
Journal de Théorie des Nombres
de Bordeaux 18 (2006), 721–727

GiANT: Graphical Algebraic Number Theory

par Aneesh KARVE et Sebastian PAULI

Dedicated to Michael Pohst on his 60th Birthday

Résumé. Alors que la plupart de l’algèbre est faite en écrivant
du texte et des formules, les diagrammes sont toujours utilisés
pour présenter l’information structurelle de fao̧n claire et concise.
Les fenêtres de texte sont de facto des interfaces pour la théorie
algorithmique des nombres, mais elles sont incapables de présenter
graphiquement l’information structurelle. Nous présentons
GiANT, une interface graphique récemment développée pour tra-
vailler avec les corps de nombres. GiANT permet les diagrammes
interactifs, les fonctionalités de type copier-coller et l’édition de
formules.

Abstract. While most algebra is done by writing text and for-
mulas, diagrams have always been used to present structural infor-
mation clearly and concisely. Text shells are the de facto interface
for computational algebraic number theory, but they are inca-
pable of presenting structural information graphically. We present
GiANT, a newly developed graphical interface for working with
number fields. GiANT offers interactive diagrams, drag-and-drop
functionality, and typeset formulas.

1. Introduction

Software for number theoretical computations has evolved from stand-
alone programs, to Fortran and C libraries, to shells. Shells have opened
these systems to a much larger user community. Computer algebra systems
are now widely used by number theorists for calculations and experimen-
tation.

At the same time, the tasks that can be solved in computational number
theory have become more complex. The focus has changed from the com-
putation of invariants such as integral basis, unit groups, class groups, and
Galois groups, to computations in areas such as class field theory, where
more than one number field is considered at a time. Diagrams offer a use-
ful overview of the relations between fields, but these are typically done

Manuscrit reçu le 4 janvier 2006.
Aneesh Karve was generously supported by the German Academic Exchange Service

(http://www.daad.org) during the creation of GiANT..

http://www.daad.org


722 Aneesh Karve, Sebastian Pauli

on paper since most systems specialized for number theory cannot visually
display such relations. A graphical interface to display and manipulate di-
agrams, drag and drop elements, and perform common operations could be
of great benefit to the user. In addition, mathematical typesetting could
improve the representation of formulas.

Several general computer algebra systems, such as Maple [Ma05] and
Mathematica [Wo05], provide graphical interfaces. They offer typesetting
and plotting, but they do not allow graphical manipulation of algebraic ob-
jects. For group theory the XGAP [CN04] package for GAP [GAP] offers
a tool for viewing and manipulating subgroup lattices and other structural
information on UNIX systems running X Windows. It allows bidirectional
communication between the interface and GAP, though this is not auto-
matic. Working with elements of groups is not supported.

We present GiANT, a platform independent graphical interface to the
KANT shell KASH [DF+97], a computer algebra system for number the-
ory. Number fields are displayed and related to each other on the GiANT
desktop. GiANT allows the user to work with the invariants of the number
fields and with polynomials, ideals, and elements. It also supports a vari-
ety of operations between these entities. The interface uses mathematical
typesetting for readability.

2. GiANT

In the following sections we highlight key features of GiANT.

Figure 1. GiANT’s interactive desktop displays towers of
number fields.



GiANT 723

The Tower of Fields. GiANT opens with a blank desktop. Above the
desktop is a menu system to create and manipulate number fields. As the
user creates number fields, they appear on the desktop as icons, and are
arranged into towers (Figure 1). When the mouse pointer hovers over a
field icon, GiANT displays the field’s generating polynomial. Subfield rela-
tionships within a tower are indicated with solid lines, and in neighboring
towers with dotted lines. For visual clarity a different line color is used for
each tower.

Figure 2. The Inspector Window displays information for
a particular number field.

Working with Fields: The Inspector Window. Clicking on a field
icon opens its Inspector Window (Figure 2). The window title bar displays
the name and generating polynomial of the field. The upper half of the
window consists of three tabs: Elements, Polynomials, and Ideals. Under
each tab is a table containing variables of the same type. Columns in the
table include the variable name, its power basis representation, and other
key properties.

Below each table are the New button, which is used to create new vari-
ables by entering expressions, and four buttons for arithmetic operations.



724 Aneesh Karve, Sebastian Pauli

The operations can be applied by selecting operands from the table. The
result appears automatically as a new variable in the table.

The lower half of the Inspector Window contains four sections: Cur-
rent Selection, Number Field, Unit Group, Class Group, and Notes. Each
section can be collapsed or expanded as needed.

Current Selection displays invariants for one or more variables. Taking
field elements as an example, Current Selection displays the norm, trace,
minimal polynomial, and integral basis representation for any elements cur-
rently selected in the Elements table. Number Field displays invariants for
the entire field. Unit Group displays the rank, structure, torsion unit, fun-
damental units, and regulator. Class Group displays the class number, the
structure of the class group, and the generators of its cyclic factors. Notes
is a freely editable text box.

Computations which may take more than a few seconds to complete,
such as determining the class group, execute only when the user requests
them. This avoids unnecessary latency.

Automatic Variable Naming and Abbreviations. For elements, poly-
nomials, and ideals, GiANT generates automatic names by combining the
field name, variable type, and variable index into a single string. For ex-
ample, the first element the user creates in the field named f0 is automat-
ically named f0elt0. This makes it easy to identify variables generated
by GiANT, and to use them in the corresponding KASH session. Though
GiANT always offers automatic variable names, the user can provide cus-
tom names. In addition to user-created variables, most auto-computed
invariants are also named by GiANT.

GiANT allows the use of single-letter abbreviations for commonly used
values, such as primitive elements, to facilitate the input of expressions.
For simplicity, abbreviations are consistent across number fields. GiANT
translates abbreviations into globally bound variable names which the un-
derlying shell understands. Such abbreviations are not possible in a shell-
only environment, since a shell has no notion of which number field the
user is working with.

Drag-And-Drop Convenience. GiANT employs drag-and-drop for con-
venient moving of elements between algebraic structures and for the exe-
cution of other operations. When working with an element in a number
field, for example, we may wish to study its minimal polynomial. The Gi-
ANT user simply drags the element from its table and drops it onto the
Polynomials tab. The Polynomials tab then opens, adds the minimal poly-
nomial to its table and highlights it. Similarly, the user can drop one or
two elements onto the Ideals tab to generate a new ideal. It is even possible
to create relative field extensions by dropping irreducible polynomials from



GiANT 725

a ground field onto the desktop. The user is then free to move elements
between the ground field and the extension by dragging and dropping.

Figure 3. The global inspector displays all variables the
user has created.

The Global Inspector. The Inspector Window discussed above organizes
all of the variables in a single number field. Nevertheless, users may wish
to simultaneously view all variables they have created, irrespective of type
or parent field, in a single window.

The Global Inspector (Figure 3) makes this possible. Number fields,
elements, polynomials, and ideals — or any subset of these four variable
types — are displayed in a single list. Selecting a variable from the list
brings forward the Inspector Window where this variable resides; the user
can then manipulate it. In addition the Global Inspector allows the user to
specify filtering criteria which variables must meet in order to be displayed
in the list.

The Shell Behind GiANT. GiANT uses the KANT shell KASH to per-
form computations. The user can work directly with the shell by selecting
Show KASH from the View menu. This displays a standard KASH console.
Any variables created with the graphical interface are also available in the
console. The user may use the console to access features of KASH which are
not graphically available. Alternatively, GiANT can be used as a scripting
tool for KASH since all graphically-driven activities generate KASH code.

3. Conclusion

The motivation behind GiANT was to provide intuitive access to the
functionality of KASH. To be sure, we have not completely succeeded in



726 Aneesh Karve, Sebastian Pauli

this regard, but nevertheless hope to have offered some ideas in the right
direction. In its present state of development GiANT can be used for
teaching and presentations. To use GiANT for research in algebraic number
theory the following issues should be addressed. A bidirectional integration
of graphical manipulation and a classic text-based shell should be achieved
such that objects, and structural information about them, are displayed
graphically as these objects are created in the shell. In GiANT the objects
that are generated in the graphical user interface are available in the shell,
but objects generated in the shell do not appear in the graphical interface.

A more flexible software architecture would make it possible to use
GiANT with other computer algebra systems and for algebraic structures
other than number fields. Said architecture should be designed in such a
way that the same methods that are used to display lattices of subfields are
used, for example, to display lattices of subgroups.

Because algebra is primarily represented with formulas, a system that
graphically displays structural information and supports graphical as well
as command line manipulation of structures and elements would be ideal.
On the one hand, most complex tasks are more easily done on the command
line. On the other hand, routine tasks, structural information, and an
overview of defined objects are best accomplished graphically.

GiANT is written in Java 1.4. For further research and development the
GiANT source code is available under the GNU General Public License
(GPL). GiANT can be found on the worldwide web at

http://giantsystem.sourceforge.net.

4. Acknowledgements

The authors would like to wish Michael Pohst a happy 60th birthday.
We have had the pleasure of working with him at Technische Universität
Berlin. Herr Pohst is not only an extraordinary mathematician, but a kind
human being as well.

Special thanks to Claus Fieker, Sebastian Freundt, Jürgen Klüners, Mike
Lache, and Osmanbey Uzunkol for valuable feedback on the development
and use of GiANT. Mike also critiqued an early draft of this manuscript;
Frances Clerk helped bring it into its final form.

http://giantsystem.sourceforge.net


GiANT 727

References
[DF+97] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig,

K. Wildanger, KANT V4. J. Symb. Comp. 11 (1997), 267–283.
http://www.math.tu-berlin.de/~kant/.

[CN04] F. Celler, M. Neunhöffer, GAP package XGAP – a graphical user interface for

GAP, 2004. http://www-gap.mcs.st-and.ac.uk/Packages/xgap.html
[GAP] GAP - Groups, Algorithms, Programming - a System for Computational Discrete Al-

gebra, 2005. http://www.gap-system.org

[Ma05] Maplesoft, Maple, 2005. http://www.maplesoft.com
[Wo05] Wolfram Research, Mathematica, 2005. http://www.wolfram.com

Aneesh Karve
Department of Computer Sciences

University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706-1685, USA

E-mail : karve@cs.wisc.edu

Sebastian Pauli
Department of Mathematics and Statistics

University of North Carolina at Greensboro
Greensboro, NC 27402, USA

E-mail : s pauli@uncg.edu

http://www.math.tu-berlin.de/%7Ekant
http://www-gap.mcs.st-and.ac.uk/Packages/xgap.html
http://www.gap-system.org
http://www.maplesoft.com
http://www.wolfram.com

	1. Introduction
	2. GiANT
	The Tower of Fields
	Working with Fields: The Inspector Window
	Automatic Variable Naming and Abbreviations
	Drag-And-Drop Convenience
	The Global Inspector
	The Shell Behind GiANT

	3. Conclusion
	4. Acknowledgements
	References

