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ABSTRACT. The aim of this paper is to investigate the behavior of Cayley
graphs under some graph operations. It is proved that the NEPS, corona,
hierarchical, strong, skew and converse skew products of Cayley graphs are
again Cayley graphs under some conditions.

1. INTRODUCTION AND PRELIMINARIES

All groups considered here are finite. For notations and definitions not defined
here we refer the reader to [4, 5]. Let X and Y be two graphs. Their corona
of X and Y, X oY is defined as the graph obtained by taking one copy of X
and joining the ¢—th vertex of X to every vertex in i—th copy of Y. Following
Petrovi¢ [7], we assume that I'; = (X;,U;), 1 < i < n are finite graphs, where
X, and U; denote the corresponding sets of vertices and of edges. Further, let 5
be a set of n—tuples (f1,- -, 8,) of symbols 0 and 1, which does not contain the
n—tuple (0, ...,0) . The NEPS with basis (5 of the graphs Gy, - -+ , G,, is the graph
Z = (X,U), where X = X x---x X, and in which two vertices (x1,--- ,x,) and
(y1,- -+ ,yn) are adjacent if and only if there is an n—tuple (1, -+, 8,) in § such
that x; = y; holds exactly when ; = 0, and z; is adjacent to y; in [';, exactly
when (; = 1. It is easy to see that Cartesian product, tensor product and strong
product of graphs are special types of NEPS.

The Strong product X XY of graphs X and Y has the vertex set V(X XY) =
V(X) x V(Y) and (a,z)(b,y) is an edge of X XY if a = b and zy € E(Y), or
abe€ E(X) and x =y, or ab € E(X) and zy € E(Y).

Let G; = (V;, E;) be N graphs with each vertex set V;, 1 < i < N, having
a distinguished or root vertex, labeled 0. The hierarchical product [3] H =
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Gn -+ .M G2 MGy is the graph with vertices the N—tuples zy - - - x3x011, ; € V;,
and edges defined by the following adjacencies:

TN - x3xery if yp ~ a1 in Gy,
Ty x3yawy if yo ~ x5 in G and 1 = 0,
TN T3T9xy ~ & TN Ystexry i ys ~ a3 in Gz and 1 = x5 =0,

Yn - x3x9x; ifyy ~axy in Gyand g =29 =---=xy =0.

We encourage the interested readers to consult papers [2] for a generalization
and more information on this topic.

We now define the skew product and converse skew product of two graphs Gy
and G denoted by G1AG, and G1 VG, respectively. These graph products are
having V(G;) x V(G2) as their vertex set. The edge sets of these graphs are:
E(G1AG2) = {(u1,u2)(vi,v2) | [ur = v1 and uzve € E(G2)] or [u1vi € E(G1) and uave € E(G2)]},
E(G1VG2) = {(u1,u2)(vi,v2) | [uz =v2 and urvi € E(G1)] or [u1vi € E(G1) and usvs € E(G2)]},

see [8] for details.

Suppose G and Gy are two arbitrary graphs. The cluster G1{G>}, is obtained
by taking one copy of G and |G| copies of a rooted graph Gy, and by identifying
the root of the i—th copy of G with the i—th vertex of G;, 1 < i < |G|. The
cluster of graphs was introduced by Yeh and Gutman [9] in the context of distance
in graphs.

The Cartesian product G10G5 is graph with V(G;) x V(G2) as vertex set such
that (a,z) and (b,y) are adjacent if and only if a = b and xy € Es, or ab € E;
and z = y.

Baik et al. [1, Lemma 2.6], proved that if G = G; x G are the direct product
of two finite groups G, G5 and S; and Sy are subsets of G; and G5, respectively,
then by choosing S to be the disjoint union of S; and Sy, we have Cay(G, S) =
Cay(Gy, S1)0Cay(Gy, S2). The aim of this paper is to extend this result to
corona, hierarchical product, skew product, converse skew product and NEPS of
graphs. We refer to [1, 6] for more study on the main problem of this paper.

2. MAIN RESULTS

The investigation of graph operations under graph invariants is a well-known
problem in metric graph theory. Here, we are interested to algebraic invariants.
We begin by considering corona of two graphs.

Proposition 2.1. Suppose I'y = Cay(G4,S1), I'y = Cay(Gq,S) and I' =
Cay(G,S), where G is a group of order |G1|.|Gs| + |G1| and S C G. Then
I' =T 01y if and only if 'y is empty, I's is a complete graph and T is a discon-
nected graph with Gy components that each of them are reqular of degree |Gs|.

Proof. We first assume that I' = I'; o I's. Choose vertices u,v € V(I') such that
u € V(I'1) and v is vertex of the i—th copy of I's. Then degr, (u) + [V (I'2)| =
degr,(v) + 1. Since |V (I'y)| > degr,(v) + 1, degr, (u) = 0. This implies that I'; is
empty, 'y is complete and 'y ol is a disconnected graph with Gy components that
each of them are regular of degree |Gs|, as desired. The converse is obvious. [
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Proposition 2.2. Suppose G is a group, G, and Gy are subgroups of G, I'y =
Cay(Gy,S51), Ty = Cay(Ga, S3), T = Cay(G,S1) and G = Gy - Gy = {ay | x €
Go & y€ Gi}. Then I' =Ty NIy if and only if Ty is empty.

Proof. We first assume that I' = I's M I'y. Choose vertices x50, xox1 € I'. Since
degr,mr, (xax1) = degrynr, (220), degr,(x1) = degr,(x2) + degr, (0). This shows
that degr,(x2) = 0, which implies that I'y is empty. The converse is a direct
consequence of the definition. O

Corollary 2.3. Let 'y = Cay(Gq, S1), I's = Cay(Ga, Ss), ..., Iy = Cay(Gyp, Sy)
and I' = Cay(G, Sy), where G = GGy ---Gy. ThenT =T, N,y 1---MNTy
if and only if Uy, ..., T',, are empty graphs.

Proposition 2.4. Suppose I'y = Cay(G1,S;), I'y = Cay(Ge, Ss), T is a root
vertex of I's, G = G X Ga, S = {(e,x) | € S} and I' = Cay(G,S). Then
[ {Te} =T if and only if T'y is empty.

Proof. We first assume that I'\{I's} = I'. Then I'/{I's} is a |S|—regular graph.
Suppose v € Gy and v € Go. Then degr, (u) + degr,(r) = degr,(v). Since T'y is
regular, degr,(u) = 0. So, I'y is empty. The converse is a direct consequence of
the definition. O

Proposition 2.5. Let I'} = Cay(G1,S)), Ty = Cay(Gs, Ss), S1 = {(e,y) |y €

52}, Sy = {(t,z) |t e S,z € 52} and I' = Cay(G, S), where G = G; x Go.If
S=5US; thenT =T A Ts.

Proof. By the definition, V/(I') = V(I'y A I'y) = V(I'y) x V(I'y), as desired. On
the other hand,

Br) = {(@b)ed)| (@) d")es}
(a,)(c, d) | (ac™',bd"1) € s}
(a,b)(e.d) | (ac™,bd ™) € SV (ac™ b ) € 5 )

(a,b)(c,d) | (act =eAbd™ € Sy)V(ac™h € Sy Abd ! € Sg)}

Il
—~ = A N

(a,0)(c,d) | (a = cAbd € B(To))V (ac € B(T) Abd € E(F2))}
= E(I; ATy
Therefore, I' =Ty A 'y, which completes our argument. 0

Notice that the set S in Proposition 2.5, is not necessarily unique. To do this,
we find another set S’ such that Cay(G, S) = Cay(G,S") = T'; A I'y. To do this,
it is enough to consider the Cayley graphs

Cay(Va x Za,{(a,0), (¢,1), (5, 0)} ),

Cay (V4, {a, b}) A Cay (Zg, {1}),
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and notice that they are isomorphic graphs and

{(a,1),(b,1), (e, 1)} # {(a,0), (¢, 1), (b, 0)}.

Corollary 2.6. Let 'y = Cay(G1,S1), I's = Cay(Ga, Ss), ..., Ty = Cay(Gyp, Sy)
and I' = Cay(G, 5), where G = G X Gg X -+ X G,. Define:

S, = {(e,e,---,e,xi,:ciﬂ,...,xn)\xjeSj; igjgn}, 1<i<n,
S = S;US,U---US,.
Then
F:<~~((F1AF2)AF3)A--~)AFn.

Proof. By the definition, V(I') = V((---((Fl ATs) aT3) A ) A Fn) =
V(T'y) x -+ x V([';). On the other hand,

(a’lbl_lv a’2b2_17 B 7anb;1) < S}
(a1byt anbyt, ... anbt) €51

ai,ag,...,0an (b17b27"'abn)

ET) = {al,@,.. Lan) (b1, oy b)
{

\/(Glb; 7a265 7"'7anb;1) GS_Q\/ eV (&1bflaa2b517"'7anb;1) es_n}

- {(al,ag,...,an)(bl,bg,...,bn) (aibr! € S1,asby' € So, ... anbt € Sy)

V(arhyt = e, asby' € So, ... anb,t € S,)
V(arhyt = e, asby ! = e,asbs' € Ss,...,a,b,' € S,)

V(abt =e, ... an_1bt =€ a.bt € Sn)}

V
= {(a a0 be . b)

(((a1b1 € E(T'y) Nagbs € E(FQ))

((11 = b1 A asby € E(FQ))) A (agbg S E(Fg) A Aapb, € E(Fn)>)
V(a1 =bi Aay=by Aagbs € E(T3) A+ Aayb, € E(T,,))

vV ---\/(a1:bl/\agzbg/\---/\an_l:bn_l/\anbneE(Fn))}

= {(al,ag, ey ay) (b1, ba,y .o by)

((((al,@)(bl,bg) € E(I'}AT)
A CL3b3 S E(Fg)) V ((11 = b1 N ag = bg VAN CL3b3 € E(Fg)))
AN (CL4 = b4 N Nap_1 = bn—l VAN anbn S E(Pn)))

V ---\/(a1:bl/\agzbg/\---/\an_l:bn_l/\anbneE(Fn))}.
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= {(ar,a2, . a0) (b1, bs, . B0)

((((al, as, a3)<b1, bg, b3) € E((F1AF2>AF3)
A agby € E(F4)) V (a1 =by ANay = by Nasg =bs Nasby € E(F4))>
N (a5b5 € E(Fg,) A A anbn € E(Fn)))

V ---\/(a1zbl/\aQ:bg/\-~-/\an_1:bn_l/\anbnEE(Fn))}

Therefore

E(N) = {(al,...,an)(bl,...,bn) ((al,...,an_l)(bl,...,bn_l)

€ E(( ((iars)ars)a-a rn1)> Aaby € E(T))

V ((alzbl/\aQZbg/\---/\an_l:bn_l/\anbneE(Fn)>}

= E((---((FlAfg) AT) A---Afn));

which implies that T = ( ((0y ATy) ATS) A ) AT, N

We can define the skew product of n graphs I'y,T's, ..., ', by

Ty A (FQ N PPN CRN Fn)---)>).
Then the vertex set will be again V/(I';) x --- x V(T',,) and two vertices

(x1, 9, ..., xy)and(y1, Y2, - - -, Yn)

are adjacent if and only if z,y, € E(I',) and for each j, 1 < j <n—1, z; =y,
or x;y; € E(FJ)

Corollary 2.7. Let 'y = Cay(Gq, S1), I's = Cay(Ga, Ss), ..., Iy = Cay(Gyp, Sy)
and I' = Cay(G, S), where G = Gy X Gy X -+ x G, and S = {(azl,xg,...,xn) ]
Vléjén—l::)sjESj\/:Ej:e,anSn}. Then

=T, A (FQA (rBA(...A(FMAFn)--.)))

Proof. We will present the proof for n = 4. The proof in general is similar, but

lengthy. We first notice that V(I') = V<F1 A (Ty o (T3 A F4))> = V(') x
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V(Ty) x V(') x V(I'y). So, it is enough to prove the equality of edge sets.

< K K K K< K< > I K K K KKK <K< >

{(al,ag,a3,a4 (b1, b2, b3, by) ‘ albl_l,agbz_l,agbgl,mbf) ES}
{(al,ag,ag,a4 (b1,b2,b3,b4) ‘ albfl =eA agbgl =eA agbgl =e
a4bz € Sy)

(a1by' = e Nagbyt = e Aagby' € Sz Aasby' € Sy)

(a1byt = e A agbyt € Sy Aagby! € Sz Aasby! € Sy)

(a1b;t = e Nagbyt € Sy Aagbs! = e Aasbyt € Sy)

(alb1 €S A ang € Sy A a3b§1 € S3 A a4b21 € Sy)

(a1b1 e S A a262 € 5 A agbgl =eA a4bg1 € Sy)

(a1by' € Sy Aagbyt = e Aagbs' = e Aagby ' € Sy)

(

a1bl_1 €SI A azb;l =eA a3b3_1 € S3 A a4bZ1 € 54)}

(a1, a2,a3,a4)(b1,ba, b3, bys) ‘ (a1 = b1 Aaz = by A az = bs

asby € E(T4)) V (a1 = b1 Aag = by Aagbs € E(I's) A asby € E(T'y))
(a1 = by Naghy € E(T'3) Aasbs € E(T's) A agby € E(F4))
(a1 = by Nagby € E(I'2) Aag = bg A asby € E(I‘4))
(a1by € E(T1) A agby € E(T2) A agbs € E(T'3) A ashy € E(Ty))
(a1b1 € E(T'1) Aagby € E(I'2) A ag = b3 A asby € E(T'y))
(a1b1 € E(T1)Nag =ba Na3 =bsz Nagby € E(F4))

(

(arby € E(T1) A ag = by A asbs € E(T's) A asby € E(r4))}

{ a1, a2, az, aq) (b, b, b, ba) ‘ ((al — by A ag = by)

( a3 = b Aasbs € E(Ty)) V (asbs € E(T's) A asby € E(F4)))>

< a1 = b1 ANagby € E(Fz)) ((ag = b3 ANagby € E(F4))

(asbs € E(T') A asby € E(m)))) v <(a1b1 € BE(I'1) ANagby € E(I'y))
( a3 = by A agby € E(Ty)) V (asbs € E(T's) A aghy € E(F4)))>

( (arbr € E(T1) Aag = b2) A ((a3 = by A asby € B(Ty))

(asbs € E(I's) A asby € E(F4))>> } .
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Therefore
E(I) = {(al,ag,ag,a4 (b, o by, by)
<(a1 by A ag = by) A (az, aa)(bs, bs) € E(rgAn))
v ((a1 = by Aagby € B(T'2))) A (a3, a1)(bs, bs) € E(FgAF4))
v <(a1b1 € E(T'y) A agby € E(T'y))) A (a3, a1)(bs, bs) € E(FgAF4)>
v <(albl € E(Ty) Aag = by)) A (az, as)(bs, bs) € E(FgAF4)>}
- { a1, az, ag, az)(by, bz, by, ba) ( <a1 — by A <(a2 — by A (az, as) (bs, ba)

S E(FgAF4)) V (CLQbQ < E(FQ) A (CL3, a4)(b3, b4) S E(FgAF4))>)
V (a1b1 S E Fl <(a2b2 < E(FQ) A (ag,a4)(b3, b4> € E(FgAF4))

Vo (ag = by A (as, a4)(bs, bs) € E(FSAF“))))}

= { a17&27a3aa4 blab27b3ab4)
<CL1 al,ag,a3)<b1,b2,b3) - E(FQ A (Fg A F4))>
Vv <a1b1 € E(T'1) A (a1, a2,a3)(b1, by, b3) € E(Ty & (I's A F4))>}

= B(Ty s (T2 8 Ty 6T)).

Proposition 2.8. Suppose that I'y = Cay(G1,S)), I's = Cay(Gs, Ss), S1 =
{(a:,e) | v € Sl}, Sy = {(t,z) |t € S,z € Sg} and I' = Cay(G,S). If
G=G, xGyand S=S5,US, then =T ,VI,.

Proof. By the definition of converse skew product of graphs, V/(I') = V(I';VI'y) =
V(I'1) x V(I'2). On the other hand,

(a,0)(c,d) | (a,b) (¢, d) € S}
(a,)(c, d) | (ac™',bd"1) € s}

ET) =

(a,0)(c,d) | (ac™ € S Abd =€)V (ac™' € Sy Abd~! € 52)}

{
{
_ {(a, b)(e,d) | (ac™L,bd™Y) € Sy V (ac™t,bd 1) € S_Q}
{
{(a,b)(c, d) | (ace B(T)Ab=d)V (ac € B(I') Abd € E(Fg))}
E
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Thus, I' = 1"y VI'y, which completes our argument. O

Notice that the set S in Proposition 2.8 is not uniquely determined. To see
this, we assume that K4 denotes the Klein four—group generated by a and b.
Then

Cay (Vi x Za, {(a,1). (e, 1), (6.0), (¢.0)}) = Cay(Va, {a, b)) VCay(Zs, {1}),
and {(a,1), (b, 1), (a,0), (5:0)} # {(a, 1), (¢, 1), (5.0), (¢, )}

Suppose that I'y, I's, ..., [, is a sequence of graphs. The converse skew product

Flv(nv(rgv( V(T VI, - - - )))

has {(x1,29,...,2,) | @ € V(I;) ; 1 < i < n} as vertex set, and two vertices
(x1,22,...,2,) and (y1,¥2,...,yn) are adjacent if and only if there exists m,
1 < m < n, such that for each i, 1 <i < m — 1, z;y; € E(I';) and for each j,
m < j < n, T;=y;.

Corollary 2.9. Let 'y = Cay(Gq, S1), I's = Cay(Ga, Ss), ..., Iy = Cay(Gyp, Sy)
and T' = Cay(G, S), where G = Gy X Gy X -+- X G,,. Define:

S_l = {($1,6,...,6)|[L‘1651},

S_Z = {(1‘1,1'276,...76)|$1651/\;1';2€SZ}’
Snc1 = {(z1,29,,...,xp_1,€) |2, €8 ; 1 <i<n—1},
S_n = {(l’l,{EQ,...,l’n_l,ﬁEn)|,I‘7;€Si; ]-SZSTL},

Then T = Flv(F2v<F3v( (D g VT,) - )))

Proof. By the definition, V(I") = (F1V (F2V ( V(T vy, - ))) =V(I')x
- x V(I'y). On the other hand,

EM = {(anas,...,a0)01,bs,. ... b)) ‘ (anbyt, asby L, ... anbst) € s}

_ {al,aQ,.. L) (b1, b, . by) | (arb asby?, .. anbst) € 51
(a

W07 agby . anbgl)652\/-~~\/(albfl,agbgl,...,anbgl)GS_n}

= q(ar, ..., a,)(b1,...,by) | (a1by' € S1 Aaghyt =e ... Nayb,t =e)

Vo (arbyt € St Aasbyt € Sy Nagbyt =en... Aayb,t =€)
VooV (abt € St Aagbyt € So A Aan bt € Sui Aayh,t = e)
%

(ab;* € SIA ... ANay_1b,t, € Sh1 Aayb,t € Sn)}.
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{(al, - ,an)(bl, .. .,bn) (albl € E(Pl) Nas =by A ... Na, = bn)
(albl S E(Fl) A asby € E(FQ) ANag=bsN...Na, = bn)
eV (a1b1 S E(Fl) AN o Nap_1bp_1 € E(Fn_l) N ay = bn)

(a161 € E(Pl) AN...Nap_1bp_1 € E(Fn_l) A anb, € E(Pn))}

{(al,ag,...,(ln)(bl,bg,...,bn) ‘ (albl € E(Fl) ANag =by A ...
an:bn)\/(albl GE(F1>/\Q252 GE(FQ)/\CLgag)/\.../\an:bn)

((a1b1 € E(Fl) A...N\ap—9b,—9 € E(Fn_g))
((an—lbn—l € E(Fn—l) Aap = bn)

(an—1bp—1 € E(Tp_1) A anby, € E(Fn))>>}

{(ar,a2, . an) (b ba, )
ap = bn) V (a1b1 € E(Ty)Nagbs € ET2) ANazg=bsA...Na, = bn)

ceeV (a1b1 e ET)N...Nap—2by—2€ E(T'y—2) Nap—1 =bp—1 Na, = bn)
(a1b1 € E(T1) A ... Aan—gbp—z € E(Th_2)

(@nets an) (bnot, bn) € E(Fn_lan))}

{(al,ag,...,an)(bl,bg,...,bn)
ap = bn) vV (a1b1 € E(Fl) A ashy € E(Fg) ANag=DbsA...Na, = bn)

(a1b1 € E(Fl) ANag =by A ...

(a1b1 S E(Fl) ANag =bg A ...

<(a1b1 S E(Fl) A...Nap_3b,_3 € E(ang))
((aanban € E(an2) Aap—1=0bp1Aay = bn)
(an72bn72 S E(anZ) A (anfla an)(bnfla bn) S E(FnIVFn)))> }

{(al,ag,...,an)(bl,bg,...,bn)
an:bn)\/(albl GE(Fl)/\CLQbQGE(FQ)/\agzbg/\.../\an:bn)

(a1b1 S E(Fl) ANag =by A ...

<a1b1 € E(Fl) A...Nan_3b,_3 € E(Fn_g)

(an72a an—1, an)(bnf% bnfla bn) S E(Fn72v(Fn71vrn))> }
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Therefore
E() = {(al,ag,...,an)(bl,bg,...,bn) ‘ (arby € B(Ty) Nag = by A ..

N a, = bn) V (albl c E(Fl) A ((IQ, ce ,an)(b27 .. ,bn)

€ E(Fw(l},v(ﬂv(---v(Fn_lan) : )))))}
- E(Flv(F2v<F3v(---v(Fn1an) : ))))

which implies that I' =T,V (FQV <F3V( c V(L VIy,) - ))) U

We can define the converse skew product of n graphs I'y,I's, ..., I, by
<- -+ (T VD) VIs) v - --)vrn.
Then the vertex set will be again V(I';) x --- x V(I',,) and two vertices

($1,$2, s 7xn>and (yl»yQa s 7yn)

are adjacent if and only if z;y; € E(I'y) and for each i, 2 < i < n, x; = y; or
ry; € B(L).

Corollary 2.10. Suppose T'y = Cay(Gq,51), T's = Cay(Ga,Ss), ..., T, =
Cay(Gp, Sy) and I' = Cay(G, S), where G = Gy X Gy x -+ x G,, and
S = {(IEl,ZEQ,..., n) |1 €S,V2<i<n:x; €5 \/xz—e}

Then T = ( -+ (1 9T3)VT3) 7 -+ ) VT,

Proof. The proof in general case is tedious and so similar to Corollary 2.7. We
will prove the result for n = 4. We first notice that

V(D) = V(((FlvFg)vFg)vm) = (I}) x V(I2) x V(T3) x V(Ty).
So, it is enough to prove the equality of edge sets.
E(F) = {(al,ag,ag,a4)(bl,b2,b3,b4) ‘ (albl_l,a2b2_17a3b§1,a4bll) S S}

= { al,ag,ag,cu bl,bg,bg,b4) ‘ (albl_l S Sl A\ a2b2_1 = e/\a3b3_1 = 6/\a4b21 = 6)

(a1 ESlAa2b21ESQ/\agbglze/\a4bZ1:e)
(a ESlAagbglze/\agbglESg/\am =e)
(a1b1 €S A agbgl =eA a3b3 =eA a4b4 € 5y)
(a1b1 €S A agbgl € Sy A a3b3 € S3 A a4b4 =e)
(a1by Lesin agb € Sy A ang_1 = e/\a4bl1 € 5y)
(a1by leg /\agb = (2/\(1363_1 € S3 /\a4b21 € 5y)
(

< I KK KK KK K KL

a1b1 €S A a2b2 € Sy A agb??l € S3 A a4b21 S 54)}
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(a1, az, a3, aq)(by, b2, b3, by) | (arby € E(T1) Aag = by Aag = by

a4 = b4)

(a1b1 € E(I'y) Naghy € E(T'y) Naz = bz N ay = b4)

(a1b1 € E(T')) Nay =by ANagbs € E(I's) Nay = b4)

(a1b1 € E(T'y) Nag = by ANaz = bz Aagby € E(F4))

(a1b1 € E(Ty) Naghy € E(Ty) Aasbs € E(T's) Aay = b4)

(a1b1 € E(I'y) Nagby € E(T'y) Aag = by A aghy € E( I‘4))

(a1b1 € E(T1) Aag = by A agbs € E(T's) A asby € E(T'y))

(a1by € E(Ty) A agby € E(T) A agbs € E(I's) A asby € E(F4))}

{

a17a27a’37a/4 b17b27b37b4) ‘ (((albl € E(F1> /\0,2 = b2)

a1b; € E /\ asby € E(Fg))) <CL3 = b3 Nay = b4)>

(

((Cblbl < E(Fl) N ay = bg) V (a161 € E(Fl) N a2b2 S E(FQ)))

asbs € E(Fg) Nayg= b4>)

(( (arby € E(T1) Aas = by) V (a1by € E(Ty) A ashy € E<Fz)))

(

as = by N aqby € E(F4)))

(( a1b1 e E(Ty) Nay = bg) (a1b1 € E(Th) ANagby € E(F2)))

(
{

asbs € B Fg A agby € E(F4)>)}

ai, g, as, as)(by, ba, b3, by) ’ <(a1,a2)(bl, be) € E(I'tVIs) Aas = bs

ag = b4> V ((al, CLQ)(bl, bg) € E(Flvrg) N a3b3 S E(Fg) Nay = b4>

(
(
{
(

(CLl, ag)(bl, bg) S E(F1VF2) Aas = b A asbs € E(F4)>

al,(lz bl,bg < E<F1VF2) A Clgbg € E(Fg) A a4b4 € E(F4>)}

ai, ag,as, (l4 b17 b27 b37 b4)

((((al, az) (b1, b2) € E(I'1VIy) Aaz = b3)

al,az bl,bg 6 E(Flvrg) A agbg € E(Fg)))

g = b4> v ((((al, as)(by, by) € E(T1VTy) A az = by)

(a1, az)(by, by) € E(TyTy) A asbs € E(rg))) A agby € E(F4)) }
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Therefore, we have:

E() = {(al,ag,ag,a4)(b1,b2,bg,b4) ’ ((al,ag,ag)(bl,bg,bg) € B((T,vTy)vTy)
A ay= b4) v ((al,@,%xbh by, bs) € E((Ty9T,)VIs) A asby € E(F4))}

— B(((r91)9T3) vTy),
which completes our argument. 0

If B={(1,0),(0,1)} then the NEPS of graphs I'; and I'; is just its Cartesian
product of these graphs. The Cartesian product of Cayley graphs were considered
in [I, Lemma 2.6]. The case of B = {(1, 1)} leads to the tensor product of graphs.
The tensor product of Cayley graphs were studied in [6, Proposition 2.1]. So, it
is natural to consider the general case of the NPES of Cayley graphs.
Proposition 2.11. Suppose I'y = Cay(Gy, S1), I's = Cay(Gs, S2), I' = Cay(G, S)
and B = {(1,0)}, where G = Gy X Gy and S = {(m,e) | x € Sl}. Then
Proof. By the definition V/(I') = V(I'y NEPS I'y) = V(I';) x V(I'y). On the
other hand,

ET) = {(x1,22)y,2) | (@1, 22) (1 "9, ") € S}
= {(z1, 22) (1, 92) | (m1y7 ", way5 ') € S}
= {(551,332)(3/1,?/2) | Sﬁyfl €S /\3323/2’1 = e}
| x

= {(21,22)(y1,92) | w11 € E(T'1) A 2o = 9o}

E(T; NEPST).
Hence I' =1y NEPS Ty, se desired. Il
Proposition 2.12. Suppose I'y = Cay(G4, S1), I'y = Cay(Gs, S2), I' = Cay(G, S)
and B = {(0,1)}, where G = G x Gy and S = {(e,y) |y € Sg}. Then
I'=11 NEPS T's.
Proof. By the definition V(I') = V(I'y NEPS I'y) = V(I';) x V(I'y). On the
other hand,

ET) = {(zi22)(y140) | (w1, 22) (51,92 ") € S}

= {(z1,22)(y1,92) | (197! 20y ') € S}
= {(@n2)(y,p) |11yt = e Aaayy ' € o}
= {(21,22)(y1,92) | v1 = y1 Aoy € E(I'y)}
= E(I'y NEPST,).
Therefore, I' =1'y NEPS T'y, which completes our argument. |
Proposition 2.13. Suppose I'y = Cay(G4, S1), 'y = Cay(Gs, S2), I' = Cay(G, S)
and B = {(1,0), (0,1), (1,1)}, where G = Gy x G, Sy = {(a:, e) |z € sl}, S, =

{(e,y) |y e Sz} and S =S,USUS) xSy. ThenT =Ty NEPS Iy = I, KT,
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Proof. By the definition of NEPS and Strong product of graphs
V() =V({I'INEPSTy) =V(I'T'KTy) = V() x V(I'9).
On the other hand,
ET) = {(z.22)(y,92) | (21,22)(y1 ' 92 ") € S}
= {(z1,22)(y1,92) | (w1yr ' 20y ') € S}
{1, 22) (g1, ) | (11y; " € Si Amayy ' =)

Vo (myrt € SiAxoyyt =€) Vi (myy € St Axoy,t € S9)}
= {(z1,22)(y1,92) | (1191 = e Aways € E(Ty))
V' (z1y1 € E(Ty) Axg=y2) V (x1y1 € E(T1) A2y, € E(T'2))}
— E(, NEPSTy) = E(I, ®T).
Thus, I' =1y NEPS T',. [

3. CONCLUDING REMARKS

In an earlier paper the present authors [6] investigated the behavior of Cay-
ley graphs under graph operations: tensor product, composition, symmetric dif-
ference, disjunction and splice of Cayley graphs. In this paper, we consider
some new operations containing N EPS, corona, hierarchical, strong , skew and
converse skew product of Cayley graphs. Some conditions are obtained such
that the Cayley graphs under these graph operations are again Cayley graphs.
Acknowledgement. The research of the authors are partially supported by the

University of Kashan under grant no 364988/11.
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