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ZYGMUND-TYPE INEQUALITIES FOR AN OPERATOR
PRESERVING INEQUALITIES BETWEEN POLYNOMIALS

NISAR AHMAD RATHER!, SUHAIL GULZAR?* AND KHURSHEED AHMAD THAKUR?
Communicated by J.M. Aldaz

ABSTRACT. In this paper, we present certain new L, inequalities for B,-
operators which include some known polynomial inequalities as special cases.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let &2, denote the space of all complex polynomials P(z) = Z?:o a;z’ of degree
n. For P € &, define

PGy = e {0 [ og P o}

1 27 . 1/p
||P(z)||p = {%/0 ‘P(e )‘ d@} , 0 < p< o0,
1P = max| PG, mo=min|P(:)]

and denote for any complex function ¢/ : C — C the composite function of P and
1, defined by (P o) (z) :== P ((z)) (2 € C), as P o).
If Pe Z,, then
1P, <nllPE),, p=1 (1.1)
and

IP(R2)[l, < R*[[P(2)]l,, B>1, p>0. (1.2)

P )
Inequality (1.1) was found out by Zygmund [20] whereas inequality (1.2) is a
simple consequence of a result of Hardy [%]. Arestov [2] proved that (1.1) remains
true for 0 < p < 1 as well. For p = oo, the inequality (1.1) is due to Bernstein
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(for reference, see [11, 15, 18]) whereas the case p = oo of inequality (1.2) is a
simple consequence of the maximum modulus principle ( see [11, 12, 15]). Both
the inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In fact, if P € &2, and P(z) # 0
in |z| < 1, then inequalities (1.1) and (1.2) can be respectively replaced by

PG,

P > 1.
PG, < npgts P20 (13
and
|R™z + 1|
HP(RZ)”p < —H1 2 P HP(z)Hp, R>1, p>0. (1.4)
p

Inequality (1.3) is due to De-Bruijn [7](see also [3]) for p > 1. Rahman and
Schmeisser [1] extended it for 0 < p < 1, whereas the inequality (1.4) was proved
by Boas and Rahman [0] for p > 1 and later it was extended for 0 < p < 1 by
Rahman and Schmeisser [11]. For p = oo, the inequality (1.3) was conjectured
by Erdds and later verified by Lax [9] whereas inequality (1.4) was proved by
Ankeny and Rivlin [1].

As a compact generalization of inequalities (1.3) and (1.4), Aziz and Rather
[0] proved that if P € &2, and P(z) does not vanish in |z| < 1, then for o, 5 € C
with |a] <1, 8] <1, R>r>1and p >0,

IP(RS) + 6, (RoroB) PO, € e PO, (1)
where
C, = H (R" + ¢u(R, 7,0, B)r™)z + (1 + ¢n(R, 7, v, B)) Hp (1.6)
and
6n (Ro7> 00, ) :5{(%) _ ya|} . (1.7)

If we take f = 0, « = 1 and r = 1 in (1.5) and divide two sides of (1.5) by
R — 1 then make R — 1, we obtain inequality (1.3). Whereas inequality (1.4) is
obtained from (1.5) by taking o = = 0.

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class
B,, of operators B that maps P € &, into itself. That is, the operator B carries
P e &, into a polynomial

nz\ P'(z nz\2 P"(z
BIP|(2) := AoP(2) + M ( ; ) 1(! ) i (7) % (1.8)
where A\g, \; and )\ are such that all the zeros of

w(z) = X+ C(n, )z + C(n,2)Xz%, C(n,r) = n!/ri(n — 1),
lie in the half plane

2] < |2 — /2] (1.9)
While extending Bernstein type inequalities to B, operators, they [I13] proved
that if P € &, and P(z) does not vanish in |z| < 1, then

|B[Poo](z)] < %{R” (Al + o} I1P(2)ll for [21=1, (1.10)
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(see [13, Inequalities (5.2) and (5.3)]) where o(z) = Rz, R > 1 and

2 n3(n — 1).

n
A, =X+ A—+ A 1.11
o+ A1 7 + A2 3 ( )
As an extension of inequality (1.10) to L,-norm, recently W.M. Shah and A.
Liman [19] while seeking the desired extension, have made an incomplete attempt

[19, Theorem 2] by claiming to have proved that if P € &2, and P(z) does not
vanish in |z| < 1, then for each R > 1 and p > 1,

R"An] + [Aol
1P, (1.12)
11+ =], 8

where B € B, and o(z) = Rz and A,, is defined by (1.11).
Rather and Shah [17] pointed an error in the proof of (1.12), they not only
provided a correct proof but also extended it for 0 < p < 1 as well. They proved:

Theorem A. If P € &, and P(z) does not vanish for |z| < 1, then for0 < p < oo
and R > 1,

B[P o a](2)], <

11+ |,

B € B, 0(z) = Rz and A, is defined by (1.11). The result is sharp as shown by
P(z) =az"+b, |a] = |b] = 1.

Recently, Rather and Suhail Gulzar [16] obtained the following result which is
a generalization of Theorem A.
Theorem B. If P € &, and P(z) does not vanish for |z| < 1, then for a € C
with o] < 1,0 <p < oo and R > 1,
|(R" — a)Anz + (1 — a) Ao

11+ [l

where B € B, 0(z) = Rz and A, is defined by (1.11). The result is best possible
and equality in (1.14) holds for P(z) = az™ +b, |a| = |b| = 1.

IBIP o o](2)]|, < =P (z) (1.13)

||p7

IB[P o 0](2) — aB[P](2)]], < =P, (1.14)

If we take @« = 0 in Theorem B, we obtain Theorem A.
In this paper, we investigate the dependence of

IBIP 0 0](2) + én (R,7,a, 8) B[P o p](2)],

on [[P(2)], for a, B € Cwith [of < 1, |8 <1, R>r >1,0<p < oo,
0(z) == Rz, p(2) :=rz and ¢, (R,r,a, 3) is given by (1.7), and establish certain
generalized L,-mean extensions of the inequality (1.10) for 0 < p < oo and also
a generalization of (1.5). In this direction, we first present the following result
which is a compact generalization of the inequalities (1.3), (1.4), (1.5) and (1.10)
for 0 < p <1 as well.

Theorem 1.1. If P € &, and P(z) does not vanish in |z| < 1, then for a, f € C
with o] <1, |B| <1, R>r>1and 0 < p < oo,

B[P o 0](2) + ¢n(R, 7, o, B) B[P o p](2)]],
(R" + on(R, T, a,B)r”)Anz + (1 + on(R, T, a,ﬁ)))\oH

1+ =],

< | EP, (1.15)
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where B € By, 0(z) := Rz, p(z) :=rz, A, and ¢, (R, r,a, B) are defined by(1.7)
and (1.11) respectively. The result is best possible and equality in (1.15) holds for
P(z)=az"+b,|a| =1b] #0

Remark 1.2. If we take A\ = Ay = 0 in (1.15), we obtain inequality (1.5).
For 8 = 0, inequality (1.15) reduces the following result.

Corollary 1.3. If P € &, and P(z) does not vanish in |z| < 1, then for every
real or complex number a with |a| <1, R>r>1 and 0 < p < oo,

IB[P o 0](z) — aB[P o p|(2)]|,
|(R™ — ar™)Apz + (1 — a) Ao
- 11+ =],
where B € B, 0(z) := Rz, p(z) :==rz and A, is defined by (1.11). The result is
best possible and equality in (1.16) holds for P(z) = az" + b, |a| = |b| # 0.

Remark 1.4. For taking o = 0 in (1.16), we obtain Theorem A and for » = 1 in
(1.16), we get Theorem B.

E P, (1.16)

Instead of proving Theorem 1.1, we prove the following more general result
which includes Theorem 1.1 as a special case.

Theorem 1.5. If P € &, and P(z) does not vanish in |z| < 1, then for
a,,0 € Cwith |a] <1, |8 <1, || <1L,R>r>1and 0 <p< 0,

B[P o 0](2) + ¢u (R, 1, a, B) B[P o p](2)

(1B + 6 (Rr., B)r"| [An] = 11+ 60 (Ryr, e 8) | ol Jm

+9 >

p

. ”(Rn + ¢n(R7 T, a,ﬁ)?"”) Az + (1 + ¢n(R7T, 0475)) )\OHp HP(Z)HP (1.17)

B 11+ =],

where B € B, 0(z) := Rz, p(z) := rz, m = minp, =1 |P(2)| and ¢, (R,7, 0, ),

A, are defined by(1.7) and (1.11), respectively. The result is best possible and
equality in (1.15) holds for P(z) = az" + b, |a| = |b| # 0.

Remark 1.6. For =0 in (1.17), we get Theorem 1.1.

The next corollary which is a generalization of (1.5) follows by taking

Corollary 1.7. If P € 2, and P(z) does not vanish in |z| < 1, then for
a,B,0 e Cwith |o) <1, |B| <1, [§| <1, R>r>1and 0 <p< oo,

P(Rz) + ¢n (R, 7,0, B) P(r2)

<|Rn +¢n (R,?"7a,ﬂ)7‘n| - ‘1 +¢n (R,T,O[,,B) ‘)m

+9 5




ZYGMUND-TYPE INEQUALITIES FOR POLYNOMIALS 67

(R™ + ¢n(R,r 0, B)r") 2 + (1 + ¢n(R, 7, a0, B)) |
11+ 2],

where m = min, = |P(2)| and ¢, (R,7,a, B) is defined by(1.7). The result is
best possible and equality in (1.18) holds for P(z) = az" + b, |a| = |b| # 0.

|

ElPG,  (L18)

2. LEMMAS

For the proofs of these theorems, we need the following lemmas. The first
Lemma is easy to prove.

Lemma 2.1. If P € &, and P(z) has all its zeros in |z| < 1, then for every
R>r>1and|z| =1,

R+1
r+1

P> (2 ).

The following Lemma follows from [10, Corollary 18.3, p. 65].

Lemma 2.2. If all the zeros of polynomial P € 2, lie in |z| < 1, then all the
zeros of the polynomial B[P)(2) also lie in |z|] < 1.

Lemma 2.3. If F € &, has all its zeros in |z| <1 and P(z) is a polynomial
of degree at most n such that

|P(2)| < [F(2)] for || =1,
then for every o, 5 € C with |a] <1, || <1, R>r>1, and |z] > 1,
|B[Poo](z) + ¢n (R, 0, B) B[P o p](2)]
< |B[F' o 0](2) + ¢n (R, 7,0, ) B[F 0 p](2)] (2.1)
where B € B, 0(z) := Rz, p(z) == rz, A, and ¢, (R,r,«, B) are defined by
(1.11) and (1.7) respectively.

Proof. Since the polynomial F'(z) of degree n has all its zeros in |z| < 1 and P(z)
is a polynomial of degree at most n such that

|P(2)] < [F(2)] for |z[=1, (2.2)
therefore, if F'(2) has a zero of multiplicity s at z = ¢, then P(z) has a zero of
multiplicity at least s at z = . If P(2)/F(z) is a constant, then the inequality
(2.1) is obvious. We now assume that P(z)/F(z) is not a constant, so that by
the maximum modulus principle, it follows that

|P(2)] < |F(2)| for |z| < 1.

Suppose F(z) has m zeros on |z| = 1 where 0 < m < n, so that we can write
F(z) = Fi(2)Fy(2)

where Fi(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and Fy(z2) is
a polynomial of degree exactly n —m having all its zeros in |z| < 1. This implies
with the help of inequality (2.2) that

P(z) = Pi(2)F1(z)
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where Pj(z) is a polynomial of degree at most n —m. Now, from inequality (2.2),
we get

|P1(2)] < [Fy(2)] for [2] =1

where Fy(z) # 0 for |z| = 1. Therefore for every A € C with |[A\| > 1, a
direct application of Rouche’s theorem shows that the zeros of the polynomial
Pi(z) — AFy(z) of degree n —m > 1 lie in |z| < 1. Hence the polynomial

f(z) = Fi(2)(Pi(2) = AFa(2)) = P(z) — AF(z)
has all its zeros in |z| < 1 with at least one zero in |z] < 1, so that we can write
f(2) = (z — te”)H(2)

where ¢ < 1 and H(z) is a polynomial of degree n — 1 having all its zeros in
|z| < 1. Applying Lemma 2.1 to the polynomial f(z) with k& = 1, we obtain for
every R>r>1and 0 <6 < 2,

|f(Re™)| =|Re' — te||H(Re™)|

A L /R+1\"! ,
>|Re'? — te'd| (L) |H (re')|
T

R+1\""" |Ret — teid)|
r+1 |rei — teid|

R+1\""" (R+t »
> (B (B e

This implies for R >r > 1 and 0 < 6 < 2,

|(re'® — te®) H (re')|

r+t " R+1\""
> (—— : :
(7 st = (E50) T ire) (23)
Since R > r > 1 > t so that f(Re?) # 0 for 0 < § < 27 and 11:; > 1’;:;, from
inequality (2.3), we obtain R > >1and 0 <6 < 2,
i0 R+1\" i0
ey > (FE0) e (2.4

Equivalently,

e > (25 s

for |z] =1 and R > r > 1. Hence for every o € C with |a| <1 and R > r > 1,
we have

[f(Rz) — af (rz)| = | f(R2)| = |a||f(rz)]

> {(B) -t sea, =1,

Also, inequality (2.4) can be written in the form

r+1
R+1

F(reé®)] < ( ) (R (2.5)
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for every R >r > 1 and 0 < § < 27. Since f(Re) # 0 and (;;11)” < 1, from
inequality (2.5), we obtain for 0 <0 <27 and R > r > 1,

[f(re)] < [f(Re)].

Equivalently,
[f(r2)] < [f(Rz)| for |z = 1.

Since all the zeros of f(Rz) lie in |z| < (1/R) < 1, a direct application of
Rouche’s theorem shows that the polynomial f(Rz) — af(rz) has all its zeros in
|z] < 1for every a € C with |a] < 1. Applying Rouche’s theorem again, it follows
from (2.4) that for o, 5 € C with |a] < 1,|8| < 1and R > r > 1, all the zeros of
the polynomial

T =1(R2) - af )+ 5] (211 ) ~lal} £r2)
= f(Rz) + ¢n (R, 7,0, B) f(r2)
— (P(Rz) — AF(R2)) + ¢n (R, 7,0, B) (P(rz) — AF(rz))
= (P(Rz) + ¢n (R,7, 0, B) P(rz)) — )\(F(Rz) + ¢n (R,7, 0, B) F(rz))
lie in |z| < 1 for every A € C with |[A\| > 1. Using Lemma 2.2 and the fact that
B is a linear operator, we conclude that all the zeros of polynomial

W(z) = B[T](2)
= (B[P od](2) + ¢n (R, 7,0, 8) B[P 0 p](2))
- /\(B[Foa](z) + ¢ (R,T,@,B)B[Fop](z))

also lie in |z| < 1 for every A with |A\| > 1. This implies
|B[P o 0](2) + ¢n (R, 1, a, B) B[P o p](2)]
< |B[F 0 0](2) + ¢n (R,7, 0, B) B[F © pl(2)] (2.6)

for [z] > 1 and R > r > 1. If inequality (2.6) is not true, then there exists a
point z = zy with |zp| > 1 such that

|B[Poal(z0) + én (R, 7, v, B) BP0 p|(20)| > |B[F 0 0](20) + ¢ (R, 7, v, §) B[F 0 p](20)|-

But all the zeros of F/(Rz) lie in |z] < 1, therefore, it follows (as in case of f(z))

that all the zeros of F(Rz)+ ¢, (R, 7, «, ) F(rz) lie in |z] < 1. Hence by Lemma
2.2, all the zeros of B[F o o](z) + ¢, (R, 7,0, ) B[F o p|(2) also lie in |z] < 1,
which shows that

B[F o 0](20) + ¢n (R, 7, a, ) B[F o p](z0) # 0.
We take
B[P o 0](z0) + ¢n (R, 7, v, ) B[P o p](20)
BIF o 0(20) + ¢n (R, 7,0, B) B[F 0 p|(20)’
then A is a well defined real or complex number with |[A| > 1 and with this choice

of A\, we obtain W (zy) = 0. This contradicts the fact that all the zeros of W (z)
lie in |z] < 1. Thus (2.6) holds and this completes the proof of Lemma 2.3. [

A:
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Lemma 2.4. If P € &, and P(z) has all its zeros in |z| < 1, then for every
a,f € Cwith |a| < 1,|8] <1 and |z| > 1,

|B[P 0 0](2) + ¢n (R, 7, , f) B[P o p](2)]
> |R" + én (B, 0, B) | [An |2]"m (2.7)

where m = min,—1|P(2)|, B € By, 0(2) = Rz, p(2) = rz, A, and ¢, (R, 7, a, 3)
are defined by (1.11) and (1.7), respectively.

Proof. By hypothesis, all the zeros of P(z) lie in |z| < 1 and
m|z|" < |P(z)| for |z| =1.

We first show that the polynomial g(z) = P(z) — Amz™ has all its zeros in |z| < 1
for every A\ € C with |A| < 1. This is obvious if m = 0, that is if P(z) has a zero
on |z| = 1. Henceforth, we assume P(z) has all its zeros in |z| < 1, then m > 0
and it follows by Rouche’s theorem that the polynomial g(z) has all its zeros in
|z] < 1 for every A € C with |A\|] < 1. Proceeding similarly as in the proof of
Lemma 2.3, we obtain that for o, § € C with |a| < 1,|8] < 1and R >r > 1, all
the zeros of the polynomial

HE:) =g() - aglr2) + 5 (1) = lalfalr=)
=45 o )
= (P(Rz) — AR"z"m) + ¢,, (R, 7, at, B) (P(rz) — M"2"m)

= (P(Rz) + ¢ (R, 7,0, ) (rz)) — (R” + ¢n (R, 1,0, B) r”)mz

lie in |z] < 1. Applying Lemma 2.1 to H(z) and noting that B is a linear operator,
it follows that all the zeros of polynomial

B[H|(z) ={B[P 0 0](2) + ¢n (R, 1, a, B) B[P o p](2)}
— )\(R” + on (R, 7,0, B) T”)mB[z”] (2.8)
lie in |z| < 1. This gives
|B[P 0 0](2) + ¢n (R, 7, B) B[P o p] ()]
> |R" + ¢n (R, 0, B) r"| |An] |2|"m for |z| > 1. (2.9)
If (2.9) is not true, then there is point w with |w| > 1 such that
|BIP o ol(w) + ¢n (R, 7,0, 8) B[P o pl(w)| < |R" + ¢ (R, 7,0, B) r"| [An] [w["m

We choose
_ B[Poo](w) + ¢n (R, 1, 8) B[P o p](w)
R+ ¢, (R, a, B) | | A Jw|rm
then clearly |A] < 1 and with this choice of A, from (2.8), we get B[H]|(w) = 0
with |w| > 1. This is clearly a contradiction to the fact that all the zeros of H(z)
lie in |z] < 1. Thus for every a, f € C with || <1, 8] <1,
|BIP 0 0](2) + ¢n (R, 7, 00, B) B[P 0 p|(2)] = [R" + ¢ (R, r, 0, B) 7| [An] [2]"m0

for || >1and R>r > 1. O
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Lemma 2.5. If P € &, and P(z) does not vanish in |z| < 1, then for every
a,f € Cwith |of| <1,|B| <1,R>r>1and |z| > 1,

|BIP 0 0](2)+¢n (R, 7,0, 8) B[P o p](2)|
< [B[P* 0 0](2) + ¢n (R, 7, v, B) B[P" 0 p](2)]

where P*(z) :== 2"P(1/Z), B € B, 0(z) := Rz, p(2) :==rz, and ¢, (R,r,c, 5) is
defined by (1.7).

Proof. By hypothesis the polynomial P(z) of degree n does not vanish in |z| < 1,
therefore, all the zeros of the polynomial P*(z) = 2"P(1/Z) of degree n lie in
|z| < 1. Applying Lemma 2.3 with F'(z) replaced by P*(z), it follows that

|B[P o 0](2) + ¢n (R, 7, v, 3) B[P 0 p] (2)]
< [B[P" 0 0](2) + ¢u (R, 7, c, ) B[P" 0 p](2)]
for |z] > 1,]a| < 1,|8] <1 and R > r > 1. This proves the Lemma 2.5. O

Lemma 2.6. If P € &, and P(z) has no zeros in |z| < 1, then for every a € C
with |of <1, R>r>1and|z| > 1,

|B[P o 0](2) + ¢n (R, 7, v, f) B[P o p] ()]
< [B[P* 0 0](2) + ¢n (R, 7, v, 3) B[P" 0 p](2)]
- <|R" 4 b (Ryra, B) 1" [An] = |1+ én (R, 7y, B) | |/\0|>m, (2.10)
where P*(z) = 2"P(1/Z), m = min -1 |P(2)|, B € By, 0(2) = Rz, p(2) =rz, A,
and ¢, (R, 7,0, B) are given by (1.11) and (1.7), respectively.
Proof. By hypothesis P(z) has all its zeros in |z| > 1 and
m < |P(z)| for |z| =1. (2.11)

We show F(z) = P(z) + Am does not vanish in |z| < 1 for every A € C with
|A| < 1. This is obvious if m = 0 that is, if P(z) has a zero on |z| = 1. So we
assume all the zeros of P(z) lie in |z| > 1, then m > 0 and by the maximum
modulus principle, it follows from (2.11) that

m < |P(z)| for |z| < 1. (2.12)
Now if F(z) = P(z) + Am = 0 for some z, with |2z9| < 1, then
P(zy) + Am = 0.
This implies
|P(20)] = |Alm < m, for |z| <1

which is clearly contradiction to (2.12). Thus the polynomial F(z) does not
vanish in |z| < 1 for every A with |A\| < 1. Applying Lemma 2.3 to the polynomial
F(z), we get
| B[F 0 0](2)+¢n (R, 7,0, B) B[F o p](2)|
< |BIF* 00)(2) + én (R, . 8) BIF" o p](2)
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for |z] =1 and R > r > 1. Replacing F(z) by P(z) + Am, we obtain
|B[P o ](z) + ¢u(R, 7,0, B)B[P 0 p|(2) + A(1 + ¢n(R, 7, cx, B)) Ao
< [B[P* 0 0](2) + ¢u(R, 1, a, B) B[P 0 p](2)
+ X(Rn + on(R, 7, 5)7“”)Anz"m| (2.13)
Now choosing the argument of A in the right hand side of (2.13) such that
|B[P* 0 0](2) + ¢n (R, 7,0, B) B[P* 0 p](2) + A(R" + ¢y, (R, 7, 0, B) ™) A 2"
= |B[P" 0 0](2) + ¢n (R, 7, 00, B) B[P" 0 p](2)]
— Al |R™ + on (R, 7y, B)r"] [ Ay |2]"m.
for |z| = 1,which is possible by Lemma 2.4,we get
[BIP 0 0](2) + ¢n (R, 7,0, B) B[P 0 pl(2)] = [Al [1 4 ¢u(R, 7, 0, B[ |Ao|m
<IB[P" 0 0](2) + ¢n (R, 7,0, ) B[P" 0 pl(2)]
— A |R™ + ¢ (R, 7y, B) 1| |Aw] |2]"m.
Equivalently,
|B[P o 0](2) + ¢n (R, 7,0, 8) B[P 0 p](2)]
< |B[P" 0 0](2) + ¢n (R, 7, , ) B[P" 0 pl(2)]
— (IR + 6n (Rory 0, 8)7"| [Anl = |1+ 6 (Ro7, B) [ ol ). (2.14)

Letting |A| — 1 in (2.14) we obtain inequality (2.10) and this completes the
proof of Lemma 2.6. 0

Next we describe a result of Arestov [2].
For v = (0,71, ,7m) € C"*1and P(z) = 377 a;27, we define

CyP(2) =) a2,
=0

The operator C, is said to be admissible if it preserves one of the following
properties:

(i) P(z) has all its zeros in {z € C : |z] < 1},
(ii) P(z) has all its zeros in {z € C : |z| > 1}.

The result of Arestov may now be stated as follows.

Lemma 2.7. [2, Theorem 2] Let ¢(x) = ¢(logz) where v is a convexr non-
decreasing function on R. Then for all P € &2, and each admissible operator
C,,

/0 "6 (10, P(e")]) db < / " (c(y.m)| P()]) db,

where ¢(y,n) = max (|7l [1nl)-
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In particular Lemma 2.7 applies with ¢ : © — 2P for every p € (0,00) and
¢ : x — logx as well. Therefore, we have for 0 < p < o0,

{/0% 6 (ICP(e”)F) de}l/p < c(v.n) {/0% |P(e)[" de}l/p. (2.15)

From Lemma 2.7, we deduce the following result.

Lemma 2.8. If P € &, and P(z) does not vanish in |z| < 1, then for each
p>0, R>1andn real, 0 <n < 2,

27
/0 |(B[Poa](ew) +(Z)n(R,r,a,ﬁ)B[Pop](ew))em
+ (B[P* o a]* (") + ¢n(R, 7, &, B)B[P* o p|*(e?))|PdO
P(eié’)

21
< (R + ¢n(R, 7,0, B)r™) Ane™ + (1 + ¢n(R, 7, @, B)) AolP / df
0

‘ p

where B € By, 0(2) := Rz, p(z) := rz, B[P*oo]*(z) :== (B[P*00|(2))", A, and
On (R, 7,0, B) are defined by (1.11) and (1.7), respectively.

Proof. Since P(z) does not vanish in |z| < 1 and P*(z) = 2"P(1/z), by Lemma
2.5, we have for R >r > 1,

|B[P o 0](2) + én (R, 7, 0, §) B[P 0 p](2)]
< [B[P" 0 0](2) + ¢n (R, 7, c, 5) B[P" 0 p](2)] (2.16)

Also, since
P*(Rz) + ¢n (R,r,a,8) P*(rz) = R"z"P(1/RZ) + ¢, (R, 1,0, ) r"2"P(1/rZ),
therefore,

B[P* o 0](2) + ¢n(R,r,a, B)B[P* o p|(2)
= Xo(R"z"P(1/RZ) + ¢n (R,7, 0, B) r"2"P(1/1%)) + A1 (E) (anznflpu JRZ)

2
— R"12"2P(1/RZ) + ¢y (R, 7, o, B) (2" 1 P(1/rZ) — r"ilz"ﬂP/(l/TZ)))
+ % (";)2 (n(n = DR"="2P(1/RZ) - 2(n — YR"2"SP(1/Rz)

+ R"2API(1/RZ) + ¢y (R, 7, o, B) (n(n — 1)r"2""2P(1/rz)
= 2(n = 1) PR 4 02 P(LE)) ),
and hence
B[P*oo]*(z) + ¢ (R,r,a&, B) B[P* o p|*(2)
(B[P* 0 0)(2) + ¢n (R, 7, 0, B) B[P* 0 pl(2))”

n?  _ndn-— _
= <)\0 + Xl? + )\2(81)> (R"P(z/R) + ¢ (R,r, &, 3) " P(z/r))
n - n?(n— _
— <)\_12 + )\27( 1 1)> (R”_lzP'(z/R) + ¢ (R,r, a,p) r”_lzP'(z/r))

+ AQT;Q (R"222P"(2/R) + ¢ (R,r,@, B) 1" 22 P" (2/1)). (2.17)
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Also, for |z] =1
|B[P" 0 0](2)+¢n (R, 7, , B) B[P* 0 p](2)]
= |B[P* o 0]"(2) + ¢ (R,r,a,B) B[P o p"(2)].
Using this in (2.16), we get for |z| =1 and R > r > 1,
|BIP 0 0](2)+¢n (R, 7, B) B[P o p](2)|
< |B[P*o0]"(2) + ¢ (R,r,a,B) B[P o p]*(2)].

Since all the zeros of P*(z) lie in |z| < 1, as before, all the zeros of P*(Rz) +
On(R, 7y, f)P*(rz) lie in |z| < 1 for all real or complex numbers «, 3 with
la] < 1, |B] < 1 and R > r > 1. Hence by Lemma 2.2, all the zeros of
B[P* o d](2) + ¢n(R, 7, o, B) B[P 0 p|(2) lie in |z| < 1, therefore, all the zeros
of B[P* o c|*(2) + ¢n(R, 7, &, B)B[P* o p|*(2) lie in |z| > 1. Hence by the maxi-
mum modulus principle,

|BIP 0 0](2)+dn (R, 7,0, B) B[P" 0 p] ()]
<BIP* oo (2) + 6 (Rira,B) BIP o *(5)] (218)
for |z| < 1. A direct application of Rouche’s theorem shows that
CyP(2) =(B[P 0 0)(2) + ¢n(R, 7., ) B[P 0 p] (2)) "
+ (BIP" 0 0]*(2) + én(R, 1,6, B) B[P" 0 p](2))
={(R" + ¢n(R, 7,0, B)r") A" + (1 + ¢n(R, 7, @, B)) Ao } an2"
+eee {(Rn + ¢n(R7 T, 0, B)Tn)j(n + ein(l + (Z)n(Rv T, ﬁ)))\(]} ao

does not vanish in |z| < 1. Therefore, C, is an admissible operator. Applying
(2.15) of Lemma 2.7, the desired result follows immediately for each p > 0. O

We also need the following lemma [1].

Lemma 2.9. If A, B,C are non-negative real numbers such that B + C' < A,
then for each real number ~,

(A= C)e" + (B+C)| < |Ae + B|.
3. PROOF OF THE THEOREMS

Proof of Theorem 1.5. By hypothesis P(z) does not vanish in |z| < 1, there-
fore by Lemma 2.6, we have

|B[P 0 0](2) + ¢n (R, 7, §) B[P 0 p](2)]
< |B[P* 0 0](2) + ¢n (R, 7, c, B) B[P" 0 p](2)]

— (IB" + 60 (Ror . B) ™| [A] = [L4 6 (R, )] Dol Jm,— (3.1)

for |z| = 1, Ja] < 1 and R > r > 1 where P*(z) = z"P(1/Z). Since
B[P* o 0]*(2) + ¢, (R,r,@, 3) B[P* o p]*(2) is the conjugate of B[P* o 0](z) +
on (R, 7,0, B) B[P* 0 p|(z) and
|B[P* 0 0]*(2) + éu (R, 7, B) B[P* 0 pl"(2)]
= [B[P* 0 0](2) + ¢n (R, 7, v, B) B[P 0 p](2)|
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Thus (3.1) can be written as
|B[P o 0](2) + ¢n (R, 7,0, B) BIP 0 p](2)|

. (IB" + 6n (R, 8) 17| [Aa] = |1+ 6 (R, 7,0, 8) | Mol )m
2
< |B[P* o o]*(2) + ¢ (R, 7, &, B) B[P* 0 p]*(z)|

(18" + 60 (B.ry 0, )77 [Au] = |1+ 60 (7,0, 8) | ol )m

- 5 (3.2)

for |z| = 1. Taking
A = |B[P*o0]*(2) + ¢, (R,7, &, ) B[P* o p]*(2)]
B = |B[P o 0](2) + ¢n (R, 7,0, 8) B[P 0 p](2)],
and
(1B 60 (B @ )17 1Al = L+ 60 (Rora 8) | Dol )m
2

in Lemma 2.9 and noting by (3.2) that
B+(C<A-C<A,

we get for every real 7,

{|B[P* 0 01"(e) + 6 (o1, @, 5) BIP” 0 1" ()

(17" + 60 (R.rc )27 M) = 1+ 60 (Ror.0.9)| Ao)m}
(&
2

—I—{‘B[P o0](e”) + ¢, (R,7,a, B) B[P o p]<€w)|

_'_

(187 + 60 (Ror . )17 [Au] = 1+ 60 (Romy 0 8)| /\o>m}'
2

g‘ |B[P* o 0]*(e") + ¢, (R, 7, &, B) B[P* o p]*(e”)|e"
+|BIP 0 0](€) + 6u (R, 7,0, 8) BIP o pl(e”)]|

This implies for each p > 0,

2

/

0

{}B[P* o U]*(ew) + an (R, T,O_K,B) B[P* o p]*<el6*)|

(18" + 6u (Rorsc )17 Al = [1+ 60 (Ro, . 8)| Ao)m} Z.
— e
2
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+ {‘B[P o d](e"?) + ¢n (R, 7, 0, B) B[Pop](ew”

P

(18" + 6n (o7 )17 [Anl = 1+ 60 (Ror, 0, 8)| Ao)m}
+ do

2

2
< [|1BP o1 () + 6. (Ror, B) BIP* 0 1" (e) e
0

+ |BIP o o)(e?) + ¢, (R, 7, @, B) B[P 0 pl ()] ‘pde. (3.3)

Integrating both sides of (3.3) with respect to v from 0 to 27, we get with the
help of Lemma 2.8 for each p > 0,

21 2m

/]

0 0

{}B[P* ool*(e?) + ¢n (R, 7, @, B) B[P* o p]*(e™)]

(IR" + 6u (Ryr,0 8) 17| |An] = |1 + 60 (R, 1,0, )| \Ao\)m}
- e
2

+ {’B[P o 0](6”) + ¢n (R, 7,0, ) B[P o p](ew)’

p

+ dfd~y

(18" + 60 (R.ryc )17 [A] = 1+ 60 (R0, 8)| \Ao\)m}
2

2w 27

S//“B[P*OJ]*(eie)—i—(bn (R,r,a, B) B[P*op]*(ew)‘e”
00

+ |BIP o 0]() + én (R.7,,8) BIP o p] ()] | by
21 21

S/ {/ [BIP* 0 o] (¢) + ¢ (.7, B) BIP* o pl*(e")]e”

0 0

+|B[Poo](e”) + ¢n (R, 7,0, 8) B[P o p](ew)”pdy}dﬂ

(B[P* o o]*(e”) + ¢n (R, a, f) B[P* o p]*(e“’))e”

+ (BIPoo](¢®) + 60 (R7,0, 8) BIP o ("))

P
d’y}d@

(B[P* OO']*(GM) +¢n (R,T‘,@,B) B[P* Op]*(eiﬁ))ei’y
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p
dG}dy

+ (BIP o 0)(e") + én (R,1,a, 6) BIP o ("))

2w
S /’<Rn + ¢n(R7 7’, Oé, ﬁ)rn)Anei’Y + (1 + ¢n(R7 ’I", C_Va /B))/\_O‘pd’y
0

27
8 /
0

Now it can be easily verified that for every real number v and s > 1,

P(i?) ‘p df (3.4)

‘s + em‘ > ‘1 + eia| )
This implies for each p > 0,

s 2
/ |s+ei7‘pd7 2/ ‘1—|—e”{pd'y. (3.5)
0 0
If
[BIP o o](¢”) + ¢u(R. 7., B)BIP o pl(e”)|
(18" + 60 (Ror, )17 [Au] = |1+ 6 (Roy 0 B)| Dol )m
+ 70,
2
we take

| BIP* 0 0]*(¢) + ¢ (R, 7,a, B) B[P* o pl*(e®)|

(1R 60 (o )11l = 11+ 60 (.10, 5) Dol

" [BIPool(€”) + éu(R, 1.0, B)BIP o pl(”)] |

(1R" + 6 (o7, 8) P l|A] = [1+ 6 (R, 7,0, B) Aol )m
2

then by (3.2), s > 1 and we get with the help of (3.5),

2

/

0

+

{»B[P* o o] (e?) + én (R, B) BIP* o pl*(¢?)|

(1R" + 6 (Ror. . B) ™| [An] = 11+ 60 (Rory B)| |Aol)m} N
— (&
2

+{ }B[P o O’](ew) + ¢n (R, 0, ) B[P o p](ew)‘

p

+ dry

(1R" + 6 (Ror. 0, B) ™| [An] = 11+ 60 (Ro1y 0 8)| \Aol)m}
2

|B[P o 0](e) + ¢ (R, 7, v, B) B[P 0 p](e')]
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p

. (1B + 6n (Ro7 0, 8) 17| |Aa] = 1+ 60 (Ro7,0,8)| Dol )m

2
|B[P* 0 o]*(e) + ¢ (R, 7, a, B) B[P* o p]*(e”)] 8
. (1B + 6n (R0 ) "] [An] = [1+ 6 (B, 8) | [No] )m
vy — 2
XO/6 * ‘B[Poa](ew)+¢n(R,T,a,ﬂ)B[Pop](ei9)‘ 4y
(1B 60 (o )] 18] = (14 6 (R 7,0,8) | ol )
2

}B[P o a](ew) + ¢ (R, 7,0, B) B[P o p] (ew)‘

(18" + @ (Roryc )77 1] = |1+ 60 (B0, B) | [Dol Jom |7

* 2
|B[P* 0 o]*(e") + ¢ (R, 7, @, B) BIP* 0 p]* (") 3
o <|RTL + ¢n (R7 707047/8> ,r.TL| ‘An| - |1 + (ZS’VL (R,T,OC,B) ‘ ‘AO‘)m
iy _ : 2 __ d
XO/ o | B[P o 6](") + ¢n(R, 7, o, B) B[P o p](e")] 7
(IB" + 6u (R, 8) 77 [Aa] = |1+ 60 (R, 0, 8) | Aol )m
* 2
> |B[P o o(e) + ¢n (R, 7, a0, f) B[P o p](ei0)|
(IB" + 6u Ry, )17 [An] = |1+ 6n (Ryr, 0, B) [ o) P 7
- /!1 +e7Pdy.
2
0
(3.6)

For
|BIP o a](e”) + ¢u(R,r,c, B) B[P o p](e”)]

(1B + 60 (Reri 317 1Au] = 1+ 6n (Ror )] ol
2 Y

+

then (3.6) is trivially true. Using this in (3.4), we conclude that for every
a,f € Cwith |[of| < 1,|f| <1 R>r>1andp >0,

2

/

0

‘B[P o a](ew) + ¢n (R, 7,0, ) B[P o p] (ew)‘

(18" + 6w (Roryc )77 [A] = |1+ 6 (B0, B) | Aol Jom |7

* 2

2
de/\l—i—e”]pdfy
0
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27 9n
<[]+ on(Rrs, A + (1 4+ o A |
0 0

p(ew)]”cze.

This gives for every d, a, f with |0] < 1, |a| <1, || <1, R>r > 1 and ~ real
27

/

0

B[P o o](e?) + ¢ (R, ,r, B) B[P o p)(e')

(18" + 6 (Ror . B)r"| [An] = |1+ 60 (R, 8) | Dol Jm?

2

+0

2m
d@/\l—i—e”]pdfy
0
21

g/)(R” N an(R,T,Oz,ﬂ)Tn)Anem + (1 + én(R, T,@,B))Xo‘pdfy /27r
0

0

P(ei‘))]p df

(3.7)
Since

21
/ ‘(R” + On(Ryry 0, B)r™ ) Ape’™ + (1 + ¢ (R, 7, &, B))Xo‘pdv /027r P(eia)‘p do
0

27 o
:/ [(R™ + ¢ (R, 7, 0, B)r™) Anle™ + |(1 + (Z)n(R,r,a,B)))\gwpdy/o P(ew)‘p 0

0

27

2w
|(R7L+an(R,T’a?B)rn)Anki'y+ |(1+¢n(R,’l",Oé,,8)))\0|‘pd’y/0 P(eie) do

‘ p

2

= (Rn + ¢n(R, T, o, ﬁ)r”)/\ne” + (1 + ¢n(R7 r,Q, ﬁ))AUIPdV/
0

P(ew)’de,

[e=]

(3.8)

the desired result follows immediately by combining (3.7) and (3.8). This com-
pletes the proof of Theorem 1.5 for p > 0. To establish this result for p = 0, we
simply let p — 04. O
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