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On extreme forms in dimension 8

par Cordian RIENER

Résumé. Par un théoreme de Voronoi, un réseau est extrême si
et seulement s’il est parfait et eutactique. La classification des
réseaux parfaits a été récemment obtenue en dimension 8 ([5]). Il
y a 10916 réseaux parfaits. En utilisant des méthodes de program-
mation linéaire, nous obtenons la liste de ceux de ces réseaux qui
sont eutactiques. En petite dimension, presque tous les réseaux
parfaits sont également eutactiques. Ce n’est plus le cas à partir
de la dimension 8 : il n’y a que 2408 réseaux extrêmes de dimen-
sion 8.

Abstract. A theorem of Voronoi asserts that a lattice is extreme
if and only if it is perfect and eutactic. Very recently the classi-
fication of the perfect forms in dimension 8 has been completed
[5]. There are 10916 perfect lattices. Using methods of linear
programming, we are able to identify those that are additionally
eutactic. In lower dimensions almost all perfect lattices are also
eutactic (for example 30 out of the 33 in dimension 7). This is
no longer the case in dimension 8: up to similarity, there are only
2408 extreme 8-dimensional lattices.

1. Introduction

A lattice Λ is a discrete subgroup of rank n of the Euclidean vector
space Rn endowed with a scalar product ( · ). For details on the theory
of lattices we refer to Martinet’s book [7]. We note N(x) the squared
norm of an element x of Rn. The norm or minimum of Λ is defined as
N(Λ) = minx∈Λ,x 6=0 x · x and the set S(Λ) := {x ∈ Λ : x · x = N(Λ)} is the
set of minimal vectors of Λ.

Given a family F of vectors x1, ..., xn ∈ Rn, the Gram matrix of F is
Gram(F) := ((xi · xj)) and we call a Gram matrix of Λ the Gram matrix
of any Z-base B = (b1, ..., bn) of Λ. The determinant of such a matrix
is the determinant det(Λ) of Λ. Given a pair (Λ,B), we attach to it the
quadratic from q(x) = N(

∑
i xibi), which depends only on the isometry

class of (Λ,B). This dictionary gives a one-to-one correspondence between
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similarity classes of lattices and equivalence classes over Z of quadratic
forms having the same minimum.

One important invariant of these similarity classes was introduced by
Hermite in 1845. It is defined as:

γ(Λ) =
N(Λ)

det(Λ)
1
n

.

Geometrically γ(Λ) is a measure for the density of the sphere packing at-
tached to Λ. Its maximum γn := maxΛ⊂E γ(Λ), the so called Hermite
constant, leads therefore to the densest lattice sphere packing in dimen-
sion n. Following the approach of Korkine and Zolotareff, we call a lattice
extreme if γ(Λ) attains a local maximum in Λ, i.e., one has γ(Λ′) ≤ γ(Λ)
for any Λ′ close enough to Λ. In order to find the local maxima of the
Hermite function one uses the properties of perfection and eutaxy, which
are defined as follows: with 0 6= x ∈ E we associate the rank one symmetric
matrix Px := xxt. A lattice is called perfect if the Px, x ∈ S(Λ) span the
space of all symmetric matrices Symn.

Let Λ be a lattice with Gram-Matrix A. A eutaxy relation for Λ is a set
of coefficients λx ∈ R, x ∈ S(Λ) such that A−1 =

∑
x∈S(Λ) λxPx. A lattice

is called weakly eutactic if there exists a eutaxy relation. Furthermore it is
called semi-eutactic if the λx are ≥ 0 and eutactic if they may be chosen
strictly positive.
Note that perfection already implies weak eutaxy. Using the notions of
perfection and eutaxy, Voronoi ([8]) has shown:

Theorem 1. (Voronoi) A lattice Λ is extreme if and only if it is both perfect
and eutactic.

Using the algorithm developed by Voronoi himself, one can obtain a
complete classification of all perfect lattices in a given dimension. This
work has been carried out up to dimension 8. In the next section we will
describe how to use methods of linear programming in order to decide
whether a lattice is eutactic.

2. Eutactic perfect lattices

The perfect lattices of dimension 8 have been found by Bergé, Martinet
and their students and very recently Dutour, Schürmann and Vallentin [5]
have been able to show that this classification is complete. An interesting
question still remains: Which are the eutactic forms within those 10916
perfect forms? In low dimensions almost all perfect lattices are also eutac-
tic. Martinet conjectures in his book [7] that this no longer is the case from
dimension 8 onwards. In order to transfer the question of eutaxy into the
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language of linear programming, we just present some simple facts about
convex cones.

Let E be a Euclidean vector space of dimension m. A set C ⊂ E is called
a cone if for x, y ∈ C we have x + y ∈ C and furthermore αx ∈ C for 0 ≤ α.
Moreover C is called pointed if C

⋂
(−C) = {0}.

For X ⊂ E the set

cone (X) :=
{∑

aixi : 0 ≤ ai, xi ∈ X
}

is called the cone induced by X.If X is finite cone (X) is called polyhedral.
For every convex cone C, we can form its dual cone, which is defined as

C∗ := {u ∈ E | ∀x ∈ C : 〈u, x〉 ≤ 0}.
This is again a convex cone and if C is closed we have C = C∗∗.
If C := cone(x1, .., xn) is a polyhedral cone, the dual cone is just

C∗ := {y ∈ E | 〈xi, y〉 ≤ 0 ∀ 1 ≤ i ≤ n}.
On the space Symn we consider the scalar product 〈A,B〉 := Tr(AB). Now
we want to express eutaxy and perfection in the language of cones. For this
aim we give the following definition:

Definition 2. Let Λ ⊂ Rn be a lattice. Then

DΛ := cone (Px)x∈S(Λ)

is called the Voronoi domain of Λ.

For a lattice Λ we can now translate the notions of perfection and eutaxy:
(1) A lattice Λ is perfect if D∗

Λ is pointed.
(2) A lattice Λ is semi-eutactic if A−1 ∈ DΛ and eutactic if A−1 ∈ ri(DΛ)

(ri stands for the relative interior).
Now to say that a perfect form is only weakly eutactic is equivalent to say
that A−1 is not inside the Voronoi domain. This is the case when A−1

can be separated from the Voronoi domain by a hyperplane. We have the
following:

Theorem 3. Let C be a closed cone in E. Then p ∈ V \C if and only if
there exists u ∈ C∗ such that 〈p, u〉 > 0.

Now the distinction between semi-eutaxy and eutaxy necessitates that
we winnow the interior and the boundary of a convex cone:

For u ∈ E we define the hyperplane H(u) := {x ∈ V |〈u, x〉 = 0} and the
half space H−(u) := {x ∈ V |〈u, x〉 ≤ 0}. We say that such a hyperplane is
a supporting hyperplane if H(u)∩C 6= ∅ and C ⊂ H−(u). Such a support is
called non-trivial if C∩H 6= C. If C is a polyhedral cone, only the boundary
points can be in a hyperplane that defines a non-trivial support. Thus we
have
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Theorem 4. Let C be a closed cone then x ∈ int(C∗) if and only if H(u)
is a supporting hyperplane and x ∈ H(u) implies u ∈ C⊥.

With these properties of polyhedral cones we want to decide the ques-
tion whether a perfect lattice is eutactic or not using linear programming
methods. Linear programming (abbreviated by (LP)) is a technique to find
a maximizer or minimizer of a linear function subject to linear inequalities
More precisely:

Definition 5. Let A ∈ Rm×n a m × n matrix, c ∈ Rn and b ∈ Rm. A
linear problem (LP) is of the form

c · x → max
subject to Ax ≥ b

The convex polyhedron P := {x ∈ Rn|Ax ≥ b} is called the feasible region.

An efficient algorithm to solve such problems is the so called Simplex
Algorithm introduced by Danzig [4]. It uses the fact that among the optimal
solutions of an (LP), there is always one that is a vertex of P.

Using the separation theorems for polyhedral cones, we are now able
to investigate the list of perfect lattices in dimension 8. To this end we
proceed in three steps:

(1) We try to find a separating hyperplane. If we find one, the lattice is
only weakly eutactic and we are done

(2) When we do not find a separating hyperplane, we look for a sup-
porting hyperplane which contains A−1. If there is such a supporting
hyperplane, the lattice is semi-eutactic.

(3) If we are not able to find neither a separation nor a supporting hy-
perplane, the lattice must be eutactic. To prove this, we look for a
eutaxy relation.

To simplify the notation of the upcoming LPs, we will use a ∈ Rd for the
point that represents A−1 and p1, ..., ps for the points that represent the Px.
In order to deal with the problem of the first step, we consider the following
program:

x · a → max
subject to x · pi ≤ 0 ∀ i = 1, ..., s

x · a ≤ 100
The last inequality is artificially added in order that the LP should have a
bounded solution. If we find any solution vector x∗, for which the optimal
solution of the LP is strictly positive, we get a separating hyperplane, thus
the lattice is not semi-eutactic and therefore also not eutactic.

For the lattices that passed the first test we now want to sort out those
that are only semi-eutactic. For this aim, we investigate the following (LP):
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x · pi → min

subject to x · pi ≤ 0 ∀ i = 1, ..., s
x · a = 0∑
x · pi ≥ −100

Here again the last inequality was added to ensure the existence of a
bounded solution. As for perfect lattices D∗

Λ is pointed, the existence of an
optimal solution which is strictly negative provides a supporting hyperplane
that contains A−1. The lattice thus is only semi-eutactic.

The lattices that passed these two tests are expected to be eutactic. In
order to prove this, we look for a eutaxy relation. As in the last section
the Matrix B := (pi)s

i=1 is the matrix whose columns are the points pi.
The eutaxy relation therefore has the form: a = Bx, where x should be a
vector with strictly positive components. In order to find such a vector x,
we substract from each of its components a slack variable λ. We then try
to maximize the value of λ, in other words we look at the following LP:

λ → max
subject to Bx = a

xi − λ ≥ 0 ∀ i = 1, .., s

If the lattice we investigate is eutactic, the optimal value of λ must be
strictly positive and then the vector x provides a eutaxy relation.

3. Results

There are many implementations of the simplex algorithms available on
the Internet. We decided to use the one that is implemented in the lrs-
package of David Avis[1]. Since it works with exact arithmetics, we can be
sure to avoid rounding errors.

In the following table we summarize the results for dimension 8. We
order them by increasing half-kissing numbers s := 1

2 |S(Λ)|. More detailed
tables are available on the A2x-Web-Pages on Lattices[2].
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[5] M. Dutour, A. Schürmann, F. Vallentin, Classification of eight-dimensional perfect

forms. Electron. Res. Announc. Amer. Math. Soc. 13 (2007).

[6] D.-O. Jaquet-Chiffelle, Énumération complète des classes de formes parfaites en dimen-

sion 7. Ann. Inst. Fourier 43 (1993), 21–55.
[7] J. Martinet, Perfect Lattices in Euclidean Spaces. Springer–Verlag, Heidelberg (2003).



682 Cordian Riener

[8] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadra-
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s Extreme Semi-Eutactic Only Perfect Total
36 858 8 5388 6254
37 513 1 1519 2033
38 471 6 1021 1498
39 212 1 288 501
40 156 6 180 342
41 71 3 47 121
42 44 1 24 69
43 19 0 7 26
44 20 0 4 24
45 11 1 1 13
46 10 1 1 12
47 4 0 0 4
48 4 0 0 4
49 1 0 0 1
50 2 0 0 2
51 3 0 0 3
52 1 0 0 1
54 4 0 0 4
56 1 0 0 1
58 1 0 0 1
71 1 0 0 1
120 1 0 0 1
total 2408 28 8480 10916

Table 1. Results in dimension 8

Cordian Riener

J.W. Goethe-Universitaet

Fb. Mathematik u. Informatik
60054 Frankfurt am Main

E-mail : riener@math.uni-frankfurt.de


