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RESUME. Dans le p"-iéme corps cyclotomique Qp», p un nom-
bre premier, n € N, le premier p est totalement ramifié, 1'idéal
au dessus de p dans Q,» étant engendré par w, = (» — 1 avec
une racine primitive p"-ieme de 'unité (,n = e . De plus ces
nombres constituent un ensemble qui vérifie la relation de norme
NQanrl/@pn (Wnt1) = wp. Le but de cet article est d’établir un
résultat analogue pour les corps de classes de rayon Ky~ de con-
ducteur p™ d’un corps quadratique imaginaire K, ou p™ est une
puissance d’un idéal premier dans K. Un tel résultat est obtenu
en remplacant la fonction exponentielle par une fonction elliptique
convenable.

ABSTRACT. In the p"-th cyclotomic field Qp», p a prime number,
n € N, the prime p is totally ramified and the only ideal above p is
generated by w,, = (p» — 1, with the primitive p"-th root of unity
Cpn = e . Moreover these numbers represent a norm coherent
set, i.e. NQpn+1/Qpn (Wnt1) = wy. It is the aim of this article to
establish a similar result for the ray class field K~ of conductor
p™ over an imaginary quadratic number field K where p™ is the
power of a prime ideal in K. Therefore the exponential function
has to be replaced by a suitable elliptic function.

1. Introduction and results

Let K be an imaginary quadratic number field, f an integral ideal in K
and Kj the ray class field modulo f over K. In particular Ky is the Hilbert
class field of K. The generalized Principle Ideal Theorem [Sch2], [Sch3] !
says that for any power of a prime ideal p™ there is an element m, € Kyn

Manuscrit regu le 22 novembre 2004.

I [Sch3] the following has to be corrected:
1) The prime ideal q in the definition of Hy(z) must have the additional property gecd(q,q) = 1,
2) Hy(1) has to be replaced by Hq(w) with w =1 mod q, w =0 mod q.
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1
associated to p (o]
1
T ~ P [Kpn:K(l)] .

The element 7, can be viewed as the elliptic analogue of the cyclotomic
unit ,
2mi
wp=er” —1
for the power p™ of a prime p. As an element of the p"-th cyclotomic field
Qpn the element w,, has the factorisation

1

Wy, ~ (p) [Qpn:Q] .

Moreover wy, has the following nice properties that can easily be verified:
27
o w, = e,(1) with the p™ periodic function e,(z) =1 —e»" .

e Let C,nyz denote the field of p™ periodic meromorphic functions on C,
then we have the norm relation for n > 0

en(2) = NC 41, /Cpnz (€nt1(2)) = 11 ent1(2 +€).
¢eprz mod prt1z
e For z = 1 the last relation becomes a norm relation between number
fields, if n > 1:

wn = Ng 11 /Qn (Wnt1) = 11 ent+1(1+¢)
¢epnZ mod prtlz
e and
eo(2)
61<Z - 1) z=1

It is the aim of this article to give a construction of 7, having the same
nice properties. For a complex lattice I' we therefore consider the Klein
normalization of the Weierstrass o-function

p(z|0) = e 7 o (2|D) ¥/A(D),
where A(T) is the discriminant of the theory of elliptic functions. Herein
z* is defined for a complex number z by

2" = 21wl + 2ows,

with the real coordinates z1, z9 from the representation z = zywi + zowo by
a basis wi,ws of I' and the quasiperiods w; = 2((%|I") of the Weierstrass

(-function. The first factor e_%a(zﬂ“) in the definition of ¢(z|T") is clearly
independent of the choice of basis wy,ws of I'. To fix the 12-th root /A(T)

we use the identity
2mi\"?  (wi\*
- (3) 0(3)
w2 w2
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for a basis of I" oriented by <& (%) > 0 and set
b omi wi )2

AT = (22) g (2
w2 w2

So the value ¢(z|I") is only well defined up to a 12-th root of unity depending
on the basis chosen for its definition. However products where all the
R/ A(T)-factors cancel out are independent of the choice of basis choosing
the same basis for each factor.

We fix an arbitrary prime ideal p in K and an integral auxiliary ideal
q 12 that is prime to p and satisfies

ged(q,9) = 1.
For n € N we define

z— " z+ "
By (2) = ¢ (2 =l P )w(n ol ap”)
©* (2 ap™)
with a solution =, of the congruences

Yn = 0 mod p",
Yo = 1 mod q,
Yn = 0 mod q.

Note that E,(z) is well defined because all A-factors are canceling out
if we choose the same basis of qp™ for every ¢-value. Using the identity
p(u) — p(v) = —%, we can express E, by the Weierstrass p-

function:

VA(pr) Y AGp")
and we can conclude that FE, is elliptic with respect to the lattice qp”.
Moreover F,, satisfies the following norm relation:

Bu(2) =~ (3l ") (w ®) o0 qp”))

Theorem 1. Let Cgpn denote the field of elliptic functions with respect to
ap™, n > 0. Then Cyyni1/Cypn is a Galois extension, the Galois group
consisting of all substitutions

9(2) = g(z +€), €€ aqp” mod gp" "
Jor g € Cypnt1 and we have the norm relation
En(2) = Ne i /o (Enta(2)) = [I EBEwG+o.
g¢eqpr mod gprtt

For the singular values F,, (1) we obtain:
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Theorem 2. Let p and q be as above and let ® denote the Fuler function
in K. Then

(1) E,(1) € quln forn >0,
(2) Ba(1) ~ p™7 forn > 1,

(3) Ea(l) = Nic_ ke Buii(D) =TT Bai(148) for
€ € gp™ mod gp™t!

n>1,
Eo(z) _ _ p4m|a)e(yilap)? A(qg)
@) mitin |, = Neg/i (B1(1) = St Y s ~ P

To obtain the analogous result for the extension Kyn+1/Kpn that we were
aiming at, we have to get rid of the auxiliary ideal q. Therefore we need
the following (well known)

Lemma. For any integral ideal a in K
ged{N(q) — 1 | q prime ideal in K, q12q a} = wg,
where wg denotes the number of roots of unity in K.

So we can choose finitely many prime ideals q;, i = 1,..., s of degree 1
that are prime to N(p) and integers z; € Z so that

1(N(q1) = 1)+ ... + 25(N(qs) — 1) = wgk.
For each q; we define a set of functions E,, ;(2) as above with parameters

Yn,i- Taking relative norms we obtain

N(a;)—1

N, yn/Kyn (Enji(1)) ~ p 20

for n > 1. Hence

S
z;
T = [T (Nicy o /16y (Bni(1)))
i=1
is an element in Ky» having the factorisation

H)K
T ~ PO

This is what we were aiming at because

Kpn : K] = O(p"
[Kpr = Kyl = = = 2("),
where w(p™) denotes the number of roots of unity in K that are congruent
to 1 mod p™. This implies
w(p™)
T~ p S K]

where

w(p”) =1
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except for the cases

(i) p |2, n <2, where w(p”) € {1,2}, if dx # —4 and w(p") € {1,2,4}
if dg = —4;

(ii) p| 3,n =1,dx = —3, where w(p") = 2.

Moreover we will show now that this element can be written analogously
to the cyclotomic case. We therefore observe that by reciprocity law the
conjugates of the singular values E,, ;(1) over Ky» are given by

o) _ P A= 7miA gip") @ (A + WA aip™)
Enﬂ'(l) - 2 n )
©* (Al qip™)
where () denotes the Frobenius automorphism of Kqyn /Kpn of the ideal
(A),A =1 mod p". So we define the function
N s N(g:)—1 w(z+(>\§3)—1)—7n,i/\§?‘qz’p")w(Z+(/\§,T}>—1)+“/7L,M§,T}> qip") xi
Er(z) =11 [I > o) o
j=1 ¢ (Z+(>\i,j —1)|aip )

i=1

where for fixed ¢ and n the numbers
AM, G =1, N(gi) — 1
are a complete system of prime residue classen mod q; satisfying

(n) _
)‘i,TJL' = 1 mod p".
Herewith we can prove the following two Theorems:

Theorem 3. Letp andq=qy----- qs with q; as above. Then the functions
E}(z) are in Cqgn for n > 0 and satisfy the Normrelation

E;kl('z) = N(qun-!—l/(cqp" (E;;+1(Z)) = H :;+1(Z + é-)
¢eqpr mod gprtt

Theorem 4. Let p and q = q1 - -+ - qs with q; as above and let ® denote
the Euler function in K. Then

(1) E;(1) € Kyn forn >0,

w(p™)
(2) By(1) ~ plom ol forn > 1,
w(p™)
(3) Er*t<1) = NKpn-H/Kpn (E’:,-l-l(l)) W™ = H" E;;—l—l(l + g)
mgflq:p"“

forn>1,
(4) Ni,u /Ky (B (1)) ~ po "),

Remark: The constructions of the above theorems can clearly be gener-
alized to any integral ideal a prime to q instead of p™ with obvious norm
relations for two ideals a, b with a | b. Of course for a composite ideal a
the singular values will be units.
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2. Proofs

Proposition. Let I' = [w, 1], I = [nl,n | be complez lattices, I(w) >
0, ni,ne € N. We consider the following system of representatives for
r/T:
Tw oy
f=24 L
Expressing A by the n-function, A = (2mi)2n?*, we define the 12-th roots
of A(T") and A(T) by

R/A(T) := (2mi)n(w)?, 1\2/A(f’) = (2772')17(%)2712

, x=0,..,n1—1, y=0,..ny — 1.
ni no

and we set
Ir(z, &) = 2mi(21§2 — 2261).
Then
[Te 29 (z +€r) = Co(ID)
1
with
¢ = _Cfmg—l-mgénl—l)(nz—l)

(G = e%). Furthermore, dividing both sides of the product formula by
©(z|T), the limit for z — 0 yields

YA
I
g1;[0 p(EI0) = ¢ AT

Proof. The assertion of the Proposition is obtained by multiplying the ¢-
expansions of the functions involved. Using the notations

. 1 .
Qw 2627”1117 Q’LQU :eﬂ—lwv q:Qwv qA:Q";QJ
1

the g-expansions of ¢(w|T) and ¢(z|T") are given by

e}

l(Z +§ ) 1 -1 1 n n —
cp(z +§’F) = 224-51 ' ( §+§ - szg)qm H(l ) Q2+£)(1 ) ing)a
n=1
S niz 1 - AL ha n AT —
SO(Z’F) Qngzl I(Q’I?LQZ - Qngz)q 12 H(l —q Qngz)(l —q Qnglz)'
n=1

So the product in the Proposition is of the form
He 2oz +LT) = fifofs
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with

%( (z4€)(z1+&1)—z182+22€1)
z,y

fi=e
1 1 _1
f2 = qu (Q§+£ - szg)v
x7y

9

fa= ] T10 - "Qeve)(1 — " Q).

n=1z,y

m—1 m—1
Using the formulas Y k = m(’g_l) and > k? = w we then

' k=1 k=1
obtain
ni—1)(ng—1) 4222 M2l (ng-DEng-n M
fi= ég 1 )Qn222 Qn22z q 12 , g=qm2.
ng—1
Further, using the identity [] (a — b(h,) = a™ — b™ we can write fy in
y=0
the form
tny = ny(ny -1 !
n1n n T2 A — A
f2 = _C41 ? 1Qn222 qn1n2 4 H (1 - qungz)
z=1

and in the same way

fa= J] 0 —d"Qn-) Okrﬁwég.

k=n1 k=1

Now, putting together the identities for fi, fs, f3 we can easily derive our
assertion. O

Proof of Theorem 1. First we observe that the assertion of the Proposition
is also valid for arbitrary lattices I' C T, arbitrary systems {&} of repre-
sentatives and other normalization of the 12-th root of A, with possibly
another constant (. This follows from the homogeneity and the transfor-
mation formula of the p-function:

p(Az|AT) = o(2|T),

o(z+7|T") = w(T)e%lF(T’Z)ap(z]F) forr el

with
1, if 7e?2l,
-1, if rel\2l.
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Considering the fact that Ip(z, &) is linear in z we obtain from the general-
ized version of the Proposition just explained:

Z = "n " Z+n p"
1 En+1(z+£)=¢( 7+1|q2p(i|90(n) Ynt1] 9P")
¢eqpr mod qprt! ool

Herein on the right 7,41 can be replaced by +, using the transformation
law of ¢, because v,4+1 = v, mod qp™. This proves the formula of Theorem
1. O

Proof of Theorem 2. By reciprocity law of complex multiplication we know
‘P(ﬂqpn) € K12N(qpn)2 for 6 € Ok

for every choice of basis in qp™. Further, as can be found in [B-Sch], the
action of a Frobenius automorphism o ()) of Kjgn(qpny2 belonging to an
integral principal ideal (\) of O prime to 12N (qp™) is of the form

(8lap™) 7Y = € (A |ap™)
with a root of unity € independent of . This implies

En(8) € Kian(qpn)2

@ (OA — mA[ap™) @ (OA + Al gp™)
En(6)°W) = for 6 € Ok \ {0}
" ©* (6A| ap™)
with A having the above properties. For A =147, 7 € qp”, the p-values
in the numerator on the right side can be simplified by the transformation

law of ¢:
@ (A E Al ap™) = 0 (OA £ v £ 7,7| qp™)
1
= 1) (Tyn )2 OAFEIT s (5X £ 7, | gp™)

En(6)°W) = lmmm B (5)).

Herein, using the rule I(a, bc) = I(ab, c),
L (Yny 7)) = U Vp, T) € 2miZ
because v,7,,, T € qp", whence
En(6)°N = E, (6)).
Now, considering the fact that E, is elliptic with respect to qp™, it follows
E,(1)°W = E,(1) for A =1 mod gp”
and we can conclude that E,(1) is in Kgyn, because

Gal(Kian(gpny2/Kapn) = {o(A) | A =1 mod qp™ and prime to N(qp)}.
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The third assertion of Theorem 2 is obtained similarly: We have
Gal(Kgpn+1/Kgpn) = {o(1+&) [ £ € qp” mod ap” '}
and -
En+1(1)0(1+5)) — €Z(V"+17"+1’5)En+1(1 +)

with | = [gynt1, where of course o(1 + ) denotes the Frobenius automor-

phism of K pn+1 belonging to (1+&). Again herein [(Vn 117011, &) is in 2miZ

because & € qp” and because Yy,4+17n11 is even in qp"Tlp" !

B (D)) = B, 4 (1+€),

which proves the third assertion.

, whence

Finally, the second assertion of Theorem 2 follows from the factorisation
of the singular y-values [Schl]:

1, if  o(d,qp™) is composite,

Slap™) ~
P (Olap™) pﬁ, if o(d,qp™) =p", rE€N

for every choice of basis in qp”. Herein 6 € K \ {0} and o(d, qp™) denotes
the denominator of the ideal q%. This factorisation implies that the first
¢ factor in the numerator of the definition of E, (1) has the factorisation

1
p2®e™  whereas the other ¢ values are units. O

Proof of Theorem 8 and 4. The proof of Theorem 3 is completely analo-
gous to the proof of Theorem 1. The first and second assertion of Theorem
4 have already been explained. The third assertion can easily be proved
using the same arguments as in the proof of Theorem 2. U
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