On the generalized principal ideal theorem of complex multiplication

par Reinhard SCHERTZ
Dedicated to Michael Pohst on his 60th birthday

Abstract

RÉSumé. Dans le p^{n}-ième corps cyclotomique $\mathbb{Q}_{p^{n}}, p$ un nombre premier, $n \in \mathbb{N}$, le premier p est totalement ramifié, l'idéal au dessus de p dans $\mathbb{Q}_{p^{n}}$ étant engendré par $\omega_{n}=\zeta_{p^{n}}-1$ avec une racine primitive p^{n}-ième de l'unité $\zeta_{p^{n}}=e^{\frac{2 \pi i}{p^{n}}}$. De plus ces nombres constituent un ensemble qui vérifie la relation de norme $\mathbf{N}_{\mathbb{Q}_{p^{n+1}} / \mathbb{Q}_{p^{n}}}\left(\omega_{n+1}\right)=\omega_{n}$. Le but de cet article est d'établir un résultat analogue pour les corps de classes de rayon $K_{\mathfrak{p}^{n}}$ de conducteur \mathfrak{p}^{n} d'un corps quadratique imaginaire K, où \mathfrak{p}^{n} est une puissance d'un idéal premier dans K. Un tel résultat est obtenu en remplaçant la fonction exponentielle par une fonction elliptique convenable.

Abstract. In the p^{n}-th cyclotomic field $\mathbb{Q}_{p^{n}}, p$ a prime number, $n \in \mathbb{N}$, the prime p is totally ramified and the only ideal above p is generated by $\omega_{n}=\zeta_{p^{n}}-1$, with the primitive p^{n}-th root of unity $\zeta_{p^{n}}=e^{\frac{2 \pi i}{p^{n}}}$. Moreover these numbers represent a norm coherent set, i.e. $\mathbf{N}_{\mathbb{Q}_{p^{n+1}} / \mathbb{Q}_{p^{n}}}\left(\omega_{n+1}\right)=\omega_{n}$. It is the aim of this article to establish a similar result for the ray class field $K_{\mathfrak{p}^{n}}$ of conductor \mathfrak{p}^{n} over an imaginary quadratic number field K where \mathfrak{p}^{n} is the power of a prime ideal in K. Therefore the exponential function has to be replaced by a suitable elliptic function.

1. Introduction and results

Let K be an imaginary quadratic number field, \mathfrak{f} an integral ideal in K and $K_{\mathfrak{f}}$ the ray class field modulo \mathfrak{f} over K. In particular $K_{(1)}$ is the Hilbert class field of K. The generalized Principle Ideal Theorem [Sch2], [Sch3] ${ }^{1}$ says that for any power of a prime ideal \mathfrak{p}^{n} there is an element $\pi_{n} \in K_{\mathfrak{p}^{n}}$

[^0]associated to $\mathfrak{p}^{\frac{1}{\left[K_{\mathfrak{p}} n: K_{(1)}\right]}}$:
$$
\pi_{n} \sim \mathfrak{p}^{\frac{1}{\left[K_{\mathfrak{p}} n: K_{(1)}\right]}}
$$

The element π_{n} can be viewed as the elliptic analogue of the cyclotomic unit

$$
\omega_{n}=e^{\frac{2 \pi i}{p^{n}}}-1
$$

for the power p^{n} of a prime p. As an element of the p^{n}-th cyclotomic field $\mathbb{Q}_{p^{n}}$ the element ω_{n} has the factorisation

$$
\omega_{n} \sim(p)^{\frac{1}{\left[Q_{p} n: \mathbb{O}\right]}}
$$

Moreover ω_{n} has the following nice properties that can easily be verified:

- $\omega_{n}=e_{n}(1)$ with the p^{n} periodic function $e_{n}(z)=1-e^{\frac{2 \pi i}{p^{n}} z}$.
- Let $\mathbb{C}_{p^{n}} \mathbb{Z}$ denote the field of p^{n} periodic meromorphic functions on \mathbb{C}, then we have the norm relation for $n \geq 0$

$$
e_{n}(z)=N_{\mathbb{C}_{p^{n+1}}^{\mathbb{Z}}} / \mathbb{C}_{p^{n} \mathbb{Z}}\left(e_{n+1}(z)\right)=\prod_{\xi \in p^{n} \mathbb{Z}} e_{n+1}(z+\xi)
$$

- For $z=1$ the last relation becomes a norm relation between number fields, if $n \geq 1$:

$$
\omega_{n}=N_{\mathbb{Q}_{p^{n+1}} / \mathbb{Q}_{p^{n}}}\left(\omega_{n+1}\right)=\prod_{\xi \in p^{n} \mathbb{Z}} e_{n+1}(1+\xi)
$$

- and

$$
\left.\frac{e_{0}(z)}{e_{1}(z-1)}\right|_{z=1}=p
$$

It is the aim of this article to give a construction of π_{n} having the same nice properties. For a complex lattice Γ we therefore consider the Klein normalization of the Weierstrass σ-function

$$
\varphi(z \mid \Gamma)=e^{-\frac{z z^{*}}{2}} \sigma(z \mid \Gamma) \sqrt[12]{\Delta(\Gamma)}
$$

where $\Delta(\Gamma)$ is the discriminant of the theory of elliptic functions. Herein z^{*} is defined for a complex number z by

$$
z^{*}=z_{1} \omega_{1}^{*}+z_{2} \omega_{2}^{*}
$$

with the real coordinates z_{1}, z_{2} from the representation $z=z_{1} \omega_{1}+z_{2} \omega_{2}$ by a basis ω_{1}, ω_{2} of Γ and the quasiperiods $\omega_{i}^{*}=2 \zeta\left(\left.\frac{\omega_{i}}{2} \right\rvert\, \Gamma\right)$ of the Weierstrass ζ-function. The first factor $e^{-\frac{z z^{*}}{2}} \sigma(z \mid \Gamma)$ in the definition of $\varphi(z \mid \Gamma)$ is clearly independent of the choice of basis ω_{1}, ω_{2} of Γ. To fix the 12 -th root $\sqrt[12]{\Delta(\Gamma)}$ we use the identity

$$
\Delta(\Gamma)=\left(\frac{2 \pi i}{\omega_{2}}\right)^{12} \eta\left(\frac{\omega_{1}}{\omega_{2}}\right)^{24}
$$

for a basis of Γ oriented by $\Im\left(\frac{\omega_{1}}{\omega_{2}}\right)>0$ and set

$$
\sqrt[12]{\Delta(\Gamma)}=\left(\frac{2 \pi i}{\omega_{2}}\right) \eta\left(\frac{\omega_{1}}{\omega_{2}}\right)^{2}
$$

So the value $\varphi(z \mid \Gamma)$ is only well defined up to a 12-th root of unity depending on the basis chosen for its definition. However products where all the $\sqrt[12]{\Delta(\Gamma)}$-factors cancel out are independent of the choice of basis choosing the same basis for each factor.

We fix an arbitrary prime ideal \mathfrak{p} in K and an integral auxiliary ideal $\mathfrak{q} \nmid 2$ that is prime to \mathfrak{p} and satisfies

$$
\operatorname{gcd}(\mathfrak{q}, \overline{\mathfrak{q}})=1
$$

For $n \in \mathbb{N}$ we define

$$
E_{n}(z):=\frac{\varphi\left(z-\gamma_{n} \mid \mathfrak{q p}^{n}\right) \varphi\left(z+\gamma_{n} \mid \mathfrak{q p}^{n}\right)}{\varphi^{2}\left(z \mid \mathfrak{q p}^{n}\right)}
$$

with a solution γ_{n} of the congruences

$$
\begin{aligned}
\gamma_{n} & \equiv 0 \bmod \mathfrak{p}^{n} \\
\gamma_{n} & \equiv 1 \bmod \mathfrak{q} \\
\gamma_{n} & \equiv 0 \bmod \overline{\mathfrak{q}}
\end{aligned}
$$

Note that $E_{n}(z)$ is well defined because all Δ-factors are canceling out if we choose the same basis of $\mathfrak{q p}^{n}$ for every φ-value. Using the identity $\wp(u)-\wp(v)=-\frac{\sigma(u-v) \sigma(u+v)}{\sigma^{2}(u) \sigma^{2}(v)}$, we can express E_{n} by the Weierstrass $\wp-$ function:

$$
E_{n}(z)=-\varphi^{2}\left(\gamma_{n} \mid \mathfrak{q p}^{n}\right)\left(\frac{\wp\left(z \mid \mathfrak{q p}^{n}\right)}{\sqrt[6]{\Delta\left(\mathfrak{q p}^{n}\right)}}-\frac{\wp\left(\gamma_{n} \mid \mathfrak{q p}^{n}\right)}{\sqrt[6]{\Delta\left(\mathfrak{q} p^{n}\right)}}\right)
$$

and we can conclude that E_{n} is elliptic with respect to the lattice $\mathfrak{q p}^{n}$. Moreover E_{n} satisfies the following norm relation:

Theorem 1. Let $\mathbb{C}_{\mathfrak{q p}^{n}}$ denote the field of elliptic functions with respect to $\mathfrak{q p}^{n}, n \geq 0$. Then $\mathbb{C}_{\mathfrak{q p}^{n+1}} / \mathbb{C}_{\mathfrak{q p}^{n}}$ is a Galois extension, the Galois group consisting of all substitutions

$$
g(z) \mapsto g(z+\xi), \quad \xi \in \mathfrak{q} \mathfrak{p}^{n} \bmod \mathfrak{q} p^{n+1}
$$

for $g \in \mathbb{C}_{\mathfrak{q p}^{n+1}}$ and we have the norm relation

For the singular values $E_{n}(1)$ we obtain:

Theorem 2. Let \mathfrak{p} and \mathfrak{q} be as above and let Φ denote the Euler function in K. Then
(1) $E_{n}(1) \in K_{\mathfrak{q p}^{n}}$ for $n \geq 0$,
(2) $E_{n}(1) \sim \mathfrak{p}^{\frac{1}{\Phi\left(\mathfrak{p}^{n}\right)}}$ for $n \geq 1$,
(3) $E_{n}(1)=\mathbf{N}_{K_{\mathfrak{q p}^{n+1}} / K_{\mathfrak{q p}}}\left(E_{n+1}(1)\right)=\prod_{\xi \in \mathfrak{q p}^{n} \bmod \mathfrak{q p}^{n+1}} E_{n+1}(1+\xi)$ for $n \geq 1$,
(4) $\left.\frac{E_{0}(z)}{E_{1}\left(z-1+\gamma_{1}\right)}\right|_{z=1}=\mathbf{N}_{K_{\mathfrak{q p}} / K_{\mathfrak{q}}}\left(E_{1}(1)\right)=\frac{\varphi\left(1+\gamma_{1} \mid \mathfrak{q}\right) \varphi\left(\gamma_{1} \mid \mathfrak{q p}\right)^{2}}{\varphi\left(2 \gamma_{1} \mid \mathfrak{q p}\right) \varphi(1 \mid \mathfrak{q})^{2}} \sqrt[12]{\frac{\Delta(\mathfrak{q})}{\Delta(\mathfrak{q p})}} \sim \mathfrak{p}$.

To obtain the analogous result for the extension $K_{\mathfrak{p}^{n+1}} / K_{\mathfrak{p}^{n}}$ that we were aiming at, we have to get rid of the auxiliary ideal \mathfrak{q}. Therefore we need the following (well known)

Lemma. For any integral ideal \mathfrak{a} in K

$$
\operatorname{gcd}\{N(\mathfrak{q})-1 \mid \mathfrak{q} \text { prime ideal in } K, \mathfrak{q} \nmid 2 \overline{\mathfrak{q}} \mathfrak{a}\}=w_{K}
$$

where w_{K} denotes the number of roots of unity in K.
So we can choose finitely many prime ideals $\mathfrak{q}_{i}, i=1, \ldots, s$ of degree 1 that are prime to $N(\mathfrak{p})$ and integers $x_{i} \in \mathbb{Z}$ so that

$$
x_{1}\left(N\left(\mathfrak{q}_{1}\right)-1\right)+\ldots+x_{s}\left(N\left(\mathfrak{q}_{s}\right)-1\right)=w_{K}
$$

For each \mathfrak{q}_{i} we define a set of functions $E_{n, i}(z)$ as above with parameters $\gamma_{n, i}$. Taking relative norms we obtain

$$
\mathbf{N}_{K_{\mathfrak{q}_{i} \mathfrak{p}^{n} / K_{\mathfrak{p}}}}\left(E_{n, i}(1)\right) \sim \mathfrak{p}^{\frac{N\left(\mathfrak{q}_{i}\right)-1}{\Phi\left(\mathfrak{p}^{n}\right)}}
$$

for $n \geq 1$. Hence

$$
\pi_{n}:=\prod_{i=1}^{s}\left(\mathbf{N}_{K_{\mathfrak{q}_{i} \mathfrak{p}^{n}} / K_{\mathfrak{p}} n}\left(E_{n, i}(1)\right)\right)^{x_{i}}
$$

is an element in $K_{\mathfrak{p}^{n}}$ having the factorisation

$$
\pi_{n} \sim \mathfrak{p}^{\frac{w_{K}}{\Phi\left(\mathfrak{p}^{n}\right)}}
$$

This is what we were aiming at because

$$
\left[K_{\mathfrak{p}^{n}}: K_{(1)}\right]=\frac{w\left(\mathfrak{p}^{n}\right)}{w_{K}} \Phi\left(\mathfrak{p}^{n}\right)
$$

where $w\left(\mathfrak{p}^{n}\right)$ denotes the number of roots of unity in K that are congruent to $1 \bmod \mathfrak{p}^{n}$. This implies

$$
\pi_{n} \sim \mathfrak{p}^{\frac{w\left(\mathfrak{p}^{n}\right)}{\left[K_{\mathfrak{p}} n: K_{(1)}\right]}}
$$

where

$$
w\left(\mathfrak{p}^{n}\right)=1
$$

except for the cases
(i) $\mathfrak{p} \mid 2, n \leq 2$, where $w\left(\mathfrak{p}^{n}\right) \in\{1,2\}$, if $d_{K} \neq-4$ and $w\left(\mathfrak{p}^{n}\right) \in\{1,2,4\}$ if $d_{K}=-4$;
(ii) $\mathfrak{p} \mid 3, n=1, d_{K}=-3$, where $w\left(\mathfrak{p}^{n}\right)=2$.

Moreover we will show now that this element can be written analogously to the cyclotomic case. We therefore observe that by reciprocity law the conjugates of the singular values $E_{n, i}(1)$ over $K_{\mathfrak{p}^{n}}$ are given by

$$
E_{n, i}(1)^{\sigma(\lambda)}=\frac{\varphi\left(\lambda-\gamma_{n, i} \lambda \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right) \varphi\left(\lambda+\gamma_{n, i} \lambda \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right)}{\varphi^{2}\left(\lambda \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right)}
$$

where $\sigma(\lambda)$ denotes the Frobenius automorphism of $K_{\mathfrak{q p}^{n}} / K_{\mathfrak{p}^{n}}$ of the ideal $(\lambda), \lambda \equiv 1 \bmod \mathfrak{p}^{n}$. So we define the function

$$
E_{n}^{*}(z):=\prod_{i=1}^{s} \prod_{j=1}^{N\left(\mathfrak{q}_{i}\right)-1}\left(\frac{\varphi\left(z+\left(\lambda_{i, j}^{(n)}-1\right)-\gamma_{n, i} \lambda_{i, j}^{(n)} \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right) \varphi\left(z+\left(\lambda_{i, j}^{(n)}-1\right)+\gamma_{n, i} \lambda_{i, j}^{(n)} \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right)}{\varphi^{2}\left(z+\left(\lambda_{i, j}^{(n)}-1\right) \mid \mathfrak{q}_{i} \mathfrak{p}^{n}\right)}\right)^{x_{i}}
$$

where for fixed i and n the numbers

$$
\lambda_{i, j}^{(n)}, \quad j=1, \ldots, N\left(\mathfrak{q}_{i}\right)-1
$$

are a complete system of prime residue classen $\bmod \mathfrak{q}_{i}$ satisfying

$$
\lambda_{i, j}^{(n)} \equiv 1 \bmod \mathfrak{p}^{n}
$$

Herewith we can prove the following two Theorems:
Theorem 3. Let \mathfrak{p} and $\mathfrak{q}=\mathfrak{q}_{1} \cdots \cdots \mathfrak{q}_{s}$ with \mathfrak{q}_{i} as above. Then the functions $E_{n}^{*}(z)$ are in $\mathbb{C}_{\mathfrak{q p}}{ }^{n}$ for $n \geq 0$ and satisfy the Normrelation

$$
E_{n}^{*}(z)=\mathbf{N}_{\mathbb{C}_{\mathfrak{q p}} n+1} / \mathbb{C}_{\mathfrak{q} p^{n}}\left(E_{n+1}^{*}(z)\right)=\prod_{\xi \in \mathfrak{q p}^{n}}{\bmod \mathfrak{q p}^{n+1}} E_{n+1}^{*}(z+\xi)
$$

Theorem 4. Let \mathfrak{p} and $\mathfrak{q}=\mathfrak{q}_{1} \cdots \cdot \mathfrak{q}_{s}$ with \mathfrak{q}_{i} as above and let Φ denote the Euler function in K. Then
(1) $E_{n}^{*}(1) \in K_{\mathfrak{p}^{n}}$ for $n \geq 0$,
(2) $E_{n}^{*}(1) \sim \mathfrak{p}^{\frac{w\left(\mathfrak{p}^{n}\right)}{\left[K_{\mathfrak{p}}: K_{(1)}\right]}}$ for $n \geq 1$,
(3) $E_{n}^{*}(1)=\mathbf{N}_{K_{\mathfrak{p}} n+1} / K_{\mathfrak{p} n}\left(E_{n+1}^{*}(1)\right)^{\frac{w\left(\mathfrak{p}^{n}\right)}{w\left(\mathfrak{p}^{n+1}\right)}}=\prod_{\substack{\xi \in \mathfrak{q p} \\ \bmod \mathfrak{q} \mathfrak{p}^{n+1}}} E_{n+1}^{*}(1+\xi)$

$$
\text { for } n \geq 1
$$

(4) $\mathbf{N}_{K_{\mathfrak{p}} n} / K_{(1)}\left(E_{n}^{*}(1)\right) \sim \mathfrak{p}^{w\left(\mathfrak{p}^{n}\right)}$.

Remark: The constructions of the above theorems can clearly be generalized to any integral ideal \mathfrak{a} prime to \mathfrak{q} instead of \mathfrak{p}^{n} with obvious norm relations for two ideals $\mathfrak{a}, \mathfrak{b}$ with $\mathfrak{a} \mid \mathfrak{b}$. Of course for a composite ideal \mathfrak{a} the singular values will be units.

2. Proofs

Proposition. Let $\Gamma=[\omega, 1], \hat{\Gamma}=\left[\frac{\omega}{n_{1}}, \frac{1}{n_{2}}\right]$ be complex lattices, $\Im(\omega)>$ $0, n_{1}, n_{2} \in \mathbb{N}$. We consider the following system of representatives for $\hat{\Gamma} / \Gamma$:

$$
\xi=\frac{x \omega}{n_{1}}+\frac{y}{n_{2}}, \quad x=0, . ., n_{1}-1, y=0, \ldots n_{2}-1
$$

Expressing Δ by the η-function, $\Delta=(2 \pi i)^{12} \eta^{24}$, we define the 12-th roots of $\Delta(\Gamma)$ and $\Delta(\hat{\Gamma})$ by

$$
\sqrt[12]{\Delta(\Gamma)}:=(2 \pi i) \eta(\omega)^{2}, \quad \sqrt[12]{\Delta(\hat{\Gamma})}:=(2 \pi i) \eta\left(\frac{n_{1} \omega}{n_{2}}\right)^{2} n_{2}
$$

and we set

$$
l_{\Gamma}(z, \xi)=2 \pi i\left(z_{1} \xi_{2}-z_{2} \xi_{1}\right)
$$

Then

$$
\prod_{\xi} e^{-\frac{1}{2} l_{\Gamma}(z, \xi)} \varphi(z+\xi \mid \Gamma)=\zeta \varphi(z \mid \hat{\Gamma})
$$

with

$$
\zeta=-\zeta_{4}^{n_{1} n_{2}+n_{1}} \zeta_{8}^{\left(n_{1}-1\right)\left(n_{2}-1\right)}
$$

$\left(\zeta_{n}:=e^{\frac{2 \pi i}{n}}\right)$. Furthermore, dividing both sides of the product formula by $\varphi(z \mid \Gamma)$, the limit for $z \rightarrow 0$ yields

$$
\prod_{\xi \neq 0} \varphi(\xi \mid \Gamma)=\zeta \frac{\sqrt[12]{\Delta(\hat{\Gamma})}}{\sqrt[12]{\Delta(\Gamma)}}
$$

Proof. The assertion of the Proposition is obtained by multiplying the q expansions of the functions involved. Using the notations

$$
Q_{w}=e^{2 \pi i w}, Q_{w}^{\frac{1}{2}}=e^{\pi i w}, q=Q_{\omega}, \hat{q}=Q_{\frac{n_{2} \omega}{n_{1}}}
$$

the q-expansions of $\varphi(w \mid \Gamma)$ and $\varphi(z \mid \hat{\Gamma})$ are given by

$$
\begin{aligned}
\varphi(z+\xi \mid \Gamma) & =Q_{z+\xi}^{\frac{1}{2}\left(z_{1}+\xi_{1}\right)}\left(Q_{z+\xi}^{\frac{1}{2}}-Q_{z+\xi}^{-\frac{1}{2}}\right) q^{\frac{1}{12}} \prod_{n=1}^{\infty}\left(1-q^{n} Q_{z+\xi}\right)\left(1-q^{n} Q_{z+\xi}^{-1}\right) \\
\varphi(z \mid \hat{\Gamma}) & =Q_{n_{2} z}^{\frac{1}{2} n_{1} z_{1}}\left(Q_{n_{2} z}^{\frac{1}{2}}-Q_{n_{2} z}^{-\frac{1}{2}}\right) \hat{q}^{\frac{1}{12}} \prod_{n=1}^{\infty}\left(1-\hat{q}^{n} Q_{n_{2} z}\right)\left(1-\hat{q}^{n} Q_{n_{2} z}^{-1}\right)
\end{aligned}
$$

So the product in the Proposition is of the form

$$
\prod_{\xi} e^{-\frac{1}{2} l_{\Gamma}(z, \xi)} \varphi(z+\xi \mid \Gamma)=f_{1} f_{2} f_{3}
$$

with

$$
\begin{aligned}
& f_{1}=e^{\frac{2 \pi i}{2}\left(\sum_{x, y}(z+\xi)\left(z_{1}+\xi_{1}\right)-z_{1} \xi_{2}+z_{2} \xi_{1}\right)} \\
& f_{2}=\prod_{x, y} q^{\frac{1}{12}}\left(Q_{z+\xi}^{\frac{1}{2}}-Q_{z+\xi}^{-\frac{1}{2}}\right) \\
& f_{3}=\prod_{n=1}^{\infty} \prod_{x, y}\left(1-q^{n} Q_{z+\xi}\right)\left(1-q^{n} Q_{z+\xi}^{-1}\right)
\end{aligned}
$$

Using the formulas $\sum_{k=1}^{m-1} k=\frac{m(m-1)}{2}$ and $\sum_{k=1}^{m-1} k^{2}=\frac{m(m-1)(2 m-1)}{6}$ we then obtain

$$
f_{1}=\zeta_{8}^{\left(n_{1}-1\right)\left(n_{2}-1\right)} Q_{n_{2} z}^{\frac{n_{1} z_{1}}{2}} Q_{n_{2} z}^{\frac{n_{1}-1}{2}} \hat{q}^{\frac{\left(n_{1}-1\right)\left(2 n_{1}-1\right)}{12}}, \quad \hat{q}=q^{\frac{n_{1}}{n_{2}}}
$$

Further, using the identity $\prod_{y=0}^{n_{2}-1}\left(a-b \zeta_{n_{2}}^{y}\right)=a^{n_{2}}-b^{n_{2}}$ we can write f_{2} in the form

$$
f_{2}=-\zeta_{4}^{n_{1} n_{2}+n_{1}} Q_{n_{2} z^{-\frac{n_{1}-1}{2}}}^{\left.q^{n_{1} n_{2}-\frac{n_{1}\left(n_{1}-1\right)}{4}} \prod_{x=1}^{n_{1}-1}\left(1-\hat{q}^{x} Q_{n_{2} z}\right)\right) ~\left({ }_{x=1}\right)}
$$

and in the same way

$$
f_{3}=\left(\prod_{k=n_{1}}^{\infty}\left(1-\hat{q}^{k} Q_{n_{2} z}\right)\right)\left(\prod_{k=1}^{\infty}\left(1-\hat{q}^{k} Q_{n_{2} z}^{-1}\right)\right)
$$

Now, putting together the identities for f_{1}, f_{2}, f_{3} we can easily derive our assertion.

Proof of Theorem 1. First we observe that the assertion of the Proposition is also valid for arbitrary lattices $\Gamma \subset \hat{\Gamma}$, arbitrary systems $\{\xi\}$ of representatives and other normalization of the 12 -th root of Δ, with possibly another constant ζ. This follows from the homogeneity and the transformation formula of the φ-function:

$$
\begin{gathered}
\varphi(\lambda z \mid \lambda \Gamma)=\varphi(z \mid \Gamma) \\
\varphi(z+\tau \mid \Gamma)=\psi(\tau) e^{\frac{1}{2} l_{\Gamma}(\tau, z)} \varphi(z \mid \Gamma) \quad \text { for } \tau \in \Gamma
\end{gathered}
$$

with

$$
\psi(\tau)=\left\{\begin{array}{rll}
1, & \text { if } & \tau \in 2 \Gamma \\
-1, & \text { if } & \tau \in \Gamma \backslash 2 \Gamma
\end{array}\right.
$$

Considering the fact that $l_{\Gamma}(z, \xi)$ is linear in z we obtain from the generalized version of the Proposition just explained:

$$
\prod_{\xi \in \mathfrak{q p}^{n}} \bmod \mathfrak{q p}^{n+1} . ~ E ~ E ~ e_{n+1}(z+\xi)=\frac{\varphi\left(z-\gamma_{n+1} \mid \mathfrak{q p}^{n}\right) \varphi\left(z+\gamma_{n+1} \mid \mathfrak{q p}^{n}\right)}{\varphi^{2}\left(z \mid \mathfrak{q p}^{n}\right)}
$$

Herein on the right γ_{n+1} can be replaced by γ_{n} using the transformation law of φ, because $\gamma_{n+1} \equiv \gamma_{n} \bmod \mathfrak{q p}^{n}$. This proves the formula of Theorem 1.

Proof of Theorem 2. By reciprocity law of complex multiplication we know

$$
\varphi\left(\delta \mid \mathfrak{q p}^{n}\right) \in K_{12 N\left(\mathfrak{q p}^{n}\right)^{2}} \text { for } \delta \in \mathfrak{O}_{K}
$$

for every choice of basis in $\mathfrak{q p}^{n}$. Further, as can be found in [B-Sch], the action of a Frobenius automorphism $\sigma(\lambda)$ of $K_{12 N\left(\mathfrak{q p}^{n}\right)^{2}}$ belonging to an integral principal ideal (λ) of \mathfrak{D}_{K} prime to $12 N\left(\mathfrak{q p}^{n}\right)$ is of the form

$$
\varphi\left(\delta \mid \mathfrak{q p}^{n}\right)^{\sigma(\lambda)}=\epsilon \varphi\left(\delta \lambda \mid \mathfrak{q p}^{n}\right)
$$

with a root of unity ϵ independent of δ. This implies

$$
E_{n}(\delta) \in K_{12 N\left(\mathfrak{q p}^{n}\right)^{2}}
$$

and

$$
E_{n}(\delta)^{\sigma(\lambda)}=\frac{\varphi\left(\delta \lambda-\gamma_{n} \lambda \mid \mathfrak{q p}^{n}\right) \varphi\left(\delta \lambda+\gamma_{n} \lambda \mid \mathfrak{q p}^{n}\right)}{\varphi^{2}\left(\delta \lambda \mid \mathfrak{q p}^{n}\right)} \quad \text { for } \delta \in \mathfrak{D}_{K} \backslash\{0\}
$$

with λ having the above properties. For $\lambda=1+\tau, \tau \in \mathfrak{q p}^{n}$, the φ-values in the numerator on the right side can be simplified by the transformation law of φ :

$$
\begin{aligned}
\varphi\left(\delta \lambda \pm \gamma_{n} \lambda \mid \mathfrak{q p}^{n}\right) & =\varphi\left(\delta \lambda \pm \gamma_{n} \pm \gamma_{n} \tau \mid \mathfrak{q p}^{n}\right) \\
& =\psi\left(\tau \gamma_{n}\right) e^{\frac{1}{2} l\left(\delta \lambda \pm \gamma_{n}, \pm \gamma_{n} \tau\right)} \varphi\left(\delta \lambda \pm \gamma_{n} \mid \mathfrak{q p}^{n}\right)
\end{aligned}
$$

with $l=l_{\mathfrak{q p}^{n}}$. So

$$
E_{n}(\delta)^{\sigma(\lambda)}=e^{l\left(\gamma_{n}, \gamma_{n} \tau\right)} E_{n}(\delta \lambda) .
$$

Herein, using the rule $l(a, b c)=l(a \bar{b}, c)$,

$$
l\left(\gamma_{n}, \gamma_{n} \tau\right)=l\left(\gamma_{n} \bar{\gamma}_{n}, \tau\right) \in 2 \pi i \mathbb{Z}
$$

because $\gamma_{n} \bar{\gamma}_{n}, \tau \in \mathfrak{q p}^{n}$, whence

$$
E_{n}(\delta)^{\sigma(\lambda)}=E_{n}(\delta \lambda) .
$$

Now, considering the fact that E_{n} is elliptic with respect to $\mathfrak{q p}{ }^{n}$, it follows

$$
E_{n}(1)^{\sigma(\lambda)}=E_{n}(1) \text { for } \lambda \equiv 1 \bmod \mathfrak{q p}^{n}
$$

and we can conclude that $E_{n}(1)$ is in $K_{\mathfrak{q p}^{n}}$, because

$$
\operatorname{Gal}\left(K_{12 N\left(\mathfrak{q p}^{n}\right)^{2}} / K_{\mathfrak{q p}^{n}}\right)=\left\{\sigma(\lambda) \mid \lambda \equiv 1 \bmod \mathfrak{q p}^{n} \text { and prime to } N(\mathfrak{q p})\right\} .
$$

The third assertion of Theorem 2 is obtained similarly: We have

$$
\operatorname{Gal}\left(K_{\mathfrak{q p}^{n+1}} / K_{\mathfrak{q p}^{n}}\right)=\left\{\sigma(1+\xi) \mid \xi \in \mathfrak{q p}^{n} \bmod \mathfrak{q p}^{n+1}\right\}
$$

and

$$
\left.E_{n+1}(1)^{\sigma(1+\xi)}\right)=e^{l\left(\gamma_{n+1} \overline{\gamma_{n+1}}, \xi\right)} E_{n+1}(1+\xi)
$$

with $l=l_{\mathfrak{q p}^{n+1}}$, where of course $\sigma(1+\xi)$ denotes the Frobenius automorphism of $K_{\mathfrak{q p}^{n+1}}$ belonging to $(1+\xi)$. Again herein $l\left(\gamma_{n+1} \overline{\gamma_{n+1}}, \xi\right)$ is in $2 \pi i \mathbb{Z}$ because $\xi \in \mathfrak{q} \mathfrak{p}^{n}$ and because $\gamma_{n+1} \overline{\gamma_{n+1}}$ is even in $\mathfrak{q p}{ }^{n+1} \overline{\mathfrak{p}}^{n+1}$, whence

$$
\left.E_{n+1}(1)^{\sigma(1+\xi)}\right)=E_{n+1}(1+\xi)
$$

which proves the third assertion.
Finally, the second assertion of Theorem 2 follows from the factorisation of the singular φ-values [Sch1]:

$$
\varphi\left(\delta \mid \mathfrak{q} \mathfrak{p}^{n}\right) \sim\left\{\begin{aligned}
1, & \text { if } \quad o\left(\delta, \mathfrak{q p}^{n}\right) \text { is composite } \\
\mathfrak{p}^{\frac{1}{\Phi\left(\mathfrak{p}^{r)}\right)},} & \text { if } \quad o\left(\delta, \mathfrak{q} \mathfrak{p}^{n}\right)=\mathfrak{p}^{r}, \quad r \in \mathbb{N}
\end{aligned}\right.
$$

for every choice of basis in $\mathfrak{q p}{ }^{n}$. Herein $\delta \in K \backslash\{0\}$ and $o\left(\delta, \mathfrak{q p}^{n}\right)$ denotes the denominator of the ideal $\frac{\delta}{\mathfrak{q p}^{n}}$. This factorisation implies that the first φ factor in the numerator of the definition of $E_{n}(1)$ has the factorisation $\mathfrak{p}^{\frac{1}{\Phi\left(\mathfrak{p}^{n}\right)}}$, whereas the other φ values are units.
Proof of Theorem 3 and 4. The proof of Theorem 3 is completely analogous to the proof of Theorem 1. The first and second assertion of Theorem 4 have already been explained. The third assertion can easily be proved using the same arguments as in the proof of Theorem 2.

References

[B-Sch] S. Bettner, R. Schertz, Lower powers of elliptic units. Journal de Théorie des Nombres de Bordeaux 13 (2001), 339-351.
[Sch1] R. Schertz, Konstruktion von Potenzganzheitsbasen in Strahlklassenkörpern über ima-ginär-quadratischen Zahlkörpern. J. Reine Angew. Math. 398 (1989), 105-129.
[Sch2] R. Schertz, Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper. Journal of Number Theory, Vol. 34 No. 1 (1990).
[Sch3] R. Schertz, An Elliptic Resolvent. Journal of Number Theory, Vol. 77 (1999), 97-121.
Reinhard Schertz
Institut für Mathematik der Universität Augsburg
Universitätsstraße 8
86159 Augsburg, Germany
E-mail: Reinhard.Schertz@Math.Uni-Augsburg.DE

[^0]: Manuscrit reçu le 22 novembre 2004.
 ${ }^{1}$ In [Sch3] the following has to be corrected:

 1) The prime ideal \mathfrak{q} in the definition of $H_{\mathfrak{q}}(z)$ must have the additional property $\operatorname{gcd}(\mathfrak{q}, \overline{\mathfrak{q}})=1$,
 2) $H_{\mathfrak{q}}(1)$ has to be replaced by $H_{\mathfrak{q}}(\omega)$ with $\omega \equiv 1 \bmod \mathfrak{q}, \quad \omega \equiv 0 \bmod \overline{\mathfrak{q}}$.
