A ∈ Biv−1 for an appropriate Biv−1 occurring in the game.
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Lemma 3.3. Let ε > 0 and let B′ ⊆ Biv−1 be a ball of radius

ρ(B′) < εµv−1ρ(Biv−1).

Then ∥∥Mv−1(A)−Mv−1(A′)
∥∥
∞ < ερ(B)µv−1Mv−2(Biv−1)

for any A,A′ ∈ B′.

Proof. Consider first for a fixed A ∈ B′ and a fixed x ∈ L the quantity

‖Mv−1(A+ xEij)−Mv−1(A)‖∞ ,

where Eij denotes the matrix with 1 in the ij’th entry and zeros elsewhere.
On considering an individual coordinate of the vector

Mv−1(A+ xEij)−Mv−1(A)

and applying the ultra-metric inequality (1.2), it is seen that

(3.14) ‖Mv−1(A+ xEij)−Mv−1(A)‖∞ ≤ ‖x‖Mv−2(Biv−1).

The factor Mv−2(Biv−1) is an upper bound on the co-factor corresponding
to the ij’th minor. When ‖x‖ = 1, these quantities are discrete analogues
of the partial derivatives of Mv−1, and the upper bound (3.14) implies that
the function does not vary wildly.

We may pass from one matrix A ∈ B′ to another A′ by changing one
coordinate at a time, i.e., by performing a string of mn operations A 7→
A + (A′ij − Aij)Eij . Using these operations, we define a finite sequence of

matrices by A(1,1) = A+(A′11−A11)E11, A(2,1) = A(1,1) +(A′21−A
(1,1)
21 )E21

and so on, so that A(m,n) = A′. We now obtain,∥∥Mv−1(A)−Mv−1(A′)
∥∥
∞ =

∥∥∥∥Mv−1(A)−Mv−1(A(1,1)) +Mv−1(A(1,1))

− · · · −Mv−1(A((m−1),n)) +Mv−1(A((m−1),n))−Mv−1(A′)
∥∥∥∥
∞

Here, each matrix in the arguments of Mv−1 differs from the preceding one
in at most one place. Applying (3.14) and the ultra-metric inequality (1.2)
mn times,∥∥Mv−1(A)−Mv−1(A′)

∥∥
∞ ≤

∥∥A−A′
∥∥
∞Mv−2(Biv−1)

< εµv−1ρ(Biv−1)Mv−2(Biv−1) ≤ ερ(B)µv−1Mv−2(Biv−1).

�

Corollary 3.1. For a ball B′ ⊆ Biv−1 with radius ρ(B′) < 1
2µv−1ρ(Biv−1),

we have ∥∥Mv−1(A′)
∥∥
∞ > 1

2Mv−1(B′)
for any A′ ∈ B′.
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Proof. Apply Lemma 3.3 with ε = 1
2 and use (3.13). �

Now, we define

Dv(A) = det


y1 · Ã∗

(1)
· · · y1 · Ã∗

(v)

...
...

yv · Ã∗
(1)

· · · yv · Ã∗
(v)

 .

Clearly, this is a function of the nv variables a11, . . . , an1, . . . , anv. We
define the discrete gradient of Dv to be the vector

∇Dv(A) =

 Dv(A+ E11)−Dv(A)
...

Dv(A+ Emn)−Dv(A),

 ∈ Lmn,

where Eij ∈ Lmn denotes the matrix having 1 as the ij’th entry and zeros
elsewhere.

Corollary 3.2. With B′ as in Lemma 3.3 and A′, A′′ ∈ B′, we have∥∥∇Dv(A′)−∇Dv(A′′)
∥∥
∞ ≤ K4

∥∥Mv−1(A′)−Mv−1(A′′)
∥∥
∞

for some K4 > 0 depending only on m and n.

Proof. Note, that the coordinates of ∇Dv(A) are linear combinations of the
coordinates of Mv−1(A) for any A. �

The discrete gradient of Dv turns out to be the key ingredient in the
proof. We will need the following lemma:

Lemma 3.4. Let B′ ⊆ Biv−1 be a ball such that

(3.15) ρ(B′) < 1
2µv−1ρ(Biv−1).

Let A′ ∈ B′ be such that

(3.16)
∥∥Mv(A′)

∥∥
∞ < 1

8Mv−1(B′).

Furthermore, assume that the maximum ‖Mv−1(A′)‖∞ is attained by the
absolute value of the coordinate which is the determinant

dv = det


y1 · Ã′∗

(1)
· · · y1 · Ã′∗

(v−1)

...
...

yv−1 · Ã′∗
(1)

· · · yv−1 · Ã′∗
(v−1)

 .

Then ∥∥∇Dv(A′)
∥∥
∞ > K5(σ)Mv−1(B′)

for some K5(σ) > 0.
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Proof. Let z ∈ Lm+n. Consider the following quantity

Φ(z) =

∥∥∥∥∥∥∥∥det


y1 · Ã′∗

(1)
· · · y1 · (Ã′∗

(v)
+ z)

...
...

yv · Ã′∗
(1)

· · · yv · (Ã′∗
(v)

+ z)

(3.17)

− det


y1 · Ã′∗

(1)
· · · y1 · Ã′∗

(v)

...
...

yv · Ã′∗
(1)

· · · yv · Ã′∗
(v)


∥∥∥∥∥∥∥∥

=

∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· z

∥∥∥∥∥ .
The last equality follows on expanding the determinants in the last column,
where the di are taken from the coordinates of Mv−1(A′) and dv is the
special coordinate for which the maximum absolute value is attained.

Let z1 = d1y1 + · · ·+dv−1yv−1 +Xdvyv, where X ∈ L is the power series
consisting solely of the indeterminate X. We have assumed that ‖di‖ ≤
‖dv‖ < q ‖dv‖ = ‖Xdv‖ for all i = 1, . . . , v − 1. Hence, by assumption on
the yi,∥∥∥∥∥

(
v∑

h=1

(−1)h+1dhyh

)
· z1

∥∥∥∥∥
=

∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· (d1y1 + · · ·+Xdvyv)

∥∥∥∥∥
= q ‖dv‖2 = q

∥∥Mv−1(A′)
∥∥2

∞ > q
4Mv−1(B′)2

by Corollary 3.1.
We wish to interpret Φ(z) as a discrete analogue of the directional de-

rivative along a vector in Lmn. Furthermore, we need to obtain a lower
bound on this quantity for some direction. In order to be able to make this
interpretation, we need to find a lower bound on Φ(z2), where z2 is of the
form (z1, . . . , zn, 0, . . . , 0), i.e., where the last m coordinates are zero. For
such vectors, considering the difference in (3.17) corresponds to considering
the difference

∥∥∥Dv(A+ Ẑ2)−Dv(A)
∥∥∥, where Ẑ2 ∈ Lmn is the matrix which

has the vector (z1, . . . , zn) as its v’th row and zeros elsewhere, so that the
matrix A + Ẑ2 ∈ Lmn is the matrix A with the entries of the v’th row
shifted by the first n coordinates of z2. When

∥∥∥Ẑ2

∥∥∥
∞

= 1, this quantity is

exactly the discrete directional derivative of Dv in direction Ẑ2 evaluated
at A.



Badly approximable systems of linear forms 437

Because of the special form of the Ã′∗
(l)

, we may write

yh = y0
h + λh1Ã′

∗(1)
+ · · ·+ λhmÃ′

∗(m)
,

where the y0
h have zeros on the last m coordinates. By assumption on the

yh, certainly for all h, l, ‖λh,l‖ ≤ 1. Also, there is a constant K5(σ) > 0
such that

∥∥y0
h

∥∥
∞ ≤ 1

8K5(σ)−1 for all h. We define z2 = d1y0
1 + · · · +

dv−1y0
v−1 +Xdvy0

v, which clearly has the required form.
Now,

Φ(z2) =

∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· z2

∥∥∥∥∥
=

∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· (z2 − z1 + z1)

∥∥∥∥∥
≥ q

4Mv−1(B′)2 −

∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· (z1 − z2)

∥∥∥∥∥ .
(3.18)

In order to produce a good lower bound for Φ(z2), we will produce a good
upper bound on the last term of the above. We know that

z1 − z2 =
m∑

l=1

(
v∑

h=1

d′hλhl

)
Ã′∗

(l)
,

where d′h = dh for h = 1, . . . , v − 1 and d′v = Xdv. Furthermore for
l = 1, . . . ,m, by simple calculation,∥∥∥∥∥

(
v∑

h=1

(−1)h+1dhyh

)
· Ã′∗

(l)

∥∥∥∥∥
=

∥∥∥∥∥∥∥∥det


y1 · Ã′∗

(1)
· · · y1 · Ã′∗

(v−1)
y1 · Ã′∗

(l)

...
...

yv · Ã′∗
(1)

· · · yv · Ã′∗
(v−1)

yv · Ã′∗
(l)


∥∥∥∥∥∥∥∥

≤
∥∥Mv(A′)

∥∥
∞ < 1

8Mv−1(B′)

by choice of A′. Hence, as ‖d′h‖ ≤ qMv−1(B′),∥∥∥∥∥
(

v∑
h=1

(−1)h+1dhyh

)
· (z1 − z2)

∥∥∥∥∥
=

∥∥∥∥∥
m∑

l=1

(
v∑

h′=1

d′h′λh′l

)(
v∑

h=1

(−1)h+1dhyh

)
· Ã′∗

(l)

∥∥∥∥∥ < q
8Mv−1(B′)2.
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Together with (3.18) this implies

(3.19) Φ(z2) > q
8Mv−1(B′)2.

We wish to use the discrete directional derivative to obtain a lower
bound on the discrete gradient. Let z ∈ Lm+n be some vector of the
form (z1, . . . , zn, 0, . . . , 0), so that z corresponds to a matrix Ẑv ∈ Lmn

with (z1, . . . , zn) as its v’th row and zeros elsewhere. Suppose further that
‖z‖∞ =

∥∥∥Ẑv

∥∥∥
∞

= 1. It is simple to show that ‖∇Dv(A′)‖∞ ≥ Φ(z).

Let logq denote the logarithm to base q. We normalise z2 byX− logq‖z2‖∞ ,
where X is again the indeterminate in the power series expansions. In this
way, we obtain a vector in Lm+n corresponding to a matrix Ẑ2 ∈ Lmn with∥∥∥Ẑ2

∥∥∥
∞

= 1. Now, note that by (3.17), for any x ∈ L and any z ∈ Lm+n,

Φ(xz) = ‖x‖Φ(z). But as ‖z2‖∞ ≤ 1
8K5(σ)−1qMv−1(B′), we get by (3.19)

‖∇Dv(A)‖∞ ≥ Φ(z2X
− logq‖z2‖∞) =

Φ(z2)
‖z2‖∞

>
q
8Mv−1(B′)2

1
8K5(σ)−1qMv−1(B′)

= K5(σ)Mv−1(B′).

This completes the proof. �

We are now ready to prove that player White can win the finite game.

Lemma 3.5. Let {y1, . . . ,ym} be a basis for this subspace, such that
‖yi · yi‖ = 1 for 1 ≤ i ≤ m, and such that ‖yi · yj‖ = 0 whenever i 6= j. Let
B ⊆ Lmn be a ball, ρ(B) = ρ0 < 1, such that for some σ > 0, ‖A‖∞ < σ
for any A ∈ B. Let α, β ∈ (0, 1) with q−1 + αβ − (q−1 + 1)α > 0. Assume
that 0 ≤ v ≤ m.

There exists a µv = µv(α, β, σ) > 0 for which White can play the finite
game in such a way that for the first ball Biv with ρ(Biv) < ρ0µv,

‖Mv(A)‖∞ > ρ0µvMv−1(Biv)

for any A ∈ Biv .

The slightly cumbersome notation Biv is used in order to make the con-
nection with (3.13), which we will use in the proof, explicit. Of course, the
additional subscript plays no rôle in the statement of the lemma.

Proof. We will prove the lemma by induction. Clearly, the lemma holds for
v = 0. Hence, we use (3.13) as our induction hypothesis, and so we have
the above results as our disposal.

Recall that γ = q−1 + αβ − (q−1 + 1)α > 0 and let

ε =
γ

8
K5(σ)
K4

> 0.
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Furthermore, let

iv = min
{
i ∈ N : i > iv−1, ρ(Bi) < min(1

2 , ε)µv−1ρ(Biv−1)
}
.

By appropriately choosing a constant K6(α, β, σ) > 0, we have

(3.20) ρ(Biv) ≥ K6(α, β, σ)ρ0.

Using the induction hypothesis, Corollary 3.2 and Lemma 3.3, for any
A′, A′′ ∈ Biv , we have
(3.21)∥∥∇Dv(A′)−∇Dv(A′′)

∥∥
∞ < K4ερ0µv−1Mv−2(Biv−1) <

γ
8K5(σ)Mv−1(Biv).

We now let

µv = min
{

1
8 ,

γ
8αβK6(α, β, σ), 3γ

8 K5(σ)K6(α, β, σ)K7(σ)
}
> 0,

whereK7(σ) > 0 is to be chosen later. Assume that there exists an A′ ∈ Biv

for which the assertion of the lemma does not hold. That is,∥∥Mv(A′)
∥∥
∞ ≤ ρ0µvMv−1(Biv).

In this case, we will prove that White has a strategy which will eliminate
such elements in a finite number of moves.

By choice of iv, (3.15) holds. Since ρ0 < 1, (3.16) holds. By rearranging
the yi, we can without loss of generality assume that the condition on the
determinant in Lemma 3.4 holds. Hence,

(3.22)
∥∥∇Dv(A′)

∥∥
∞ > K5(σ)Mv−1(Biv).

Let ∇′ = ∇Dv(A′), and let Di and Ci denote the centres of Wi and Bi

respectively. White can play in such a way that

(3.23)
∥∥(Ci −Di) · ∇′∥∥ ≥ q−1(1− α)ρ(Bi)

∥∥∇′∥∥
∞ .

Indeed, there are points Di ∈ Bi with ‖Ci −Di‖∞ ≥ q−1(1− α)ρ(Bi) and
such that B(Di, αρ(Bi)) ⊆ Bi. This guarantees (3.23). Also, no matter
how Black plays

(3.24)
∥∥(Ci+1 −Di) · ∇′∥∥ ≤ (1− β)ρ(Wi)

∥∥∇′∥∥
∞ ,

since Black cannot choose the next centre further away from Di. Hence,

(3.25)
∥∥(Ci+1 − Ci) · ∇′∥∥ ≥ (q−1(1− α)− α(1− β)

)
ρ(Bi)

∥∥∇′∥∥
∞

= γρ(Bi)
∥∥∇′∥∥

∞ > 0.

We choose t0 ∈ N such that αβ γ
2 < (αβ)t0 ≤ γ

2 . Player White can ensure
that

(3.26)
∥∥(Ci+t0 − Ci) · ∇′∥∥ ≥ γρ(Bi)

∥∥∇′∥∥
∞ > 0.

This follows from (3.23), (3.24) and the fact that γ > 0 so that player White
can ensure that the bound in (3.25) is preserved for the next t0 steps. White



440 Simon Kristensen

will play according to such a strategy. Furthermore ρ(Bi+t0) ≤
γ
2ρ(Bi), so

for any A ∈ Bi+t0 ,

(3.27)
∥∥(A− Ci) · ∇′∥∥ ≥ ∥∥(Ci+t0 − Ci) · ∇′∥∥− ∥∥(A− Ci+t0) · ∇′∥∥

≥ γ
2ρ(Bi)

∥∥∇′∥∥
∞ .

Now, for any A ∈ Biv ,

(3.28) ‖(A− Civ) · ∇Dv(A)‖ ≤ ‖A− Civ‖∞ ‖∇Dv(A)‖∞
≤ ρ(Biv) max

1≤l≤m
1≤l′≤n

{‖Dv (A+ Ell′)‖∞ , ‖Dv(A)‖∞} ≤ K7(σ) ‖Dv(A)‖∞

for some K7(σ) > 0. Also,

(3.29)∥∥(A− Civ) · ∇′∥∥ =
∥∥(A− Civ) · ∇Dv(A) + (A− Civ) · (∇′ −∇Dv(A))

∥∥
≤ max{‖(A− Civ) · ∇Dv(A)‖ ,

∥∥(A− Civ) · (∇′ −∇Dv(A))
∥∥}

≤ ‖(A− Civ) · ∇Dv(A)‖+
∥∥(A− Civ) · (∇Dv(A)−∇′)

∥∥
Combining inequalities (3.28) and (3.29), we obtain for some K7(σ) > 0,

(3.30)
‖Dv(A)‖∞ ≥ K7(σ)

( ∥∥(A− Civ) · ∇′∥∥− ∥∥(A− Civ) · (∇Dv(A)−∇′)
∥∥ ).

Now by (3.27) and (3.22),

(3.31)
∥∥(A− Civ) · ∇′∥∥ ≥ γ

2ρ(Biv)
∥∥∇′∥∥

∞ ≥ γ
2ρ(Biv)K5(σ)Mv−1(Biv).

By (3.21),∥∥(A− Civ) · (∇Dv(A)−∇′)
∥∥ ≤ ρ(Biv)

∥∥∇Dv(A)−∇Dv(A′)
∥∥
∞

≤ ρ(Biv)
γ
8K5(σ)Mv−1(Biv).

Combining this with (3.30) and (3.31),

‖Dv(A)‖∞ ≥ K7(σ)3γ
8 ρ(Biv)K5(σ)Mv−1(Biv).

Inserting (3.20) into this expression, we find that

‖Dv(A)‖∞ ≥ 3γ
8 K5(σ)K6(α, β, σ)K7(σ)ρ0Mv−1(Biv) ≥ µvρ0Mv−1(Biv),

by choice of µv. This completes the proof of Lemma 3.5. �

Note that Lemma 3.5 immediately implies:

Theorem 3.1. Let α, β ∈ (0, 1) with q−1 + αβ − (q−1 + 1)α > 0 and let
m,n ∈ N. White can win the finite game and hence the (α, β;B(m,n))-
game. In particular,

windim (B(m,n)) ≥ 1
q + 1

.
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Proof. The first part follows from Lemma 3.5 with v = m and the obvious
analogue for the other step in the strategy for the (α, β;B(m,n))-game.
The lower bound follows as q−1 + αβ − (q−1 + 1)α > 0 for any β ∈ (0, 1)
and any α < 1/(q + 1). �

4. The Hausdorff dimension of B(m,n)

In this final section, we will prove that if α > 0, then any α-winning set
in Lmn has maximal Hausdorff dimension. By Theorem 3.1, this will imply
Theorem 1.2. To do this, we change our viewpoint to that of player Black.
We will for each step of the game examine a number of different possible
directions for the game under the assumption that player White is following
a winning strategy. This will give rise to a particularly rich subset of the
α-winning set for which we may estimate the Hausdorff dimension.

Theorem 4.1. Let β ∈ (0, 1) and let N(β) ∈ N be such that any ball
B ⊆ Lmn of radius ρ contains N(β) pairwise disjoint balls of radius βρ.
Let S ⊆ Lmn be (α, β)-winning. Then

dimH(S) ≥ logN(β)
|logαβ|

.

Proof. Let Λ = {0, . . . , N(β) − 1}N and let (ij) ∈ Λ. For each ball Wj

chosen by White, we pick N(β) disjoint balls in W β
j which we enumerate

by elements from the set {0, . . . , N(β)−1}. We restrict the choice of moves
for player Black to these N(β) possibilities. In this way, we obtain for
each element λ ∈ Λ a point A(λ) ∈ Lmn. As we may assume that White
is following a winning strategy, for each λ ∈ Λ, A(λ) ∈ S. We will label
balls chosen by player Black by the sequence leading to them, i.e., Bl =
B(i1, . . . , il), where i1, . . . , ij ∈ {0, . . . , N(β) − 1}. As distinct sequences
give rise to disjoint balls from some point in the game and onwards, distinct
points λ, λ′ ∈ Λ give rise to different points A(λ), A(λ′) ∈ S.

Let
S∗ =

⋃
λ∈Λ

{A(λ)} ⊆ S.

We define a surjective function f : S∗ → [0, 1] by

A 7→ x = 0.i1i2 . . . where A = A(i1, i2, . . . )

where 0.i1i2 . . . is the base N(β) expansion of x. We extend this function to
all subsets of Lmn in the following way. For T ⊆ S∗, let f(T ) =

⋃
A∈T f(A).

For R ⊆ Lmn, let f(R) = f(R ∩ S∗).
Let C = (Bl)l∈N be a cover of S with balls, where Bl has radius ρl.

Clearly, C∗ = (Bl ∩ S∗)l∈N is a cover of S∗. Mapping to the interval, we
find that f(C∗) = (f(Bl ∩ S∗))l∈N = (f(Bl))l∈N is a cover of [0, 1]. Thus,
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the union of the sets f(Bl) has outer Lebesgue measure ` greater than 1,
so by sub-additivity

(4.1)
∞∑
l=1

` (f(Bl)) ≥ 1.

Now, let

jl =
[
log 2ρl

logαβ

]
.

For ρl sufficiently small, we have jl > 0 and ρl < (αβ)jl . Hence, by
the ball intersection property, Bl is contained in at most one ball of the
form Bl(i1, . . . , ijl

). But such a ball clearly maps into an interval of length
N(β)−jl . Hence, `(f(Bl)) ≤ N(β)−jl . By (4.1), we have

1 ≤
∞∑
l=1

` (f(Bl)) ≤
∞∑
l=1

N(β)−jl

=
∞∑
l=1

N(β)
−

»
log 2ρl
log αβ

–
≤ 2

log N(β)
|log αβ|

∞∑
l=1

ρ

log N(β)
|log αβ|

l .

Now, for any such cover C with small enough balls, the s-length ls(C) > 0
for s = log N(β)

|log αβ| . Hence,

dim(S) ≥ logN(β)
|logαβ|

.

�

Theorem 4.1 allows us to prove that dim(B(m,n)) = mn and thus com-
plete the proof of Theorem 1.2:

Proof of Theorem 1.2. By Theorem 4.1, we need only estimate the number
N(β) to get a lower bound for the Hausdorff dimension. This is a simple
combinatorial problem. By scaling and translation, we note that it suffices
to consider the ‖·‖∞-ball B(0, 1) = Imn.

We choose the number i ∈ Z such that qi−1 ≤ β < qi and consider
the balls B(c, β) ⊆ Imn where c ∈ Xi+1F[X]mn. By choice of i and the
ball intersection property, these are clearly disjoint. Furthermore, counting
these balls we see that

N(β) =
(
q−i−1

)mn =
1
qmn

1
(qi)mn � 1

βmn
.

Hence, by Theorem 4.1,

dim(B(m,n)) ≥ mn |log β|
|logα|+ |log β|

−−−→
β→0

mn.

This completes the proof. �
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