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ON THE CHEBYSHEV POLYNOMIAL BOUNDS FOR CLASSES
OF UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA∗,1 AND SIBEL YALÇIN2

Communicated by J. Brzdęk

Abstract. In this work, by considering a general subclass of univalent func-
tions and using the Chebyshev polynomials, we obtain coefficient expansions
for functions in this class.

1. Introduction and definitions

Let D be the unit disk {z ∈ C : |z| < 1}, and let A be the class of all analytic
functions on D, satisfying the conditions

f(0) = 0 and f ′(0) = 1.

Then each function f in A has the Taylor expansion

f(z) = z +
∞∑
n=2

anz
n. (1.1)

Further, by S we shall denote the class of all functions in A which are univalent
on D.

If the functions f and g are analytic on D, then f is said to be subordinate to
g, written as

f (z) ≺ g (z) , (z ∈ D)

if there exists a Schwartz function w (z) , analytic on D, with

w (0) = 0 and |w (z)| < 1 (z ∈ D)
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such that
f (z) = g (w (z)) (z ∈ D) .

Denote by K the subclass of S consisting of convex functions, so that f ∈ K if
and only if for z ∈ D

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0.

The Fekete-Szegö functional |a3 − µa22| for normalized univalent functions

f(z) = z + a2z
2 + · · ·

is well known for its rich history in the theory of geometric functions. Its origin
was in the disproof by Fekete and Szegö of the 1933 conjecture of Littlewood and
Paley that the coefficients of odd univalent functions are bounded by unity (see
[3]).

Chebyshev polynomials have become increasingly important in numerical anal-
ysis, from both theoretical and practical points of view. There are four kinds of
Chebyshev polynomials. The majority of books and research papers dealing with
specific orthogonal polynomials of Chebyshev family, contain mainly results of
Chebyshev polynomials of first and second kinds Tn(x) and Un(x) and their nu-
merous uses in different applications, see for example, Doha [2] and Mason [4].

The Chebyshev polynomials of the first and second kinds are well known. In
the case of a real variable x in (−1, 1), they are defined by

Tn(x) = cosnθ,

Un(x) =
sin(n+ 1)θ

sin θ
,

where the subscript n denotes the polynomial degree and where x = cos θ.

Definition 1.1. A function f ∈ A is said to be in the class K (λ, t) , λ ≥ 0 and
t ∈
(
1
2
, 1
]
, if the following subordination hold

(1− λ) zf
′ (z)

f (z)
+ λ

(
1 +

zf ′′ (z)

f ′ (z)

)
≺ H(z, t) :=

1

1− 2tz + z2
(z ∈ D). (1.2)

We note that if t = cosα, α ∈
(
−π

3
, π
3

)
, then

H(z, t) =
1

1− 2tz + z2

= 1 +
∞∑
n=1

sin(n+ 1)α

sinα
zn (z ∈ D).

Thus
H(z, t) = 1 + 2 cosαz + (3 cos2 α− sin2 α)z2 + · · · (z ∈ D).

Following [5], we write

H(z, t) = 1 + U1(t)z + U2(t)z
2 + · · ·

(
z ∈ D, t ∈ (−1, 1)

)
,
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where Un−1 =
sin(n arccos t)√

1− t2
(n ∈ N) are the Chebyshev polynomials of the

second kind. Also it is known that
Un(t) = 2tUn−1(t)− Un−2(t),

and
U1(t) = 2t,

U2(t) = 4t2 − 1,

U3(t) = 8t3 − 4t,
...

(1.3)

The Chebyshev polynomials Tn(t), t ∈ [−1, 1], of the first kind have the generating function of
the form

∞∑
n=0

Tn(t)z
n =

1− tz
1− 2tz + z2

(z ∈ D).

However, the Chebyshev polynomials of the first kind Tn(t) and the second kind Un(t) are well
connected by the following relationships

dTn(t)

dt
= nUn−1(t),

Tn(t) = Un(t)− tUn−1(t),

2Tn(t) = Un(t)− Un−2(t).
In this paper, motivated by the earlier work of Dziok et al. [1], we use the Chebyshev

polynomial expansions to provide estimates for the initial coefficients of univalent functions in
K (λ, t).

2. Coefficient bounds for the function class K (λ, t)

Theorem 2.1. Let the function f (z) given by (1.1) be in the class K (λ, t) . Then

|a2| ≤
2t

1 + λ

and

|a3| ≤
(
2λ2 + 10λ+ 4

)
t2

(1 + 2λ) (1 + λ)
2 +

t

1 + 2λ
− 1

2 (1 + 2λ)
.

Proof. Let f ∈ K (λ, t) . From (1.2), we have

(1− λ) zf
′ (z)

f (z)
+ λ

(
1 +

zf ′′ (z)

f ′ (z)

)
= 1 + U1(t)w(z) + U2(t)w

2(z) + · · · , (2.1)

for some analytic function w such that w(0) = 0 and |w(z)| < 1 for all z ∈ D. From the
equalities (2.2) and (2.3), we obtain that

(1− λ) zf
′ (z)

f (z)
+ λ

(
1 +

zf ′′ (z)

f ′ (z)

)
= 1 + U1(t)c1z +

[
U1(t)c2 + U2(t)c

2
1

]
z2 + · · · . (2.2)

It is fairly well-known that if |w(z)| =
∣∣c1z + c2z

2 + c3z
3 + · · ·

∣∣ < 1, z ∈ D, then
|cj | ≤ 1, for all j ∈ N; (2.3)

and ∣∣c2 − µc21∣∣ ≤ max {1, |µ|} , for all µ ∈ R. (2.4)
It follows from (2.2) that

(1 + λ) a2 = U1(t)c1, (2.5)
2 (1 + 2λ) a3 − (1 + 3λ) a22 = U1(t)c2 + U2(t)c

2
1. (2.6)
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From (1.3) and (2.5) we obtain

|a2| ≤
2t

1 + λ
. (2.7)

Next, in order to find the bound on |a3| , by using (2.5) in (2.6), we obtain

2 (1 + 2λ) a3 = U1(t)c2 +

{
U2(t) +

(1 + 3λ)

(1 + λ)
2U

2
1 (t)

}
c21 (2.8)

Then, in view of (1.3) and (2.3) , we have from (2.8)

|a3| ≤
(
2λ2 + 10λ+ 4

)
t2

(1 + 2λ) (1 + λ)
2 +

t

1 + 2λ
− 1

2 (1 + 2λ)
.

�

3. Fekete-Szegö inequalities for the function class K (λ, t)

Theorem 3.1. Let f given by (1.1) be in the class K (λ, t) . Then

∣∣a3 − µa22∣∣ ≤


t

1 + 2λ
; µ ∈ [µ1, µ2]

t

1 + 2λ

∣∣∣ 4t2−12t + 2(1+3λ)

(1+λ)2
t− 4µ (1+2λ)

(1+λ)2
t
∣∣∣ ; µ /∈ [µ1, µ2]

where

µ1 =
4t2(λ2+5λ+2)−(1+λ)2(1+2t)

8(1+2λ)t2 , µ2 =
4t2(λ2+5λ+2)−(1+λ)2(1−2t)

8(1+2λ)t2 .

Proof. From (2.5) and (2.8)

∣∣a3 − µa22∣∣ = U1(t)

2 (1 + 2λ)

∣∣∣∣∣c2 +
{
U2(t)

U1(t)
+

1 + 3λ

(1 + λ)
2U1(t)− 2µ

(1 + 2λ)U1(t)

(1 + λ)
2

}
c21

∣∣∣∣∣ .
Then, in view of (2.4), we conclude that

∣∣a3 − µa22∣∣ ≤ U1(t)

2 (1 + 2λ)
max

{
1,

∣∣∣∣∣U2(t)

U1(t)
+

1 + 3λ

(1 + λ)
2U1(t)− 2µ

(1 + 2λ)U1(t)

(1 + λ)
2

∣∣∣∣∣
}
. (3.1)

Finally, by using (1.3) in (3.1)

∣∣a3 − µa22∣∣ ≤ t

1 + 2λ
max

{
1,

∣∣∣∣∣4t2 − 1

2t
+

2 (1 + 3λ)

(1 + λ)
2 t− 4µ

(1 + 2λ)

(1 + λ)
2 t

∣∣∣∣∣
}
.

Because t > 0, we have∣∣∣4t2−12t + 2(1+3λ)

(1+λ)2
t− 4µ (1+2λ)

(1+λ)2
t
∣∣∣ ≤ 1

⇔
{

4t2(λ2+5λ+2)−(1+λ)2(1+2t)

8(1+2λ)t2
≤ µ ≤ 4t2(λ2+5λ+2)−(1+λ)2(1−2t)

8(1+2λ)t2

}
⇔ µ1 ≤ µ ≤ µ2

�

Taking λ = 1 in the above theorem we get the following corollary.
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Corollary 3.2. If f ∈ K (t) , then

|a2| ≤ t;

|a3| ≤ 4t2

3 + t
3 −

1
6 ;

∣∣a3 − µa22∣∣ ≤


t

3
; µ ∈ [µ1, µ2]∣∣∣ 8t2−1−6µt26

∣∣∣ ; µ /∈ [µ1, µ2]
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