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S-extremal strongly modular lattices

par Gabriele NEBE et Kristina SCHINDELAR

Résumé. Un réseau fortement modulaire est dit s-extrémal, s’il
maximise le minimum du réseau et son ombre simultanément. La
dimension des réseaux s-extrémaux dont le minimum est pair peut
être bornée par la théorie des formes modulaires. En particulier
de tels réseaux sont extrémaux.

Abstract. S-extremal strongly modular lattices maximize the
minimum of the lattice and its shadow simultaneously. They are a
direct generalization of the s-extremal unimodular lattices defined
in [6]. If the minimum of the lattice is even, then the dimension of
an s-extremal lattices can be bounded by the theory of modular
forms. This shows that such lattices are also extremal and that
there are only finitely many s-extremal strongly modular lattices
of even minimum.

1. Introduction.

Strongly modular lattices have been defined in [11] to generalize the no-
tion of unimodular lattices. For square-free N ∈ N a lattice L ⊂ (Rn, (., .))
in Euclidean space is called strongly N -modular, if L is integral, i.e. con-
tained in its dual lattice

L∗ = {x ∈ Rn | (x, `) ∈ Z ∀ ` ∈ L}

and isometric to its rescaled partial dual lattices
√
d(L∗ ∩ 1

dL) for all d | N .
The simplest strongly modular lattice is

CN :=⊥d|N
√
dZ

of dimension σ0(N), the number of divisors of N . For

N ∈ L = {1, 2, 3, 5, 6, 7, 11, 14, 15, 23}

which is the set of square-free numbers such that σ1(N) =
∑

d|N d divides
24, Theorems 1 and 2 in [13] bound the minimum min(L) := min{(`, `) |

Manuscrit reçu le 11 septembre 2006.



684 Gabriele Nebe, Kristina Schindelar

0 6= ` ∈ L} of a strongly N -modular lattice that is rational equivalent to
CkN by

(1.1) min(L) ≤ 2 + 2b k

s(N)
c, where s(N) =

24
σ1(N)

.

For N ∈ {1, 3, 5, 7, 11} there is one exception to this bound: k = s(N)− 1
and L = S(N) of minimum 3 (see [13, Table 1]). Lattices achieving this
bound are called extremal.

For an odd strongly N -modular lattice L let

S(L) = L∗0 \ L∗

denote the shadow of L, where L0 = {` ∈ L | (`, `) ∈ 2Z} is the even
sublattice of L. For even strongly N -modular lattices L let S(L) := L∗.
Then the shadow-minimum of an N -modular lattice is defined as

smin(L) := min{N(x, x) | x ∈ S(L)}.

In particular smin(L) = 0 for even lattices L. In this paper we show that
for all N ∈ L and for all strongly N -modular lattices L that are rational
equivalent to CkN

2 min(L) + smin(L) ≤ k σ1(N)
4 + 2 if N is odd and

min(L) + smin(L) ≤ k σ1(N/2)
2 + 1 if N is even

with the exceptions L = S(N), k = s(N) − 1 (N 6= 23, 15 odd) where the
bound has to be increased by 2 and L = O(N), k = s(N) and N even, where
the bound has to be increased by 1 (see [13, Table 1] for the definition of
the lattices S(N), O(N) and also E(N)). Lattices achieving this bound are
called s-extremal. The theory of modular forms allows us to bound the
dimension σ0(N)k of an s-extremal lattice of even minimum µ by

2k < µs(N).

In particular s-extremal lattices of even minimum are automatically ex-
tremal and hence by [12] there are only finitely many strongly N -modular
s-extremal lattices of even minimum. This is also proven in Section 3, where
explicit bounds on the dimension of such s-extremal lattices and some clas-
sifications are obtained. It would be interesting to have a similar bound for
odd minimum µ ≥ 3. Of course for µ = 1, the lattices CkN are s-extremal
strongly N -modular lattices of minimum 1 for arbitrary k ∈ N (see [9]), but
already for µ = 3 there are only finitely many s-extremal unimodular lat-
tices of minimum 3 (see [10]). The s-extremal strongly N -modular lattices
of minimum µ = 2 are classified in [9] and some s-extremal lattices of min-
imum 3 are constructed in [15]. For all calculations we used the computer
algebra system MAGMA [2].
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2. S-extremal lattices.

For a subset S ⊂ Rn, which is a finite union of cosets of an integral
lattice we put its theta series

ΘS(z) :=
∑
v∈S

q(v,v), q = exp(πiz).

The theta series of strongly N -modular lattices are modular forms for a
certain discrete subgroup ΓN of SL2(R) (see [13]). Fix N ∈ L and put

g
(N)
1 (z) := ΘCN (z) =

∏
d|N

ΘZ(dz) =
∏
d|N

∞∏
j=1

(1− q2dj)(1 + qd(2j−1))2

(see [4, Section 4.4]). Let η be the Dedekind eta-function

η(z) := q
1
12

∞∏
j=1

(1− q2j) and put η(N)(z) :=
∏
d|N

η(dz).

If N is odd define

g
(N)
2 (z) :=

(η(N)(z/2)η(N)(2z)
η(N)(z)2

)s(N)

and if N is even then

g
(N)
2 (z) :=

(η(N/2)(z/2)η(N/2)(4z)
η(N/2)(z)η(N/2)(2z)

)s(N)
.

The meromorphic function g(N)
2 generates the field of modular functions of

ΓN . It is a power series in q starting with

g
(N)
2 (z) = q − s(N)q2 + . . . .

Using the product expansion of the η-function we find that

q−1g
(N)
2 (z) =

∏
d|N

∞∏
j=1

(1 + qd(2j−1))−s(N).

For even N one has to note that

q−1g
(N)
2 (z) =

∏
d|N

2

∞∏
j=1

(
1 + q4dj

1 + qdj
)s(N)

=
∏
d|N

2

∞∏
j=1

(1 + q2d(2j−1))−s(N)(1 + qd(2j−1))−s(N).



686 Gabriele Nebe, Kristina Schindelar

By [13, Theorem 9, Corollary 3] the theta series of a strongly N -modular
lattice L that is rational equivalent to CkN is of the form

(2.1) ΘL(z) = g
(N)
1 (z)k

b∑
i=0

cig
(N)
2 (z)i

for ci ∈ R and some explicit b depending on k and N . The theta series of
the rescaled shadow S :=

√
NS(L) of L is

(2.2) ΘS(z) = s
(N)
1 (z)k

b∑
i=0

cis
(N)
2 (z)i

where s(N)
1 and s

(N)
2 are the corresponding “shadows” of g(N)

1 and g
(N)
2 as

defined in [13] (see also [9]).
If N is odd, then

s
(N)
1 = 2σ0(N)qσ1(N)/4(1 + q2 + . . .)

and

s
(N)
2 = 2−s(N)σ0(N)/2(−q−2 + s(N) + . . .).

If N is even, then

s
(N)
1 = 2σ0(N)/2qσ1(N

2
)/2(1 + 2q + . . .),

s
(N)
2 = 2−s(N)σ0(N

2
)/2(−q−1 + s(N) + . . .).

Theorem 2.1. Let N ∈ L be odd and let L be a strongly N -modular lattice
in the genus of CkN . Let σ := smin(L) and let µ := min(L). Then

σ + 2µ ≤ kσ1(N)
4

+ 2

unless k = s(N) − 1 and µ = 3. In the latter case the lattice S(N) is the
only exception (with min(S(N)) = 3 and smin(S(N)) = 4− σ1(N)/4).

Proof. The proof is a straightforward generalization of the one given in [6].
We always assume that L 6= S(N) and put g1 := g

(N)
1 and g2 := g

(N)
2 . Let

m := µ−1 and assume that σ+2µ ≥ k σ1(N)
4 +2. Then from the expansion

of

ΘS =
∞∑
j=σ

bjq
j = s

(N)
1 (z)k

b∑
i=0

cis
(N)
2 (z)i

in formula (2.2) above we see that ci = 0 for i > m and (2.1) determines
the remaining coefficients c0 = 1, c1, . . . , cm uniquely from the fact that

ΘL = 1 +
∞∑
j=µ

ajq
j ≡ 1 (mod qm+1).
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The number of vectors of norm k σ1(N)
4 + 2− 2µ in S =

√
NS(L) is

cm(−1)m2−mσ0(N)s(N)/2+kσ0(N)

and nonzero, iff cm 6= 0. The expansion of g−k1 in a power series in g2 is
given by

(2.3) g−k1 =
m∑
i=0

cig
i
2 − am+1q

m+1g−k1 + ?qm+2 + . . . =
∞∑
i=0

c̃ig
i
2

with c̃i = ci (i = 0, . . . ,m) and c̃m+1 = −am+1. Hence Bürmann-Lagrange
(see for instance [16]) yields that

cm =
1
m!

∂m−1

∂qm−1
(
∂

∂q
(g−k1 )(qg−1

2 )m)q=0 =
−k
m

( coeff. of qm−1 in (g′1/g1)/f1)

with f1 = (q−1g2)mgk1 . Using the product expansion of g1 and g2 above we
get

f1 =
∏
d|N

∞∏
j=1

(1− q2dj)k(1 + qd(2j−1))2k−s(N)m.

Since

g′1/g1 =
∑
d|N

∂
∂qθ3(dz)

θ3(dz)

is alternating as a sum of alternating power series, the series P := g′1/g1/f1

is alternating, if 2k − s(N)m ≥ 0. In this case all coefficients of P are
nonzero, since all even powers of q occur in (1 − q2)−1 and g′1/g1 has a
non-zero coefficient at q1. Otherwise write

P = g′1
∏
d|N

∞∏
j=1

(1 + qd(2j−1))s(N)m−2k−2

(1− q2dj)k+1
.

If 2k− s(N)m < −2 then P is a positive power series in which all q-powers
occur. Hence cm < 0 in this case. If the minimum µ is odd then this
implies that bσ < 0 and hence the nonexistence of an s-extremal lattice of
odd minimum for s(N)m − 2 > 2k. Assume now that 2k − s(N)m = −2,
i.e. k = s(N)m/2− 1. By the bound in [13] one has

m+ 1 ≤ 2b k

s(N)
c+ 2 = 2bm

2
− 1
s(N)

c+ 2.

This is only possible if m is odd. Since g′1 has a non-zero constant term,
P contains all even powers of q. In particular the coefficient of qm−1 is
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positive. The last case is 2k − s(N)m = −1. Then clearly m and s(N) are
odd and P = GH(m−1)/2 where

G = g′1
∏
d|N

∞∏
j=1

(1 + qd(2j−1))−1(1− q2dj)−(s(N)+1)/2

and

H =
∏
d|N

∞∏
j=1

(1− q2dj)−s(N).

If m is odd then the coefficient of P at qm−1 is∫ −1+iy0

1+iy0

e−(m−1)πizG(eπiz)H(eπiz)(m−1)/2dz

which may be estimated by the saddle point method as illustrated in [8,
Lemma 1]. In particular this coefficient grows like a constant times

c(m−1)/2

m1/2

where c = F (y0), F (y) = e2πyH(e−2πy) and y0 is the first positive zero of
F ′. Since c > 0 and also F ′′(y0) > 0 and the coefficient of P at qm−1 is
positive for the first few values of m (we checked 10000 values), this proves
that bσ > 0 also in this case. �

To treat the even N ∈ L, we need two easy (probably well known)
observations:

Lemma 2.1. Let

f(q) :=
∞∏
j=1

(1 + q2j−1)(1 + q2(2j−1)).

Then the q-series expansion of 1/f is alternating with non zero coefficients
at qa for a 6= 2.

Proof.

1/f =
∞∏
j=1

(1+q2j−1 +q2(2j−1) +q3(2j−1))−1 =
∞∏
j=1

∞∑
`=0

q4`(2j−1)−q(4`+1)(2j−1)

is alternating as a product of alternating series. The coefficient of qa is
non-zero, if and only if a is a sum of numbers of the form 4`(2j − 1) and
(4`+ 1)(2j − 1) with distinct `. One obtains 0 and 1 with ` = 0 and j = 1
and 3 = 1(2 ·2−1) and 6 = 1+5. Since one may add arbitrary multiples of
4, this shows that the coefficients are all non-zero except for the case that
a = 2. �
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Lemma 2.2. Let g1 := g
(N)
1 for even N such that N/2 is odd and denote

by g′1 the derivative of g1 with respect to q. Then g′
1
g1

is an alternating series
with non-zero coefficients for all qa with a 6≡ 1 (mod 4). The coefficients
for qa with a ≡ 1 (mod 4) are zero.

Proof. Using the product expansion

g1 =
∏
d|N

∞∏
j=1

(1− q2jd)(1 + q(2j−1)d)2

we calculate

g′1/g1 =
∑
d|N

2

∞∑
j=1

2(2j − 1)dqd(2j−1)−1

1− qd(2j−1)
− 2djq2dj−1

1− q2dj
− 4djq4dj−1

1− q4dj

+
2(4j − 2)dqd(4j−2)−1

1− qd(4j−2)

=
∑
d|N

2

∞∑
j=1

(4j − 2)dq(2j−1)d−1

1 + q(2j−1)d
− 8djq4dj−1

1− q4dj

+
(4j − 2)d(q(4j−2)d−1 − 3q(8j−4)d−1

1− q(8j−4)d

=
∑
d|N

2

∞∑
j=1

∞∑
`=1

−8jdq4jd`−1 − 3(4j − 2)dq(8j−4)d`−1

+ (4j − 2)dq(2j−1)d(4`−2)−1 − (−1)`(4j − 2)dq(2j−1)d`−1

Hence the coefficient of qa is positive if a is even and negative if a ≡ −1
(mod 4). The only cancellation that occurs is for a ≡ 1 (mod 4). In this
case the coefficient of qa is zero. �

Theorem 2.2. Let N ∈ L be even and let L be a strongly N -modular lattice
in the genus of CkN . Let σ := smin(L) and let µ := min(L). Then

σ + µ ≤ kσ1(N/2)
2

+ 1

unless k = s(N) and µ = 3 where this bound has to be increased by 1.
In these cases L is the unique lattice L = O(N) (from [13, Table 1]) of
minimum 3 described in [9, Theorem 3].

Proof. As in the proof of Theorem 2.1 let g1 := g
(N)
1 and g2 := g

(N)
2 ,

m := µ−1 and assume that σ+µ ≥ k σ1(N/2)
2 +1. Again all coefficients ci in

(2.2) and (2.1) are uniquely determined by the conditions that smin(L) ≥
k σ1(N/2)

4 − m and ΘL ≡ 1 (mod qm+1). The number of vectors of norm
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k σ1(N/2)
2 −m in S =

√
NS(L) is cm(−1)m2σ0(N)k/2−ms(N). As in the proof

of Theorem 2.1 the formula of Bürmann-Lagrange yields that

cm =
−k
m

( coeff. of qm−1 in (g′1/g1)/f1)

with f1 as in the proof of Theorem 2.1. We have

f1 =
∏
d|N

2

f(dq)2k−s(N)m
∞∏
j=1

(1− q2dj)k(1− q4dj)k

where f is as in Lemma 2.1. If 2k − s(N)m > 0 then 1/f1 is alternating
by Lemma 2.1 and g′

1
g1

is alternating (with a non-zero coefficient at q3) by
Lemma 2.2 and we can argue as in the proof of Theorem 2.1. Since k > 0
all even coefficients occur in the product

∞∏
j=1

(1− q2j)−k

hence all coefficients in (g′1/g1)/f1 are non-zero. If 2k−s(N)m = 0 similarly
the only zero coefficient in (g′1/g1)/f1 is at q1 yielding the exception stated
in the Theorem. Now assume that 2k − s(N)m < 0 and write

P = (g′1/g1)/f1 = g′1
∏
d|N

2

f(dq)s(N)m−2k−2∏∞
j=1((1− q2dj)(1− q4dj))k+1

.

If 2k − s(N)m < −2 then P is a positive power series in which all q-
powers occur and hence cm < 0. If the minimum µ is odd then this implies
that bσ < 0 and hence the nonexistence of an s-extremal lattice of odd
minimum for s(N)m − 2 > 2k. Assume now that 2k − s(N)m = −2, i.e.
k = s(N)m/2−1. Then again m is odd and since g′1 has a non-zero constant
term P contains all even powers of q. In particular the coefficient of qm−1

is positive. The last case is 2k − s(N)m = −1 and dealt with as in the
proof of Theorem 2.1. �

From the proof of Theorem 2.1 and 2.2 we obtain the following bound
on the minimum of an s-extremal lattice which is sometimes a slight im-
provement of the bound (1.1).

Corollary 2.1. Let L be an s-extremal strongly N -modular lattice in the
genus of CkN with odd minimum µ := min(L). Then

µ <
2k + 2
s(N)

+ 1.
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3. S-extremal lattices of even minimum.

In this section we use the methods of [8] to show that there are only
finitely many s-extremal lattices of even minimum. The first result gener-
alizes the bound on the dimension of an s-extremal lattice of even minimum
that is obtained in [6] for unimodular lattices. In particular such s-extremal
lattices are automatically extremal. Now [12, Theorem 5.2] shows that
there are only finitely many extremal strongly N -modular lattices which
also implies that there are only finitely many such s-extremal lattices with
even minimum. To get a good upper bound on the maximal dimension of
an s-extremal strongly N -modular lattice, we show that the second (resp.
third) coefficient in the shadow theta series becomes eventually negative.

Theorem 3.1. Let N ∈ L and let L be an s-extremal strongly N -modular
lattice in the genus of CkN . Assume that µ := min(L) is even. Then

s(N)(µ− 2) ≤ 2k < µs(N).

Proof. The lower bound follows from (1.1). As in the proof of Theorem 2.1
we obtain the number aµ of minimal vectors of L as

aµ =
k

µ− 1
( coeff. of qµ−1 in (g′1/g1)/f2)

with
f2 = (q−1g2)µgk1 .

If N is odd, then

f2 =
∏
d|N

∞∏
j=1

(1− q2dj)k(1 + qd(2j−1))2k−s(N)µ

and for even N we obtain

f2 =
∏
d|N

2

f(dq)2k−s(N)µ
∞∏
j=1

(1− q2dj)k(1 + q4dj)k

where f is as in Lemma 2.1. If 2k−s(N)µ ≥ 0 then in both cases (g′1/g1)/f2

is an alternating series and since µ− 1 is odd the coefficient of qµ−1 in this
series is negative. Therefore aµ is negative which is a contradiction. �

We now proceed as in [8] and express the first coefficients of the shadow
theta series of an s-extremal N -modular lattice.

Lemma 3.1. Let N ∈ L, s1 := s
(N)
1 and s2 := s

(N)
2 . Then sk1

∑m
i=0 cis

i
2

starts with (−1)m2σ0(N)(k−ms(N)/2)qkσ1(N)/4−2m times

cm − (2s(N)σ0(N)/2cm−1 + (s(N)m− k)cm)q2



692 Gabriele Nebe, Kristina Schindelar

if N is odd, and with (−1)m2σ0(N)k/2−ms(N)σ0(N)/4qkσ1(N/2)/2−m times

cm − (2s(N)σ0(N)/4cm−1 + (s(N)m− 2k)cm)q
+
(

2s(N)σ0(N)/2cm−2 + 2s(N)σ0(N)/4(s(N)(m− 1)− 2k)cm−1

+(s(N)2m(m−1)
2 − 2kms(N) + 2k(k − 1) + 2s(N)σ0(N)/4m(s(N)+1)

4 )cm
)
q2

if N is even.

Proof. If N is odd then

s1 = 2σ0(N)qσ1(N)/4(1 + q2) + . . .

s2 = 2−s(N)σ0(N)/2(−q−2 + s(N)) + . . .

and for even N

s1 = 2σ0(N)/2qσ1(N/2)/2(1 + 2q + 0q2+) . . .
s2 = 2−s(N)σ0(N)/4(−q−1 + s(N))− s(N)+1

4 q + . . .

Explicit calculations prove the lemma. �

We now want to use [8, Lemma 1] to show that the coefficients cm and
cm−1 determined in the proof of Theorem 2.1 for the theta series of an
s-extremal lattice satisfy (−1)jcj > 0 and cm/cm−1 is bounded.

If L is an s-extremal lattice of even minimum µ = m+ 1 in the genus of
CkN , then Theorem 3.1 yields that

k =
s(N)

2
(m− 1) + b for some 0 ≤ b < s(N).

Let

ψ := ψ(N) :=
∞∏
j=1

∏
d|N

(1− q2jd) and ϕ := ϕ(N) :=
∞∏
j=1

∏
d|N

(1 + q(2j−1)d).

Then
cm−` = −k

m−` coeff. of qm−`−1 in g′1ψ
−k−1ϕs(N)(m−`)−2(k+1)

= −k
m−` coeff. of qm−`−1 in G

(b)
` Hm−`−1

where

G
(b)
` = g′1ψ

−b−1−`s(N)/2ϕ−2b−2+(1−`)s(N) = G
(0)
` (ψ−1φ−2)b

and
H = ψ−s(N)/2 = 1 +

s(N)
2

q2 + . . . .

In particular the first two coefficients of H are positive and the remaining
coefficients are nonnegative. Since also odd powers of q arise in G

(b)
` the

coefficient βm−`−1 of qm−`−1 in G
(b)
` Hm−`−1 is by Cauchy’s formula

βm−`−1 =
1
2

∫ 1+iy

−1+iy
e−πi(m−`−1)zG

(b)
` (eπiz)Hm−`−1(eπiz)dz
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for arbitrary y > 0.
Put F (y) := eπyH(e−πy) and let y0 be the first positive zero of F ′. Then

we check that d1 := F (y0) > 0 and d2 := F ′′(y0)/F (y0) > 0. Now H has
two saddle points in [−1 + iy0, 1 + iy0] namely at ±1 + iy0 and iy0. By the
saddle point method (see [1, (5.7.2)]) we obtain

βm−`−1 ∼ dm−`−1
1 (G(b)

` (e−πy0) + (−1)m−`−1G
(b)
` (−e−πy0))

× (2π(m− `− 1)d2)−1/2

as m tends to infinity. In particular

cm ∼ d1
G

(b)
0 (e−πy0) + (−1)m−1G

(b)
0 (−e−πy0)

G
(b)
1 (e−πy0) + (−1)mG(b)

1 (−e−πy0)
cm−1.

Lemma 3.2. For N ∈ L and b ∈ {0, . . . , s(N)−1} let k := s(N)
2 (m−1)+b =

js(N) + b, G(b)
` , d1, d2, y0 be as above where m = 2j + 1 is odd. Then

c2j+1/c2j tends to

Q(N, b) := d1
G

(b)
0 (e−πy0) +G

(b)
0 (−e−πy0)

G
(b)
1 (e−πy0)−G(b)

1 (−e−πy0)
∈ R<0

if j goes to infinity.

By Lemma 3.1 the second coefficient bσ+2 in the shadow theta series of a
putative s-extremal strongly N -modular lattice of even minimum µ = m+1
in the genus of CkN (k = s(N)

2 (m− 1) + b as above) is a positive multiple of

2s(N)
σ0(N)

2 cm−1 + (s(N)m− k)cm

∼ (2s(N)
σ0(N)

2 +Q(N, b)
s(N)(m+ 1)− 2b

2
)cm−1

when m tends to infinity. In particular this coefficient is expected to be
negative if

µ = m+ 1 > B(N, b) :=
2

s(N)
(b+

2s(N)σ0(N)/2

−Q(N, b)
).

Since all these are asymptotic values, the actual value µ−(N, b) of the first
even minimum µ where bσ+2 becomes negative may be different. In all
cases, the second coefficient of the relevant shadow theta series seems to
remain negative for even minimum µ ≥ µ−(N, b).

For odd N ∈ L the values of B(N, b) and µ−(N, b) are given in the
following tables:
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N = 1 b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8
Q(1,b) -380 -113 -43.8 -18.4 -8 -3.53 -1.57 -0.71 -0.33
B(1,b) 0.9 3.1 7.96 18.8 43 97.1 217.4 480.4 1036.6
µ−(1, b) 6 6 12 20 44 96 216 478 1032
k−(1, b) 48 49 122 219 508 1133 2574 5719 12368

N = 1 b = 9 b = 10 b = 11 b = 12 b = 13 b = 14 b = 15
Q(1,b) -0.16 -0.08 -0.05 -0.04 -0.03 -0.027 -0.026
B(1,b) 2131.3 4012.4 6597.4 9240.4 11239.4 12433.6 13049.1

N = 1 b = 16 b = 17 b = 18 b = 19 b = 20 b = 21 b = 22 b = 23
Q(1,b) -0.026 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025
B(1,b) 13342 13477 13538 13565 13577 13582 13585 13586

N = 3 b = 0 b = 1 b = 2 b = 3 b = 4 b = 5
Q(3,b) -15.6 -2 -0.45 -0.2 -0.16 -0.15
B(3,b) 1.36 11 47.6 107.13 137.07 144.34
µ−(3, b) 6 12 44 100 126 130
k−(3, b) 12 31 128 297 376 389

N = 5 b = 0 b = 1 b = 2 b = 3 N = 7 b = 0 b = 1 b = 2
Q(5,b) -5 -0.73 -0.31 -0.25 Q(7,b) -2.88 -0.51 -0.32
B(5,b) 1.6 11 27 33.5 B(7,b) 1.85 11 17.8
µ−(5, b) 6 12 22 24 µ−(7, b) 6 10 12
k−(5, b) 8 21 42 47 k−(7, b) 6 13 17

N = 11 b = 0 b = 1 N = 15 b = 0 N = 23 b = 0
Q(11,b) -1.72 -0.45 Q(15,b) -2.03 Q(23,b) -1.08
B(11,b) 2.33 9.8 B(15,b) 3.93 B(23,b) 3.69
µ−(11, b) 6 6 µ−(15, b) 6 µ−(23, b) 6
k−(11, b) 4 5 k−(15, b) 2 k−(23, b) 2
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For even N ∈ L the situation is slightly different. Again k = b +
s(N)

2 (m − 1) for some 0 ≤ b < s(N). From Lemma 3.1 the second co-
efficient bσ+1 in the s-extremal shadow theta series is a nonzero multiple of
2s(N)σ0(N)/4cm−1+(s(N)−2b)cm and in particular its sign is asymptotically
independent of m. Therefore we need to consider the third coefficient bσ+2,
which is by Lemma 3.1 for odd m a positive multiple of

− a2cm−2 + a(2k − s(m− 1))cm−1

+ (2kms− s2m(m− 1)
2

− 2k(k − 1)− ams+ 1
4

)cm

where for short a := 2sσ0(N)/4 and s := s(N). For k = s(N)
2 (m− 1) + b this

becomes

−a2cm−2 + 2abcm−1 + (m(2b(b− 1− s)− as+ 1
4

+ s
s+ 2

2
) +

2s+ s2

2
)cm.

Since the quotients cm−1/cm−2 and cm/cm−2 are bounded, there is an ex-
plicit asymptotic bound B(N, b) for µ = m+ 1 after which this coefficient
should become negative. Again, the true values µ−(N, b) differ and the
results are displayed in the following table.

N = 2 b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7
B(2,b) -4.9 10 52.5 170.1 382.6 575.9 677.7 725.7
µ−(2, b) 16 22 54 166 374 564 666 716
k−(2, b) 56 81 210 659 1492 2253 2662 2863

N = 6 b = 0 b = 1 N = 14 b = 0
B(6,b) 1 33.58 B(14,b) 2
µ−(6, b) 10 28 µ−(14, b) 10
k−(6, b) 8 27 k−(14, b) 4

3.1. Explicit classifications. In this section we classify the s-extremal
strongly N -modular lattices LN (µ, k) rational equivalent to CkN for certain
N and even minimum µ. For N ∈ {11, 14, 15, 23} a complete classification
is obtained. For convenience we denote the uniquely determined modular
form that should be the theta series of LN (µ, k) by θN (µ, k) and its shadow
by σN (µ, k).

Important examples are the unique extremal even strongly N -modular
lattices E(N) of minimum 4 and with k = s(N) from [13, Table 1]. For odd
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N , these lattices are s-extremal since 2µ + σ = 8 = s(N)σ1(N)/4 + 2 and
hence E(N) = LN (4, s(N)).

Theorem 3.1 suggests to write k = s(N)(µ−2)
2 +b for some 0 ≤ b ≤ s(N)−1

and we will organize the classification according to the possible b. Note that
for every b the maximal minimum µ is bounded by µ−(N, b) above.

If N = 14, 15 or 23, then s(N) = 1 and hence Theorem 3.1 implies
that k = µ−2

2 . For N = 15, 23 the only possibility is k = 1 and µ = 4
and LN (4, 1) = E(N). The second coefficient of σ14(4, 1) and σ14(8, 3)
is negative, hence the only s-extremal strongly 14-modular lattice with
even minimum is L14(6, 2) of minimum 6. The series σ14(6, 2) starts with
8q3 +8q5 +16q6 + . . .. Therefore the even neighbour of L14(6, 2) in the sense
of [13, Theorem 8] is the unique even extremal strongly 14-modular lattice
of dimension 8 (see [14, p. 160]). Constructing all odd 2-neighbours of this
lattice, it turns out that there is a unique such lattice L14(6, 2). Note that
L14(6, 2) is an odd extremal strongly modular lattice in a jump dimension
and hence the first counterexample to conjecture (3) in the Remark after
[13, Theorem 2].

For N = 11 and b = 0 the only possibility is µ = 4 and k = 2 = s(N)

whence L11(4, 2) = E(11). If b = 1 then either µ = 2 and L11(2, 1) =
(

2 1

1 6

)
or µ = 4. An explicit enumeration of the genus of C3

11 with the Kneser
neighbouring method [7] shows that there is a unique lattice L11(4, 3).

Now let N = 7. For b = 0 again the only possibility is k = s(N) and
L7(4, 3) = E(7). For b = 1 and b = 2 one obtains unique lattices L7(2, 1)

(with Grammatrix
(

2 1

1 4

)
) L7(4, 4) and L7(4, 5). There is no contradiction

for the existence of lattices L7(6, 7), L7(6, 8), L7(8, 10), L7(8, 11), though a
complete classification of the relevant genera seems to be difficult. For the
lattice L7(6, 8) we tried the following: Both even neighbours of such a lattice
are extremal even 7-modular lattices. Starting from the extremal 7-modular
lattice constructed from the structure over Z[

√
2] of the Barnes-Wall lattice

as described in [14], we calculated the part of the Kneser 2-neighbouring
graph consisting only of even lattices of minimum 6 and therewith found 126
such even lattices 120 of which are 7-modular. None of the edges between
such lattices gave rise to an s-extremal lattice. The lattice L7(10, 14) does
not exist because θ7(10, 14) has a negative coefficient at q13.

Now let N := 6. For k = µ−2 the second coefficient in the shadow theta
series is negative, hence there are no lattices L6(µ, µ− 2) of even minimum
µ. For k = µ−1 < 27 the modular forms θ6(µ, µ−1) and σ6(µ, µ−1) seem
to have nonnegative integral coefficients. The lattice L6(2, 1) is unique and
already given in [9]. For µ = 4 the even neighbour of any lattice L6(4, 3)
(as defined in [13, Theorem 8]) is one of the five even extremal strongly
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6-modular lattices given in [14]. Constructing all odd 2-neighbours of these
lattices we find a unique lattice L6(4, 3) as displayed below.

For N = 5 the lattice L5(4, 4) = E(5) is is the only s-extremal lattice
of even minimum µ for k = 2(µ − 2), because µ−(5, 0) = 6. For k =
2(µ−2)+1 the shadow series σ5(2, 1), σ5(4, 5) and σ5(6, 9) have non integral
respectively odd coefficients so the only lattices that might exist here are

L5(8, 13) and L5(10, 17). The s-extremal lattice L5(2, 2) =
(

2 1

1 3

)
⊥
(

2 1

1 3

)
is

unique. The theta series θ5(2, 3) starts with 1+20q3 + . . ., hence L5(2, 3) =
S(5) has minimum 3. The genus of C6

5 contains 1161 isometry classes, 3 of
which represent s-extremal lattices of minimum 4 and whose Grammatrices
L5(4, 6)a,b,c are displayed below. For k = 7 a complete classification of the
genus of Ck5 seems to be out of range. A search for lattices in this genus
that have minimum 4 constructs the example L5(4, 7)a displayed below of
which we do not know whether it is unique. For the remaining even minima
µ < µ−(5, b) we do not find a contradiction against the existence of such
s-extremal lattices.

For N = 3 and b = 0 again E(3) = L3(4, 6) is the unique s-extremal
lattice. For k = 3(µ − 2) + 1, the theta series θ3(8, 19) and θ3(10, 25)
as well as their shadows seem to have integral non-negative coefficients,
whereas σ3(4, 7) and σ3(6, 13) have non-integral coefficients. The remaining
theta-series and their shadows again seem to have integral non-negative
coefficients. The lattices of minimum 2 are already classified in [9]. In all
cases L3(2, b) (2 ≤ b ≤ 5) is unique but L3(2, 5) = S(3) has minimum 3.

Now let N := 2. For b = 0 and b = 1 the second coefficient in σ2(µ, 4(µ−
2) + b) is always negative, proving the non-existence of such s-extremal
lattices. The lattices of minimum 2 are already classified in [9]. There is a
unique lattice L2(2, 2) ∼= D4, no lattice L2(2, 3) since the first coefficient of
σ2(2, 3) is 3, unique lattices L2(2, b) for b = 4, 5 and 7 and two such lattices
L2(2, 6).

For N = 1 we also refer to the paper [6] for the known classifications.
Again for b = 0, the Leech lattice L1(4, 24) = E(1) is the unique s-extremal
lattice. For µ = 2, these lattices are already classified in [5]. The possibili-
ties for b = k are 8, 12, 14 ≤ b ≤ 22. For µ = 4, the possibilities are either
b = 0 and k = 24 or 8 ≤ b ≤ 23 whence 32 ≤ k ≤ 47 since the other shadow
series have non-integral coefficients. The lattices L1(4, 32) are classified in
[3]. For µ = 6 no such lattices are known. The first possible dimension is
56, since the other shadow series have non-integral coefficients.

Since for odd N the value µ−(N, 0) = 6 and the s-extremal lattices of
minimum 4 with k = s(N) are even and hence isometric to E(N) we obtain
the following theorem.
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Theorem 3.2. Let L be an extremal and s-extremal lattice rational equiv-
alent to CkN for some N ∈ L such that k is a multiple of s(N). Then
µ := min(L) is even and k = s(N)(µ − 2)/2 and either µ = 4, N is odd
and L = E(N) or µ = 6, N = 14 and L = L14(6, 2).

For N ∈ {11, 14, 15, 23} the complete classification of s-extremal strongly
N -modular lattices in the genus of CkN is as follows:

N 23 15 14 11 11 11
min 4 4 6 2 4 4

k 1 1 2 1 2 3
lattice E(23) E(15) E(14) L11(2, 1) E(11) L11(4, 3)

For the remaining N ∈ L, the results are summarized in the following
tables. The last line, labelled with # displays the number of lattices, where
we display − if there is no such lattice, ? if we do not know such a lattice,
+ if there is a lattice, but the lattices are not classified. We always write
k = `s(N) + b with 0 ≤ b ≤ s(N) − 1 such that µ = min(L) = 2` + 2 by
Theorem 3.1 and dim(L) = kσ0(N).

N = 7, s(N) = 3, k = `s(N) + b
b 0 1 2
` 1 ≥ 2 0 1 2 3 ≥ 4 0 1 2 3 ≥ 4

min 4 ≥ 6 2 4 6 8 ≥ 10 3 4 6 8 ≥ 10
# 1 - 1 1 ? ? - 1 1 ? ? -

N = 6, s(N) = 2, k = `s(N) + b
b 0 1
` ≥ 1 0 1 2 ≤ ` ≤ 12 ≥ 13

min ≥ 4 2 4 6 ≤ µ ≤ 26 ≥ 28
# - 1 1 ? -

N = 5, s(N) = 4, k = `s(N) + b
b 0 1
` 1 ≥ 2 0 1 2 3 4 ≥ 5

min 4 ≥ 6 2 4 6 8 10 ≥ 12
# 1 - - - - ? ? -

b 2 3
` 0 1 2 ≤ ` ≤ 9 ≥ 10 0 1 2 ≤ ` ≤ 10 ≥ 11

min 2 4 6 ≤ µ ≤ 20 ≥ 22 3 4 6 ≤ µ ≤ 22 ≥ 24
# 1 3 ? - 1 + ? -
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N = 3, s(N) = 6, k = `s(N) + b
b 0 1 2 3
` 1 ≥ 2 1 2 3 4 ≥ 5 0 1 ≤ ` ≤ 20 ≥ 21 0 1 ≤ ` ≤ 48

min 4 ≥ 6 4 6 8 10 ≥ 12 2 4 ≤ ` ≤ 42 ≥ 44 2 4 ≤ µ ≤ 98
# 1 - - - ? ? - 1 ? - 1 ?

b 3 4 5
` ≥ 49 0 1 ≤ ` ≤ 61 ≥ 62 0 1 ≤ ` ≤ 63 ≥ 64

min ≥ 100 2 4 ≤ µ ≤ 124 ≥ 126 3 4 ≤ µ ≤ 128 ≥ 130
# - 1 ? - 1 ? -

N = 2, s(N) = 8, k = `s(N) + b
b 0 1 2 3
` ≥ 1 ≥ 1 0 1 ≤ ` ≤ 25 ≥ 26 0 1 ≤ ` ≤ 81 ≥ 82

min ≥ 4 ≥ 4 2 4 ≤ µ ≤ 52 ≥ 54 2 4 ≤ µ ≤ 164 ≥ 166
# - - 1 ? - - ? -

b 4 5
` 0 1 ≤ ` ≤ 185 ≥ 186 0 1 ≤ ` ≤ 280 ≥ 281

min 2 4 ≤ µ ≤ 372 ≥ 374 2 4 ≤ µ ≤ 562 ≥ 564
# 1 ? - 1 ? -
b 6 7
` 0 1 ≤ ` ≤ 331 ≥ 332 0 1 ≤ ` ≤ 356 ≥ 357

min 2 4 ≤ µ ≤ 664 ≥ 666 2 4 ≤ µ ≤ 714 ≥ 716
# 2 ? - 1 ? -

Grammatrices of the new s-extremal lattices:

L14(6, 2) =

0BBBBBBBBBB@

6 3 0 2-3 3-1-2
3 6 3 2-3 3-3-2
0 3 6 0-3 2-2-3
2 2 0 6-2-1 1-3

-3-3-3-2 6-3 3 3
3 3 2-1-3 7-4-2

-1-3-2 1 3-4 7-1
-2-2-3-3 3-2-1 7

1CCCCCCCCCCA
, L11(4, 3) =

0BBBBBB@
4 0 0 2-2-1
0 4 0-1 2 2
0 0 4-2-1-2
2-1-2 5-1 0

-2 2-1-1 5 2
-1 2-2 0 2 5

1CCCCCCA

L7(4, 4) =

0BBBBBBBBBB@

4 0 0 2 2 2-2-1
0 4 0 2 2-1-2 2
0 0 4-1 2 2 1 2
2 2-1 5 2 1-3 1
2 2 2 2 5 2-1 2
2-1 2 1 2 5 1 1

-2-2 1-3-1 1 5 1
-1 2 2 1 2 1 1 5

1CCCCCCCCCCA
, L7(4, 5) =

0BBBBBBBBBBBBBB@

4 0 0-2 1 1 1 2 1-1
0 4 0-2 1-2-1 2 2 2
0 0 4-2-2 0 2 2 2-1

-2-2-2 5 0 0-1-3-2 1
1 1-2 0 5-2-1 0-2-1
1-2 0 0-2 5-1 0 1 0
1-1 2-1-1-1 5 1-1-3
2 2 2-3 0 0 1 5 3-1
1 2 2-2-2 1-1 3 6 2

-1 2-1 1-1 0-3-1 2 6

1CCCCCCCCCCCCCCA
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L6(4, 3) =

0BBBBBBBBBBBBBBBBBB@

4 1 -2 1 0 1 1 1 -2 2 0 -1
1 4 -2 0 1 -1 1 1 0 2 0 1
-2-2 4 -1-1 0 -1 0 1 -2-1-1
1 0 -1 4 -1 2 -1-1 1 -1 1 1
0 1 -1-1 4 -2 1 1 1 1 -1-1
1 -1 0 2 -2 4 -1 0 -1 0 1 1
1 1 -1-1 1 -1 4 2 -2 0 -1 1
1 1 0 -1 1 0 2 4 -2 0 -2 0
-2 0 1 1 1 -1-2-2 5 -1 1 0
2 2 -2-1 1 0 0 0 -1 5 0 -1
0 0 -1 1 -1 1 -1-2 1 0 4 2
-1 1 -1 1 -1 1 1 0 0 -1 2 5

1CCCCCCCCCCCCCCCCCCA

, L5(4, 6)a =

0BBBBBBBBBBBBBBBBBB@

4-1-1 1 1 0-1-1 0 0-2-1
-1 4 0 0-2-2 0 2-2 0 1-1
-1 0 4 0 0 0 2 1-2-2 1 1
1 0 0 4-1 1 1 2-1-2-2 2
1-2 0-1 4 1 0-2 2 2 1-1
0-2 0 1 1 4 0 0 0-1-1 2

-1 0 2 1 0 0 4 1 0-2-1 1
-1 2 1 2-2 0 1 5-3-1-1 0
0-2-2-1 2 0 0-3 5 2 0 0
0 0-2-2 2-1-2-1 2 5 2-3

-2 1 1-2 1-1-1-1 0 2 5 0
-1-1 1 2-1 2 1 0 0-3 0 5

1CCCCCCCCCCCCCCCCCCA

L5(4, 6)b =

0BBBBBBBBBBBBBBBBBB@

4 1 1 0 2 0-1 0 1-1-1 2
1 4-1 2 1 1-1 1 0 1 0 2
1-1 4 0 1-2-2 2 2 1 1-1
0 2 0 4 0-1-1 2 2 0 2 2
2 1 1 0 4 0-1 2 1 1 1 1
0 1-2-1 0 4 1-1-2 1-1 0

-1-1-2-1-1 1 4-2-1-2-1 0
0 1 2 2 2-1-2 5 2 1 3 0
1 0 2 2 1-2-1 2 5-1 2 2

-1 1 1 0 1 1-2 1-1 5 2-2
-1 0 1 2 1-1-1 3 2 2 5-1
2 2-1 2 1 0 0 0 2-2-1 5

1CCCCCCCCCCCCCCCCCCA

, L5(4, 6)c =

0BBBBBBBBBBBBBBBBBB@

4-20 0 1 202-2 2 2 2
-2 40 0 0-100 0 0-2 0
0 04 2 0 012 2 1 1 0
0 02 4 0 022 2 1 1-1
1 00 0 4-101-1 2 0 1
2-10 0-1 402-2 0 0 2
0 01 2 0 040 0 0 1 0
2 02 2 1 205 0 1 0 2

-2 02 2-1-200 5-1 1-3
2 01 1 2 001-1 5 0 2
2-21 1 0 010 1 0 5-1
2 00-1 1 202-3 2-1 5

1CCCCCCCCCCCCCCCCCCA

L5(4, 7)a =

0BBBBBBBBBBBBBBBBBBBBBB@

4 0 0 0 0 0 0-2 0-2 0-2 0-1
0 4 0-1-2 0-2 2 0 0-2 0 2 0
0 0 4 0-2 0-2 0 1 1 0 0-1-2
0-1 0 5 2 0-1 1 2-1 0 2 0-1
0-2-2 2 5-2 2 0 0-2 0 2-1 2
0 0 0 0-2 5-1 1-1 2 2 0-1-2
0-2-2-1 2-1 5-2-1-2 0-1-1 2

-2 2 0 1 0 1-2 5 1 1-2 2 1 0
0 0 1 2 0-1-1 1 5-2-2 1-1-1

-2 0 1-1-2 2-2 1-2 5 2 0 1-1
0-2 0 0 0 2 0-2-2 2 5 0-2-2

-2 0 0 2 2 0-1 2 1 0 0 5-2 0
0 2-1 0-1-1-1 1-1 1-2-2 5 1

-1 0-2-1 2-2 2 0-1-1-2 0 1 5

1CCCCCCCCCCCCCCCCCCCCCCA

References
[1] N.G. de Bruijn, Asymptotic methods in analysis. 2nd edition, North Holland (1961).

[2] J. Cannon et al., The Magma Computational Algebra System for Algebra, Number Theory

and Geometry. Published electronically at http://magma.maths.usyd.edu.au/magma/.
[3] J. H. Conway, N. J. A. Sloane, A note on optimal unimodular lattices. J. Number Theory

72 (1998), no. 2, 357–362.
[4] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups. Springer, 3. edition,

1998.



S-extremal strongly modular lattices 701

[5] N. D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5,

643–651.
[6] P. Gaborit, A bound for certain s-extremal lattices and codes. Archiv der Mathematik 89

(2007), 143–151.

[7] M. Kneser, Klassenzahlen definiter quadratischer Formen. Archiv der Math. 8 (1957),
241–250.

[8] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms,

lattices and codes. J. Alg. 36 (1975), 68–76.
[9] G. Nebe, Strongly modular lattices with long shadow. J. T. Nombres Bordeaux 16 (2004),

187–196.

[10] G. Nebe, B. Venkov, Unimodular lattices with long shadow. J. Number Theory 99 (2003),
307–317.

[11] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math.

43 (1997), 55–65.
[12] E.M. Rains, New asymptotic bounds for self-dual codes and lattices. IEEE Trans. Inform.

Theory 49 (2003), no. 5, 1261–1274.
[13] E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J.

Number Th. 73 (1998), 359–389.

[14] R. Scharlau, R. Schulze-Pillot, Extremal lattices. In Algorithmic algebra and number
theory, Herausgegeben von B. H. Matzat, G. M. Greuel, G. Hiss. Springer, 1999, 139–170.

[15] K. Schindelar, Stark modulare Gitter mit langem Schatten. Diplomarbeit, Lehrstuhl D für

Mathematik, RWTH Aachen (2006).
[16] E.T. Whittaker, G.N. Watson, A course of modern analysis (4th edition) Cambridge

University Press, 1963.

Gabriele Nebe
Lehrstuhl D für Mathematik

RWTH Aachen
52056 Aachen, Germany

E-mail : nebe@math.rwth-aachen.de

URL: http://www.math.rwth-aachen.de/∼Gabriele.Nebe/

Kristina Schindelar

Lehrstuhl D für Mathematik

RWTH Aachen
52056 Aachen, Germany

E-mail : schindelar@math.rwth-aachen.de


