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ABSTRACT. In this paper, we establish some new Ostrowski type inequalities
for functions whose first derivatives are s-preinvex in the second sense.

1. INTRODUCTION

In 1938 A.M. Ostrowski proved an interesting integral inequality which can be
stated as follows

Theorem 1.1. [10] Let f: 1 — R, where I C R is an interval, be a mapping in
the interior I°of I, and a,b € [°with a < b. If |f'| < M for all x € [a,b], then

a2
L %)
4 (b-a)

1
b—a

fx) =

b
/f(t)dt <M(b-a) ] , Yz ela,b] (1.1)

Inequality (1.1) has attracted a great deal of interest for many researchers
due to its diversity of applications in numerical analysis, probability theory, and
other fields. The literature in this context is abundant. We can easily find papers
dealing generalizations, extensions and variants of such type of inequality. We
refer readers to [5, 6, 7, 8, 9, 15, 17] and the references cited therein.

In recent years, lot of efforts have been made by many mathematicians to
generalize the classical convexity. Hanson [4] introduced a new class of generalized
convex functions, called invex functions. In [1], the authors gave the concept of
preinvex functions which is special case of invexity. Pini [14], Noor [11, 12],
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62 B. MEFTAH

Yang and Li [19] and Weir [18] have studied their basic properties and roles in
optimization, variational inequalities and equilibrium problems.

Set et al. [15] established the following Ostrowski’s inequalities for differen-
tiable s-convex functions

Theorem 1.2. [15, Theorem 7] Let f : I C [0,00) — R be a differentiable
mapping on I° such that f' € Lla,b], where a,b € I with a <b. If|f’| is s-convex
on [a,bl], for some fized s € (0,1], then the following inequality

lazf(‘”)d“" = (s+b1)_(5+2)
2(s+1) (Z:z>s+2—(s+2) (Z:Z>SH+1

2(s+1) (‘;:Z>5+2 — (542 (%)SH +1

holds for each x € [a,b].

/()]

\f’(b)|}

q

_|_

Theorem 1.3. [15, Theorem 8] Let f : I C [0,00) — R be a differentiable
mapping on 1° such that f' € Lla,b], where a,b € I with a < b. If |f'|? is s-
convez on [a,b], for some fixred s € (0,1] and q > 1, then the following inequality

holds for each x € [a,b] where ]% + % =1.
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Theorem 1.4. [15, Theorem 11| Let f : I C [0,00) — R be a differentiable
mapping on I1° such that f' € Lla,b], where a,b € I with a < b. If |f'|* is s-
convez on [a,b], for some fizred s € (0,1] and q > 1, then the following inequality

flz) - bi@]f(a:)da: <(b-a) (%)1;

: {(Z:Z)Q(l_;) s (D) e

" (Si? (i:z)” - Sil (Z:Z)H T 1)1(s+2)) ‘f,(a)lq]
+(b-a) (%) {(‘}fjj)go_;) T (§:2)8+21f’<a>|q

- (Sj-? (Z:Z>+2 a lerl (2:2)s+1+ (s+1)1(s—|—2)> ‘f,<a>’q]

holds for each x € [a,b.

Q|

Q=

Iscan [5] established the following Ostrowski’s inequalities for functions whose
derivatives are preinvex

Theorem 1.5. [5, Theorem 2.2] Let A C R be an open invex subset with respect
ton: Ax A — R and a,be A with a < a+n(b,a). Suppose that f: A — R is
a differentiable function and |f'| is preinvex function on A. If f' is integrable on

la,a +n(b,a)], then the following inequality

atn(b,a)

Al () -2 (s w2 (=2e0=) |
3 (aa) o) ] 'f'(b)'}

holds for each x € [a,a + n(b,a)].

+

Theorem 1.6. [5, Theorem 2.8] Let A C R be an open invex subset with respect
ton: Ax A = R and a,b € A witha < a+n(b,a). Suppose that f: A — R is
a differentiable function and |f'|? is preinvex function on |a,a + n(b,a)| for some
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fixed ¢ > 1. If [’ is integrable on [a,a + n(b,a)], then the following inequality
a+n(b,a)

1 1\
f(z) — ) [ flu)du| <n(b,a) <§>
v—a 207D [(@—a) By b,a)— 20 +20) .
X {(77([)’ a)) [ 6773 (b’ CL) |.f (a)‘
1 )

' (&a$>§”“1;+(a+%23$Y@Q)

Q=

1 (z—a)* 2z —3n(b,a) — 2a) R

holds for each x € [a,a + n(b,a)].

Kirmaci [6] established the following midpoint inequalities for differentiable
convex functions

Theorem 1.7. [6, Theorem 2.2] Let f : I° C R — R be a differentiable mapping
on I1°, a,b € I° (I° is the interior of I ) with a < b. If|f’| is convex on [a,b], then
we have

T < 1 @I+ 1)

b
1
e LR

Theorem 1.8. [6, Theorem 2.3] Let f : I° C R — R be a differentiable mapping
on I°, a,b € I° (I° is the interior of I) with a < b and let p > 1. If |f’]# is
convez on [a,b], then we have

b 1
1 a+b b—a 4 v
E?E/}@Mx_f< 2| = 6 (p+1>

(@ iror)” + (rwi o) ).

Theorem 1.9. [6, Theorem 2.4] Let f : I° C R — R be a differentiable mapping
on I°, a,b € I° (I° is the interior of I) with a < b and let p > 1. If |f’]ﬁ is
convez on [a,b], then we have

ﬁ/f(:c)dx—f( a;rb) < b;a (Pj—l)p(!f'(a)\ﬂf/(b)’)'

Kirmaci et al. [7] gave a variant of Theorem 2.4 from [6] as follows
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Theorem 1.10. [7, Theorem 2.1] Let f : I° C R — R be a differentiable mapping
on I°, a,b € I° (I° is the interior of I) with a < b and let p > 1. If |f’|ﬁ is
convez on [a,b], then we have

ﬁ/f(:v)dx—f( a;rb> < <3;> (b—a) (1" (@)l + [ (D)) -

Wang et al. [17] established the following midpoint inequalities for functions
whose power of the absolute value of the first derivatives are preinvex.

Theorem 1.11. [17, Theorem 3.1] Let A C R be an open invex subset with respect
ton: Ax A — Randlet f: A— R be a differentiable function. If |f'|* is
preinver on A for g > 1, then for every a,b € A with n(b,a) # 0 we have

a+n(b,a) L
2a+n(b,a b7 ' ! ‘(O
[ s gy < o ((\f<a>r 2O

(2 |f'<b>\‘Z)31) .

Theorem 1.12. [17, Corollary 3.2] Let A C R be an open invex subset with
respect ton: A x A — R and let f: A — R be a differentiable function. If | f'|
is preinver on A, then for every a,b € A with n(b,a) # 0 we have

a+n(b,a)

o [ s pemea) < OO ).

a

Motivated by these results, in this paper we establish some new Ostrowski’s
inequalities for functions whose first derivatives in absolute value are s-preinvex
in the second sense.

2. Preliminaries

In this section, we recall some concepts of convexity that are well known in the
literature. Throughout this section [ is an interval of R.

Definition 2.1. [13] A function f : I — R is said to be convex, if
flz+(1—t)y) <tf(x)+(1-1) f(y)
holds for all z,y € I and all ¢ € [0, 1].

Definition 2.2. [2] A nonnegative function f : I C [0,00) — R is said to be
s-convex in the second sense for some fixed s € (0, 1], if

fltz+(1=ty) <t°f(z)+ (1 -1)"f(y)
holds for all z,y € I and ¢ € [0, 1].

Let K be a subset in R” and let f : K — R and n: K x K — R" be continuous
functions.
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Definition 2.3. [18] A set K is said to be invex at z with respect to 7, if
r+itn(y,x) e K

holds for all z,y € K and ¢ € [0, 1].
K is said to be invex set with respect to 7 if K is invex at each x € K.

Definition 2.4. [18] A function f on the invex set K is said to be preinvex with
respect to n, if

flztin(y,x) < (1 =1) f(x) +1f(y)
holds for all z,y € K and t € [0, 1].

Definition 2.5. [16] A nonnegative function f on the invex set K C [0, 00) is said
to be s-preinvex in the second sense with respect to n, for some fixed s € (0, 1] if

fx+in(y,x) < (1 =1)°f(2) +f(y)
holds for all z,y € K and t € [0, 1].

Definition 2.6. [3] The incomplete beta function is defined as follows:

x

B.(a, ) = /ta_l(l — )P ldx

0

where x € [0,1] and «, 8 > 0.

Lemma 2.7. [5] Let A C R be an open invex subset with respect ton: Ax A — R
and a,b € A with a < a + (b,a). Suppose that f : A — R is a differentiable
function. If f' is integrable on |a,a + (b,a)], then the following equality

a-tn(b,a) 2(.a)
@) = = [ i = a0 / 10+t (b, )

+ / (t—1) f'(a+tn(ba))dt

T—a

n(b,a

N

holds for all x € [a,a + (b,a)].

Also, we recall that the Euler Beta function is defined as follows: for z,y > 0

1

B(z,y) = /tH (1—t)? " dt =

0

I'(z)T (y)
I'(z+y)



OSTROWSKI’S INEQUALITY FOR FUNCTIONS WHOSE FIRST DERIVATIVES 67

3. Main Results

In what follows, we assume that K C [0,00) is an invex subset with respect to
the bifunction 1, where n: K x K — R, and a,b € K° the interior of K such
that [a,a +n(b,a)] C K.

Theorem 3.1. Let f : K — R be a differentiable function such that [ €
L([a,a+mn(b,a)]) with n(bya) > 0. If |f'| is s-preinver in the second sense
for some fixed s € (0,1], then we have the following inequality

a+n(b,a)

@) - [ fwd] < S P @]+ G G

where

r—a Tr—a S+1 r—a S+2
Uy =1 (s+2) & (1 _ n(b,@) ts (1 _ n(bﬂ)) , (3.2)
and
_ s+1 _ s+2

Wy =1— (5+2) (—;’gb’;)) 4 2(s+1) (i&,&) . (3.3)

Proof. From Lemma 2.7, and property of modulus, we have

a+n(b,a)
f@) - st [ Fwde

z—a

n(b,a) 1

< n(ba) / 1S @+ ty (b,a))| dt + / (1= ) |f(a+ tn (b a))| dt
0 z—a
n(b,a)

(3.4)
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Since | f’| is s-preinvex function in the second sense, we deduce

a+n(b,a)

< n(b.a) /(1—t> (@)

+ T f(b)] dt + / (L= f () + (1 =) | f/(b)] dt

n(b,a)
o) 1
=n(b,a) | |f'(a) /t(l—t)sdt+ /(1—t)s+1dt +
0 n(.a)
7(B,a) 1
+ | (b)] /tS“dtJr / (1 —t)t°dt
0 va

n(b,a)

By a simple computation, we easily obtained

0
s+2
1 1 r—a
+(s+l)(s+2) (s+1)(s+2) (1 n(b a)>
n?b_,g) o
s+1 o 1 xTx—a s
/t dt = s+_2<17(b,a)>
0
1
s+2
s+1 _ 1 r—a
oot = 2 (1 )
n?big)

1
/ (1 . t) tsdt _ 1 1 ( r—a >S+1 + 1 < r—a >S+2 (3 6)
T (s+1)(s+2) s+1 \ n(b,a) s+2 \ n(b,a) : :

Substituting (3.6) into (3.5), we get the desired result. O
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Remark 3.2. In Theorem 3.1, if we put s = 1 we obtain Theorem 2.2 from [5].
And if we choose 7 (b,a) = b — a we obtain Theorem 7 from [15].

Corollary 3.3. In Theorem 3.1, if we take n(b,a) =b—a and s =1 we obtain
the following inequality

b
o [
1

oo (-0’ =30 -a) b -2 + 40— o)) f )

+(b—a)’=30b—a)(x—a)’+4(x—a)’)|f )}

fx) =

Corollary 3.4. In Theorem 3.1, if we choose x = 2a++(b’a), we obtain the follow-
1ng midpoint inequality
a+n(b,a)
b
 (2etgoa) / Fluydu] < 291 = L (@) + O]

Remark 3.5. Corollary 3.4 will be reduced to Corollary 3.2 from [17], if we put
s = 1. And if we choose n(b,a) = b — a, we obtain Corollary 1 from [15].
Moreover, if we take 7 (b,a) = b — a, and s = 1 we obtain Theorem 2.2 from [6].

Theorem 3.6. Let f : K — R be a differentiable function such that [ €
L([a,a+n(b,a)]) with n(b,a) > 0, and let ¢ > 1 such that % +% =1 I
|f'|? is s-preinvex function in the second sense for some fized s € (0,1], then the
following inequality

a+n(b,a) n 1

e . (b, a) z—a "
1@ = e | S s (n<b,a>)

holds for all x € [a,a + n(b, a)].
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Proof. From Lemma 2.7, property of modulus, and Hélder’s inequality, we have

: atn(b,a) 7Ga
flx) — / fu)du| <n(b,a /tpdt
@ o [ ] <nea)
a 0
nczb_,z) ‘ 1
X /|f’(a—|—tn(b,a))|th + /(1—t)pdt

0

Q=

1

x / 1 (a+ ty (b, )| dt

Tz—a
p+1 n(b,a)

= 2O (E) T [ s b

n(b,a)

p+1 1

+ (1 - :(;(j))p / |f'(a+tn(b,a))|" dt

r—a
n(b,a)

Since |f’|? is s-preinvex function in the second sense, we deduce

) a+n(b,a) (b )
_ d 77 7a
f@) n(b,a) [ Flu)du S(p+1)%
| G2) 7| [ @@ e o a
0

p+1 1

+(1-g5) 7 | [ @i elrmr

r—a
n(b,a)

Q=

g o=

Q=

Qe

(3.8)
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p+1 n(b,a) n(b,a)

o | (x0) " | If@F [ a-erasirof [ e
prvr [ N7
0 0
1
p+1 1 1 /
s(-gm) T (@l [ a-vasiror [ e
(3.9)
Clearly, we have
. s+1
/ (1= t)dt - 11 ,_r—a
s+1 s+1 n (b, a)
0
n?bf%
1 r—a s+1
t’dt =
s+1\n(b,a)
0
1
1 o s+1
/(1—t)5dt - R
s+ 1 n (b, a)
nail;z)
1
1 1 o s+1
/ tdt = - a4 (3.10)
s+1 s+1\n(ba)
Substituting (3.10) into (3.9), we obtain the desired result. O

Remark 3.7. Theorem 3.6 will be reduced to Theorem 8 from [15] if we choose
n(b,a) =b—a.

Corollary 3.8. If we put s = 1 in Theorem 3.6, we obtain the following inequality
b
1

b—a
f(iv)—b_a/f(u)du Sm

a

X ((”I(b_’s>>2 ((2 _nx(l; 5)) 7@+ |f/(b)|q>;
+(1- nx<b_,§>>2 ((1- 2 ) s (1+ 200 !f’(b)\")q> |
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Corollary 3.9. In Corollary 3.8, if we choose n(b,a) = b — a, we obtain the
following inequality

b

1 b—a
f(x)—b_a/f(u)du §m

a

~ ((j‘jjj)Q ((1+5=5) i+ 5= rf'W)é
() (e (14220 |f’(b)|q);) .

2“++(b’“), then we obtain the

Corollary 3.10. In Theorem 3.6, if we choose x =
following midpoint inequality

) a+n(b,a) (b )
a a T] 70’
() — [t < :
( 2 ) n(b.a) J (p+1)7 (s +1)7 22*%

(@ =) 1P @F + O + (@ + (@4 = 1) [F D))

Q=

).

Corollary 3.11. In Corollary 3.10, if we take s = 1 we obtain the following
midpoint inequality

a+n(b,a)

f<2a+g(b,a)>_n(b1a) / Flu)du| < n(b,a)

1
(p+1)pa'"

Q=

< (BIF@I+ 17O+ (7@ +3170)7)*) .

Corollary 3.12. In Corollary 3.10, if we choose 1 (b,a) = b — a, we obtain the
following midpoint inequality

s
q

b
F(o52) = ot [ fn] < e

(p+1)% (s+1)%

Q=

< (2 =) P @F + 17O+ (@ + @ =1) 7o)

).

Remark 3.13. Corollary 3.12 will be reduced to Theorem 2.3 from [6] if we take
s=1.

Theorem 3.14. Let f : K — R be a differentiable function such that f' €
L([a,a+n(b,a)]) withn(b,a) >0, and let ¢ > 1. If | f'|? is s-preinvex function
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in the second sense for some fized s € (0,1], then the following inequality

a+n(b,a) ( 1)
2(1—-=
1 (b,a) r—a q
@) - n(b,a) / flu)du| < 21—1( § q (("(bﬂ))

7(s+1)4 (s+2)

Q=

a

+s+1)(1- ”ib;B)M \f’<a)!q); ) (3.11)

holds for all x € [a,a + n(b,a)].

Proof. From Lemma 2.7, property of modulus, and power mean inequality, we
have

a+n(b,a)
Sz
n(ba) g
< n(b,a) tdt t|f (a+tn(b,a))|*dt
1 1 !
+ /(1—t / (1=2t)|f'(a+tn (b a))|’dt

Tr—a
n(b,a)

Tz—a q
n(b,a)

/ FIF @+ tn (b, a)|" dt

0

0 (b,a) < r—a )2(1—2)

n (b, a)

Q=

+ (1— x‘a)2<l_q> ] (1= t) | (a+ty(b,a))|*dt
7a)

(3.12)
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Since |f’|? is s-preinvex function in the second sense, we deduce

1 e (b, a) r—a 2(1-3)
f(z) — o (o) [ fu)du| < 7721_,; (77(5, a))
2(a) 7a) ‘
TN Y N s+1
< |17 [t(l edt + |/ (0) [t it

v —a\2(073)
’ (1 0 a>)

< | 1@ / (1 -ty idt + | (D))" / (1 - 1) tdt

Tr—a xr—a
n(b,a) n(b,a

Q=

N

Substituting (3.6) into (3.13), we obtain the desired result.

(3.13)
O

Remark 3.15. Theorem 3.14 will be reduced to Theorem 11 from [15] if we choose

n(b,a) = b— a, and to Theorem 2.8 from [5] if we put s = 1.

Corollary 3.16. In Theorem 5.1/, if we take n(b,a) = b —a and s = 1, we

obtain the following inequality.

1

Corollary 3.17. In Theorem 5.1/, if we choose x = M, we obtain the

2
following midpoint inequality

a+n(b,a)
f<2a+g(b,a)) _n(l},a) / fluw)du
b,a s s
< s (0= 33) 1@ + 55110

(s+1)7
+ (@1 + (- 52) 17O ).

Q=

U
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Remark 3.18. Corollary 3.17 will be reduced to Theorem 3.1 from [17] if we choose
s=1.

Corollary 3.19. In Corollary 3.17, if we choose 1 (b,a) = b — a, we obtain the
following midpoint inequality

b

F(28) - i [ Sl

a

1
< s (- 39 @l + 53 70
(s+1)2(s+2)22 q

(1= £ PO+ 551 @)7 ).

Corollary 3.20. Corollary 5.19 will be reduced to Corollary 6 from [15] if we put
s =1.

Theorem 3.21. Assume that all the assumptions of Theorem 5.1/ are satisfied,
then we have the following inequality

a+n(b,a)

1
ﬂ@—;@a-/ £ (u)du

a

NS
< 060 | () (B v Losvis@r

1 z—a T /N 1g
+3—|—q+1<77(b,a)) Wb)’)

r—a 1_% 1 x—a \"M TN
(-ama) @+s+1@‘nww> Sl

+ (B (541,q+1) = Baoa (s+1,q+1)> \f’(b)|q>;> (3.14)

Tr—a
n(b,a)

1
q

holds for all x € [a,a + n(b, a)].
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Proof. From Lemma 2.7, property of modulus, and power mean inequality, we
have

a+n(b,a)
fa
- 1
n(ba) !
< niba / £91f'(a + tn (b, )| dt
0
1 ! 1
+ /dt / (1= )7 |f'(a+ tn (b, a))|" dt
nailjg) n?bg)
L [ !
_ nba (f‘a) [ e maa
0
L '
+(1_5”‘“) q /(1—t>q|f’<a+tn<b,a>>|qcit . (3.15)
n (b, a) /
n(b,a)

Since |f’|? is s-preinvex function in the second sense, we deduce

f(x)—@mfwf(u)du <n(ba) (nx(;;)li

a

=

r—a r—a q
,a)

x| |f'(a)|? /tq(l—t)sdt+|f’(b)|q /ts+th
0

®
0

#(1- ‘) @) / (1= 0y ar

T—a

n(b,a

Z

3

~
s
S

N
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1

=0 ((555) " (Bas 14 DI @

1

1 z—a T g\’
* 5771 o) V@”)

r—a 17% 1 x—a\"H IRNT
(- Ta) @+s+10‘nw@) 7ol

+ (B(s+1,q+1) B (s+1, q+1)) |f’(b)|q>;), (3.16)

which is the desired result. ]

Corollary 3.22. In Theorem 3.21, if we choose n(b,a) = b — a, we obtain the
following inequality

f@»—bia7}WMus<v—@ (2:2)1;

s+q+1 %
Bew(g+Ls+ )@+ —— (2= )
b—a S+q+1 b_a

H(80) ™ (s (22) ™
(B¢

+(B(s+1,qg+1)— BH(s+l,q+1)>|f’(b)|q>q).

X

Corollary 3.23. In Theorem 3.21, if we put s = 1, we obtain the following
inequality
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Corollary 3.24. In Corollary 3.23, if we choose n(b,a) = b — a, we obtain the
following inequality

o) - biJf(u)du <(b-a) <f—“)l2

B 1.9)1£(a)]? + — x_am’b";
(B i@ (50 e

b—x = 1 b=\, .
+(1=2) <q+—2<b—a> 70)

+ (B (2.+1) — Boa (2,0 + 1)) |f’(b)|‘1>3) .

2a+n(b,a)

Corollary 3.25. In Theorem 5.21, if we choose x = 5

following midpoint inequality

, we obtain the

a+n(b,a)

() - [ s < 20

a

Q=

N

x ((B @+ LS+ DIF@F + o 1O

1 o
* ((s gz @)

+<B(s+1,q+1)—B (s+1,q+1)> \f’(b)|q);>.

1
2

Corollary 3.26. In Corollary 3.25, if we take s = 1, we obtain the following
madpoint inequality

a+n(b,a)

f(2a+g(b,a)>_n(;a) / Fda] < 10

)

a

x ((B; @+ 12O + s \f’<b>!q>

+ (g @
+ (B (2,g+1) — B1 (2,q + 1)) |f’(b)|q)3> .

1
2
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Corollary 3.27. In Corollary 3.25, if we choose n(b,a) = b — a, we obtain the
following midpoint inequality

b
a+b 1 b—a
f< 2 >_b—a/f(u)du SQ*%
X (B

1 !/
i ((s +q+ 1) 25ttt F @’

+ (B(s—i—l,q—f-l)—B (s+17q+1)> \f’(b)|q>;).

Q=

(a+1s+1)[f (@) +

(54 q+1)2stat! |f’<b)lq)

N|=

1
2

Corollary 3.28. In Corollary 3.27, if we put s = 1, we obtain the following
madpoint inequality

b
a+b 1 b—a

a

q

/ q 1 !/ q
X (B; (g+1,2)|f (a)] —i—W’f(b)‘ )

1

" (W F@l+ (B2a+1) - By (2,0+1) |f’(b)|q) |

REFERENCES

1. A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B, 28 (1986),
no. 1, 1-9.

2. W.W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer Funktionen
in topologischen linearen Raumen, (German) Publ. Inst. Math. (Beograd) (N.S.) 23 (1978),
no. 37, 13-20.

3. A.R. DiDonato, M.P. Jarnagin, The efficient calculation of the incomplete beta-function
ratio for half-integer values of the parameters a,b, Math. Comp., 21 (1967), no. 100, 652—
662.

4. M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80
(1981), no. 2, 545-550.

5. L. Iscan, Ostrowski type inequalities for functions whose derivatives are preinvex, Bull. Ira-
nian Math. Soc., 40 (2014), no. 2, 373-386.

6. U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of
real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), no. 1, 137-146.

7. U.S. Kirmaci and M.E. Ozdemir, On some inequalities for differentiable mappings and ap-
plications to special means of real numbers and to midpoint formula, Appl. Math. Comput.,
153 (2004), no. 2, 361-368.

8. B. Meftah, Some new Ostrowski’s inequalities for functions whose nth derivatives are r-
convex, Int. J. Anal., 2016, Art. ID 6749213, 7 pp.

9. B. Meftah, Ostrowski inequalities for functions whose first derivatives are logarithmically

preinvex, Chin. J. Math. (N.Y.), 2016, Art. ID 5292603, 10 pp.



80 B. MEFTAH

10. D.S. Mitrinovié¢, J.E. Pecari¢ and A.M. Fink, Classical and new inequalities in analysis,
Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers
Group, Dordrecht, 1993.

11. M.A. Noor, Variational-like inequalities, Optimization, 30 (1994), no. 4, 323-330.

12. M.A. Noor, Invezx equilibrium problems, J. Math. Anal. Appl., 302 (2005), no. 2, 463-475.

13. J. Pecarié¢, F. Proschan and Y.L. Tong, Convex functions, partial orderings, and statistical
applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston,
MA, 1992.

14. R. Pini, Inverity and generalized convezity, Optimization, 22 (1991), no. 4, 513-525.

15. E. Set, M.E. Ozdemir and M.Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex
functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 27 (2012),
no. 1, 67-82.

16. Y. Wang, S-H. Wang and F. Qi, Simpson type integral inequalities in which the power of the
absolute value of the first derivative of the integrand is s-preinver, Facta Univ. Ser. Math.
Inform., 28 (2013), no. 2, 151-159.

17. Y. Wang, B. -Y. Xi and F. Qi, Hermite-Hadamard type integral inequalities when the power
of the absolute value of the first derivative of the integrand is preinvex, Matematiche (Cata-
nia), 69 (2014), no. 1, 89-96.

18. T. Weir and B. Mond, Pre-invez functions in multiple objective optimization, J. Math. Anal.
Appl., 136 (1988), no. 1, 29-38.

19. X.M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256
(2001), no. 1, 229-241.

(Badreddine Meftah) LABORATOIRE DES TELECOMMUNICATIONS, FACULTE DES SCIENCES
ET DE LA TECHNOLOGIE, UNIVERSITY OF 8 MAY 1945 GUELMA, P.O. Box 401, 24000
GUELMA, ALGERIA.

E-mail address: badrimeftah@yahoo.fr



	1. Introduction
	2.  Preliminaries
	3. Main Results
	References

