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ABSTRACT. For a real normed space X, we study the n-dual space of (X, |-]|)

and show that the space is a Banach space. Meanwhile, for a real normed space
X of dimension d > n which satisfies property (G), we discuss the n-dual space

of (X,[-,...,|lg), where [|-,...,|| 5 is the Géhler n-norm. We then investigate
the relationship between the n-dual space of (X, |-]]) and the n-dual space
of (X,[-,...,]lg)- We use this relationship to determine the n-dual space of
(X, |----,-llg) and show that the space is also a Banach space.

1. INTRODUCTION

In the 1960’s, the notion of n-normed spaces was introduced by Géhler [2, 3,
4, 5] as a generalisation of normed spaces. For every real normed space X of
dimension d > n, Gahler showed that X can be viewed as an n-normed space
by using the Géhler n-norm, which is denoted by |-,...,:||5. This n-norm is
defined by using the set of bounded linear functionals on X. Since then, many
researchers have studied operators and functionals on n-normed space X (see
[1, 6,9, 10, 11, 13, 14, 15)).

In [13], the author and Gunawan introduced the concept of n-dual spaces. For
every real normed space X of dimension d > n, there are two n-dual spaces
associated to X. The first is the n-dual space of (X, [|]|), and the other is the
n-dual space of (X, ||-,...,|l5)- In case X is the [? space for some 1 < p < oo,
the author and Gunawan have investigated and given the relationship between
both n-dual spaces [13]. Here we provide an analogues result on more general
normed spaces.

For a real normed space X, we investigate the n-dual space of (X ||-||) by using
the (n — 1)-dual space of (X, ||-||) (Theorem 3.2). We then focus on a real normed
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space X of dimension d > n which satisfies property (G) and discuss the relation-

ship between the n-dual space of (X, ||-||) and the n-dual space of (X, ||-,...,[|5)
(Theorem 4.5). It is interesting to observe that both the n-dual space of (X, |[|-]|)
and the n-dual space of (X,|-,...,-||;) are Banach spaces (Theorem 3.3 and

Theorem 4.7).

2. PRELIMINARIES

Let n be a nonnegative integer and X a real vector space of dimension d >

n. We call a real-valued function |-,...,:]| on X™ an n-norm on X if for all
T1,..., Ty, 2 € X, we have

(1) [|z1,...,x,]| = 0if and only if x4, ..., z, are linearly dependent;

(2) ||x1, ..., x| is invariant under permutation;

(3) [|axy, za, ..., x,|| = |a] ||z1, 22, . .., x,]| for all @ € R; and

(4) |lxr + 2, .zl < g, x| + 127 x|
We then call the pair (X, ||-,...,||) an n-normed space.

An example of an n-normed space is the [P space, where 1 < p < oo, equipped

with 1
1
Hl'l, c. ,anp = (E Z s Z |det (l'ijk)|p)p
jl jn
for x1,...,x, € I? (see [7, Section 3]).
Another interesting example of n-normed spaces is the Gahler n-norm which
was introduced in [3, 4, 5]. Let X be a real normed space of dimension d > n,

and X the dual space of X. Géhler showed that the function [-,..., |, which
is given by
|z1,. .., 2nllg = sup det [ f; (xl)]”
fiexM | fill <1
1<i<n
for all z1,...,x, € X, is an n-norm on X. Hence every real normed space X can
be viewed as an n-normed space (X, ||-,..., | 5)-

Let X be a real normed space of dimension d > n. Any real-valued function
f on X™is called an n-functional on X. An n-functional f is multilinear if it
satisfies two following properties:

(1) fer 4+ v,y @ +yn) = Zzie{xi,yi},lgign f(z1,...,2,) and
(2) floqzy,...,onxy) =y a1 f (T1,...,2,)
for all xq,..., 20, y1,...,y, € X and ay,...,a, € R.
For multilinear n-functionals f, h on X, we define an n-functional f + A by

(f+h)(x1,...;2) = f(x1,...,20) + h(21,...,2)
for z1,...,x, € X. Then f + h is also multilinear. On the other hand, we say
f=nhif
fxy, ... xn) =h(xy,...,2p)
for x1,...,z, € X.

We call an n-functional f bounded on a real normed space (X, ||-||) (respectively,
an n-normed space (X, ||-,...,-||)) if there exists a constant K > 0 such that

F @1 s@a)l S K ]l aall (respectively, [f @1, @)l < K a1, 2a])
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for all z4,...,x, € X.
Let S,, denote the group of permutations of (1,...,n). Recall from [13] that every
bounded multilinear n-functional f on (X, ||-,...,||) is antisymmetric in the sense that

f(z1,...,2y) =sgn(o) f ($o(1)7 . ,xa(n))

for z1,...,2, € X and 0 € S,,. Here sgn(oc) = 1 if o is an even permutation, and
sgn (o) = —1 if o is an odd permutation. Note that if f is antisymmetric then for any
linearly dependent z1,...,x, € X, we have f (x1,...,2,) = 0.

Remark 2.1. In general, we do not have the antisymmetric property for bounded mul-
tilinear n-functionals on (X, ||-||).

The space of bounded multilinear n-functionals on (X, [|]|) is called the n-dual space
of (X, ||-]|) and denoted by X™. For n = 0, we define X(® as R. The function |-, ,
on X where

f (@1, )
[fllp1:= sap “—————
[t e e

for f € X defines a norm on X ™ and then X is a normed space.

Meanwhile, the n-dual space of (X, ||-,...,-||) is the space of all bounded multilinear
n-functionals on (X, ||-,...,-||). This space is also a normed space with the following
norm

|f (21, 20))|
[l o= sup S
l2,eznl 20 1T15 - Tnll

Now let X,Y be real normed spaces. We write B (X,Y") to denote the set of bounded
linear operators from X into Y. The function [|-[|,, where

[u ()]
[[ullp := sup
P a0 |l
for every uw € B(X,Y), is a norm on B (X,Y). For simplification, we write B (X,Y’)
to denote the normed space B (X,Y’) equipped with ||-[|,,. Otherwise, if ||-[|* is a norm
function on B (X,Y), we write (B (X,Y),|-||") to denote the normed space B (X,Y)
equipped by the norm |[|-||*.

3. THE n-DUAL SPACE OF (X, |-]|)

In this section, we first identify the bounded multilinear n-functionals on (X, ||-||)
(Proposition 3.1). We then identify the n-dual space of (X, |-||) by using the (n — 1)-
dual space of (X, [|-]|) (Theorem 3.2). Finally we show that the n-dual space of (X, ||-||)
is a Banach space (Theorem 3.3).

Proposition 3.1. Let X be a real normed space of dimension d > n and f a bounded
multilinear n-functional on (X, |-||). Then there evists uy € B(X, XV such that
forxi,...,xn_1,2 € X,

fx, o wp_1,2) = (up (2)) (@1, ..., Tp—1) .

Furthermore, Hanl = HufHOp.
Proof. Take z € X and define an (n — 1)-functional f, on X with

fZ (ﬂf]_,. . 'axn—l) = f(x].v"' 7$TL—].)Z)
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for x1,...,xp—1 € X. We show f, € X®=1)Note that for z1,... s L1 Yl s Yn—1
€ X and a1,...,a,_1 € R, we have

fz (l’]_ +y17 ey Tp—1 +yn—1) - f(xl +y17 ey Tp—1 +yn—172’)

= Z f(z1,. 2021, 2)

zi€{wi,yi },1<i<n—1

= Z fz (Zl,..-,anl),

zi€{zs,yi},1<i<n—1

fz (alxl, e ,an_1mn_1) = f (Oq:L’l, ey O 1Tn—1, Z)
=0 ap1f(T1,...,Tn-1,2)
=ay-op_1f(T1,...,Tp-1),
and
o @1y @)l = 1 @1yt 2] < Il 2l Q- s )

since f is bounded on (X, ||-||). Hence f, : X" ! — R is multilinear and bounded; and
then f, € X(n=1),

Now define uy : X — XV with uy(2) := f, for 2 € X. We have to show
ufp € B(X,X("*l)). First we show that u; is linear. Take 21,22 € X and «, 8 € R. For
every xi,...,Tn—1 € X, we have

(uf (az1 + B22)) (T1, .., Zn-1) = faz+82 (L1, -+, Tn-1)
= f(x1,...,Tp—1,z1 + B22)
= f(x1,...,op_1,a21) + f (21, .., Xp_1,B22)
=af (x1,...,xn-1,21) + Bf (x1,.. ., Tpn-1, 22)
=afy (X1, 2n_1) + Bfz (1, ..., Tn1)
= (auf (z1)) (x1,. .., 2n—1) + (Buys (22)) (1, .., Tp-1)
= (auy (z1) + Bus (22)) (@1, ..., Tp—1)
and
ug (az1 + Bz2) = aug (21) + Puy (22) .

Hence uy is linear.
Next we show the boundedness of uy. Take z € X. Then for z1,...,2,-1 € X, we
have

’(uf (Z)) (131,.. . 7xn—1)’ = |fZ (3717‘ . '7xn—1)| = |f(x1,...,mn_1,z)\

SNl Nzl - flen—1ll [[2]] (f is bounded on (X, |-[[))
and then
|(ug (2) (21, .- -, 2n1)|
lug (= sup = T < Uflln U
wrn1#0 Tl [l
which is finite. This implies
[[ug ()]
sup = < £l
270 HZH
which is finite. Therefore uy is bounded and [lug(|,, < [[f]|,,1-
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Finally we claim that |luy[|, = [/fl/,, ;- Recall that we already have [lug|[,, < [f]l,,1-
To show the reverse inequality, note that for z € X, uy (2) = f. is bounded. Then for
TlyeeeyTp-1,2 € X,

lf (1, xn—1,2)| = |f2 (21, ..., Tn-1)|
< fallpn lall - - [zn—1ll
(f is bounded on (X, ||-|)
= llug ()| {1l - - [|n—1]]
< (llugllop 1201 o]l - - flwn—all

since uy is bounded. Hence

|f (z1, - 01, 2))
[fllpy = sup < lugll
(Pt Y R[N ] B
and [|fll,,; < HufHOp. Therefore HchHop = || fll,, 1> as claimed. O

Theorem 3.2. Let X be a real normed space of dimension d > n. Then the n-dual
space of (X, |-|1) is B(X, X"~ 1)).

Proof. For a bounded multilinear n-functional f on (X, ||-]) , let u; € B(X, X(~1) be
as in Proposition 3.1. Define a map 6 from the n-dual space of (X, ||-||) to B (X, X(”_l))
with

0 (f) =uf

for f € X, We have to show that 6 is isometric and bijective.

The isometricness of 6 follows from Proposition 3.1.

Next we show the injectivity of 6. Let f, h be bounded multilinear n-functionals on
(X, ]|-]) such that 6 (f) = 6 (h). Then uy = uy, and for every z1,...,2p—1,2, € X, we
have

[z, xn_1,2n) = (uf (20)) (T1,. .., Tn—1)
= (up (zn)) (X1, ., Tp-1)

h(z1,...,Tp—1,Tp).

Hence f = h and 6 is injective.

To show that 6 is surjective, we take u € B (X, X("_l)) and have to show that there
exists a bounded multilinear n-functional f,, on (X, ||-||) such that 6 (f,) = u. Now we
define f,, an n-functional on X where

fu(@1, oy xp_1,mn) = (u(xp)) (X1, ., Tp—1)

for z1,...,xn—1,2n € X. We claim that f, is multilinear and bounded on (X, ||-]]).
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First we show that f, is multilinear. Take x1,...,Tn, y1,...,Yn € X and aq,...,q, €
R. We have

fu@i+ vy, T4+ yn) = (W (@n +yn)) (T1 + Y15 s Tt + Yn—1)
- Z (’LL ($n+yn)) (Zl,...,anl)

zi€{zs,yi },1<i<n—1

= > (w(@n) +u(y)) (21, s Znt)

= Z (f (215 s zn—1,20) + f (21, s Zn—1,Un))

zi€{zi,yi},1<i<n—1

_ Z f(zl,...,zn_l,zn)

zi€{zs,y: },1<i<n

and
fularzy, ... aney) = (u(nxy)) (X1, ..oy Qp—1Tp—1)
=aj- - ap_1 (u(anzy)) (x1,. .., 2n—1) (u(apzy) is multilinear)
=y ap_10p (u(xy)) (X1, .., 2p—1) (u is linear)
=y 10 fu (T1, . Tp—1, X)) -

Hence f,, is multilinear.
Next we show that f, is bounded on (X, ||-||). Take z1,...,z, € X. Then

‘fu (xb SRR xn—hxn)’ = ’(U (xn» (z1,. .. 7$n—1)‘
< lu(zn) [Hall - - llan-all (u(zn) is bounded)
< (Jullop [lznll) 2]l - - ll#n-a]l (u is bounded)

and f, is bounded.
Hence f, is multilinear and bounded on (X, [|-||), as claimed. Note that  (f,) = uy,.
Take z1,...,z, € X and we have

(u(xp)) (@1, 1) = fu (@1, 21, 2n) = ((up,) (Tn)) (T1, .-, Tn-1) -
Then u (x,) = uy, (xy) for z, € X, and
u=1ug, =0(fu)-
Therefore, 6 is surjective and a bijection, as required. O
Recall from [8, Theorem 2.10-2] that for normed spaces X,Y, the normed space
B (X,Y) is a Banach space if Y is a Banach space. Since R is a Banach space, then for
every normed space X, X (1) is also a Banach space. Hence Theorem 3.2 with n = 2

implies that X is also a Banach space. Therefore, by induction and Theorem 3.2, we
get the following theorem.

Theorem 3.3. Let X be a real normed space of dimension d > n. Then the n-dual
space of (X, ||-||) is a Banach space.
4. THE n-DUAL SPACE OF (X, |-+ ,[|g)

In this section, we focus on normed spaces of dimension d > n which satisfy prop-
erty (G). On this space, we investigate the relationship between bounded multilin-
ear n-functionals on (X, ||-,--- ,-||5) and bounded multilinear n-functionals on (X, ||-|)
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(Lemma 4.3). We then use it to determine the n-dual space of (X, ||-,---,[|z) (Theo-
rem 4.5) and show that the space is a Banach space (Theorem 4.7).

First we recall the functional g and property (G) introduced by Mili¢i¢ in [12]. The
functional g : X2 — R is defined by

el

9@,y = (7 (@y) + 7 ()

where

i () = Jim £ (e + ty) o)

The functional g satisfies the following properties: for all z,y € X and o, € R

(G1) g(z,2) = ||=|*

(G2) g(azx,By) = aBg (z,y);

(G3) g(z,2+y) = ||z||* + g (z,y); and
(G4) g (z,y)| <z |yl

We say that a real normed space X satisfies property (G) if the functional g (x,y) is
linear with respect to y € X. In that case, we then call g a semi-inner product on X.
For example, for 1 < p < oo, the [P space satisifes property (G) (see [10]).

By using the semi-inner product g, we define an orthogonal relation on X as follows:

rlygyeg(zr,y) =0.

Let z € X and Y = {y1,...,yn} C X. We write I' (y1,...,yn) to denote the Gram
determinant det [g (yi, y;)]; ;- I T'(y1,...,yn) # 0, then the vector

1 g,z) gly,v) - 9w, Yn)
Ty = ————det , _ .
F(y17"'7yn) . . .
9Wns®) 9 Wnoy1) - G (YnsYn)

is called the Gram-Schimdt projection of the vector z on Y.
Next let {x1,...,2,} be a linearly independent set of vectors in X. As in [12], we
call 27,...,x; the left g-orthogonal sequence where x{ := 1 and for ¢ =2,...,n,

zi = x — (Ti)g,_,

where S;_1 :=span{x1,...,x;—1}. Note that if i < j, then z7 1, z; and g(xs, x;’) =0.

Proposition 4.1. Let X be a real normed space of dimension d > n which satisfies
property (G). Let {x1,...,zy} be a linearly independent set of vectors in X. Then

23]l 2l < llas s znllg < bl flenll -
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Proof. First we show the right inequality. Note that

|lz1,...,2nllq = sup det [f; (azl)]w
fiex® | f:]1<1
1<i<n

= sup Z sgn (o) H fa(i) ()
i=1

HEXW£il<1 |ses,

(by the Leibniz formula)

1<i<n
n
< sup H fo@) (xi)| (by the triangle inequality)
fieXW | fill<1 5es, li=1
1<i<n

< sup Z (H | foii) | Hl’ZH> (each f; is bounded)

HEXD fill<1ges, i=1
1<i<n

n
SSIED)

oc€S, 1=1
= nt ]|+ Joall,

as required.

To show the left inequality, we first show that for a fixed x € X, the functional g,
on X defined by
g (z,y)

[z

Iz (y) =

for y € X, is bounded and linear. The linearity follows since X satisfies property (G).
Now take y € X, by (G4), we have

190 ()] = ]“‘””’y)

< [lyll
(el ‘

and g, is bounded, as required. Hence for z € X, g, € X(). Furthermore, ||g,| < 1.

Now note that ||z1,...,2,| o = |27, .., 2|5 This implies
ot sl =2, aille = suwp|der[f ()], (4.1)
fieX | fif|<1
1<i<n
1
>dto‘?‘-:7’dt 2oxf)] .
- ‘ € [g$]- (‘T'L )]7«,] HJ"Cl)H . ||I$L|| € [Q(ZC] ‘Tz)LJ

Since 7. ..,y is the left g-orhogonal sequence, then g(z7,z7) = 0if i < j. By (G1),
we get g(x2, %) = ||«2||® for i = 1,...,n. This implies

o .0 02 o2
et [o(e5, 2] | = gl o5
and (4.1) become
e, anllg = il -l
as required. O
Remark 4.2. Proposition 4.1 is a generalisation of Theorem 2.2 in [16]. In [16, Theorem

2.2], Wibawa-Kusumah and Gunawan only proved Proposition 4.1 for [P spaces where
1<p<oo.
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Lemma 4.3. Let X be a real normed space of dimension d > n which satisfies property
(G). Let f be a multilinear n-functional on X. Then f is antisymmetric and bounded
on (X, [||) if and only if f is bounded on (X, ||-,--- ,-| ). Furthermore

||f||n7n S ||f||n,1 S n' Hf”n,n ‘

Proof. First suppose that f is antisymmetric bounded on (X, [|-]|). Take linearly inde-
pendent x1,...,x, € X. Then

flxe, .. xn) = f(af,...,2)
and by the left inequality in Proposition 4.1,
RCVRRIY. )| R I CoVRRRY. ) | W P M G TR Rrt )]

o1, sanlle = laSlllagll sl fls ]
< |[flln,y (f is bounded on (X, [|-[]))
which is finite. Hence f is bounded on (X, |-, - ,||5) and
Next suppose that f is bounded on (X, ||-,---,-||z). Then f is antisymmetric. To

show the boundedness of f on (X, ||-||), we take linearly independent zi,...,z, € X.
Then by the right inequality in Proposition 4.1,

el @)

[z ]] -~ [ln ] -zl
< nl|fll,, (fis bounded on (X, [}~ [lg))
which is finite. Hence f is bounded on (X, ||-||) and

Finally, by (4.2) and (4.3), we get

”f”n,n S Han,l S n' ||f||n,n’

as required. O
Now we say u € B(X,X(”_l)) antisymmetric if for x1,...,z, € X and o € Sy,
(u(@n)) (21, xne1) =sgn(0) (U (2o(m))) (Zo1)s - - s To(n—1))

and then define Bys(X, X (1) as the collection of antisymmetric elements of B(X, X (1)),
Note that Bas(X, X("~1) is also a normed space with the norm inherited from B(X, X (*~1))
which is [[-[|,-

Note that Theorem 3.2 and Lemma 4.3 imply that every bounded multilinear n-
functional on (X, ||-,--,-|ls) can be identified as an element of B,s(X, X ™) and
vice versa. Therefore Lemma 4.3 implies the following corollary and theorem.

Corollary 4.4. Let X be a real normed space of dimension d > n which satisfies
property (G). The function ||-||o on Bas(X, X"~ where

ullg = sup [(u(zp)) (21, .., 2n—1)]
lorenllg#0 11 Zallg

foru € B(X, X"V, defines a norm on Bus(X, X"~V). Furthermore, |-||5 and (R
are equivalent norms on Bas(X, X~V with

[ullg < llull, < n!ullg
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foru € B(X, X(n=1),
Theorem 4.5. Let X be a real normed space of dimension d > n which satisfies

property (G). Then the n-dual space of (X, ||-,---,-|a) is (Bas(X,X(”_l)), Ilc)-

The rest of this section is devoted to show that for n € N, the n-dual space of
(X, I, ,-|lg) is a Banach space.

Theorem 4.6. Let X be a real normed space of dimension d > n which satisfies
property (G). Then Bas(X, X)) is a Banach space.

Proof. Since every closed subspace of a Banach space is also a Banach space, then by
Theorem 3.3, it suffices to show that B,g(X, X (™) is a closed subspace of B(X, X (1)),
Take a sequence {uy,} C Bas(X, X™ V) such that u,, — u. We have to show
u € Bas(X, X(”*l)). In other words, for z1,...,z, € X and o € S,,, we have to show
(’U, (xn)) (xlv s 7xn—1) = sgn (J) (u (xa(n))) (xa(l)v R 7ma(n—1)) .
Take z1,...,z, € X and o € S,,. First note that for m € N, we have

[u (2n) = wm (@) = [[(w = um) (@) < llu = wmllgp ll2n]] (4.4)

since u— 1y, is bounded. Since u () , U (£,) € XY, then (u — up) (z,,) is bounded
and for vy1,...,yn—1 € X, we have

[((w = um) (@n)) (15 -5 Yn-I < lJu(@n) = wn (@n) [ {1y2ll - - [yn-all - (4.5)
Since u,, — u, then by (4.4) and (4.5), we get
(um (@n)) (Y1, - -+, Yn—1) = (w(@n)) (Y1, -, Yn—1) (4.6)
for y1,...,yn—1 € X. Since u,, is antisymmetric for every m € N, then (4.6) implies
(u(zp)) (21, ..., 2p—1) =sgn (o) (u (a:g(n))) (»%(1)7 .. ,wg(n,l)) ,
as required. Thus Bas(X, X (”*1)) is closed and then a Banach space. Il

Furthermore, since [|-[|; and [|-[|,, are equivalent norms on Bas(X, X (n=1)) then by
Theorem 4.5 and Theorem 4.6, we get the following theorem.

Theorem 4.7. Let X be a real normed space of dimension d > n which satisfies
property (G). Then the n-dual space of (X, ||-,--- ,-||o) is a Banach space.
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