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Abstract. The problem on intersection of Cantor sets was exam-
ined in many papers. To solve this problem, we introduce the notion of
lacunary self-similar set. The main difference to the standard (Hutchin-
son) notion of self-similarity is that the set of similarities used in the
construction may vary from step to step in a certain way. Using a modi-
fication of method described in [3], [4], we find the Hausdorff dimension
of a lacunary self-similar set.

In one form or another, the problem on intersection of Cantor sets was
examined in many papers. In [5], [6], [8] the intersection of so-called thick
Cantor sets was considered. In [2] it was proved that the intersection of two
standard Cantor sets can be of any Hausdorff dimension from 0 to ln 2

ln 3
. In [7]

there was investigated the intersection of standard Cantor sets one of which is
translated by an element of Cantor set.

To solve this problem, we introduce the notion of lacunary self-similar set.
The main difference to the standard (Hutchinson) notion of self-similarity is
that the set of similarities used in the construction may vary from step to step
in a certain way. Using a modification of method described in [3], [4], we find
a Hausdorff dimension of a lacunary self-similar set.

Let K be the (ordinary) Cantor set in [0, 1]. It is shown that for almost
all a ∈ [0, 1] (with respect to Lebesgue’s measure) the set (a + K)

⋂
K is the

lacunary self-similar set and its Hausdorff dimension is equal to ln 2
3 ln 3

. Then we
give some generalization of this fact.

1. Lacunary self-similar sets

Let us recall the definition of Hausdorff measure, dimension and metric. Let
U be a nonempty set in Rn, |U | = sup{|x − y| : x, y ∈ U}. If E ⊂ ⋃

i

Ui, and
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0 < |Ui| ≤ δ for each i, then {Ui} is called a δ-covering of E. Given E ⊂ Rn

and s ≥ 0, for any δ > 0 the outer measure Hs
δ(E) of E is defined by the

equality

Hs
δ(E) = inf

∞∑
i=1

|Ui|s,

where inf is taken over all countable δ-coverings {Ui} of E.
The Hausdorff outer s-dimensional measure Hs on Rn is defined by the

equality

Hs(E) = lim
δ→0

Hs
δ(E).

This limit exists, but can be infinite because Hs
δ does not decrease as δ → 0.

It is known that the σ-algebra of Hs-measurable sets contains the Borel sets.
And for any E ⊂ Rn there exists a unique number dim(E) ∈ [0, n] such that

Ht(E) =

{ ∞, t < dim(E)
0, t > dim(E)

.

dim(E) is called the Hausdorff dimension (the fractal dimension) of E.
If E ⊂ Rn, and δ ≥ 0, the δ-parallel body of E is the closed set

[E]δ = {x ∈ Rn : inf
y∈E

|x− y| ≤ δ}.

Let Γ be a collection of nonempty compact subset of Rn. The Hausdorff metric
d on Γ is

d(E,F ) = inf{δ : E ⊂ [F ]δ, F ⊂ [E]δ}.
It is known that Γ endowed with the Hausdorff metric d is a complete metric
space .

Let us construct a lacunary self-similar set and find its Hausdorff dimension.
Note that the collection of lacunary self-similar sets contains the well-known
self-similar sets.

A mapping ψ : Rn → Rn is called a similitude if |ψ(x)−ψ(y)| = r|x− y| for
all x, y ∈ Rn, where r < 1. Clearly, any similitude is a continuous mapping.

Let {ψj}m
j=1 be a set of similitudes with ratios {rj}m

j=1. We set r = max
1≤j≤m

rj.

Let Nk ⊆ {1, . . . , m} be a nonempty set, for any positive integer k (if Nk =
{1, . . . ,m} for all k, then the following construction gives a self-similar set).

We set Lk =
k∏

i=1

Ni, Lk
p =

k∏
i=p

Ni (p ≤ k). For any sequence (j1 . . . jk) ∈ Lk

and any set F we set Fj1...jk
= (ψj1 ◦ . . . ◦ ψjk

)(F ). Now, let Γ be a collection
of nonempty compact sets, and ψk : Γ → Γ,

ψk(F ) =
⋃

Lk

(ψj1 ◦ . . . ◦ ψjk
)(F ) =

⋃

Lk

Fj1...jk
.

for any positive integer k.

Theorem 1. There exists a unique set E ∈ Γ such that for all F ∈ Γ

ψk(F )
k→∞−→ E

with respect to the Hausdorff metric d.



LACUNARY SELF-SIMILAR FRACTAL SETS 43

¦ If F, G ∈ Γ, then, by the definition of d,

d(ψk(F ), ψk(G)) ≤ sup
Lk

d(Fj1...jk
, Gj1...jk

) ≤ rkd(F,G) .

Take any F ∈ Γ and set M = sup
1≤j≤m

d(F, Fj). For any positive integers p and

q (p < q),

d(ψp(F ), ψq(F )) ≤ d(ψp(F ), ψp(
⋃

Lq
p+1

Fjp+1...jq)) ≤ rpd(F,
⋃

Lq
p+1

Fjp+1...jq)

≤ rp sup
Lq

p+1

d(F, Fjp+1...jq) ≤ rp sup
Lq

p+1

(d(F, Fjp+1) + d(Fjp+1 , Fjp+1jp+2) + · · ·

+d(Fjp+1...jq−1 , Fjp+1...jq) ≤ rp(M + rM + r2M + · · · rq−p−1M) < rp M

1− r
.

Hence d(ψp(F ), ψq(F ))
p→∞−→ 0. As Γ endowed with the Hausdorff metric d is a

complete metric space, ψk(F ) converges to a nonempty compact set E.
For any G ∈ Γ

d(ψk(G), E) ≤ d(ψk(G), ψk(F )) + d(ψk(F ), E)
k→∞−→ 0 ,

and so E is unique. ¦
Let K be the set of finite sequences {(j1, . . . , jk)}Lk,k. A finite subset P ⊂ K

is called a tree if for any (j1, . . . , jk) ∈ K there exists (i1, . . . , ip) ∈ P such that
jq = iq for all q = 1, . . . , min{k, p}, moreover, if p ≤ k, then this (i1, . . . , ip) ∈ P
is unique. Note that for any k the set Lk is a tree.

Given a tree P , we set p = inf{k : (j1, . . . , jk) ∈ P} (the length of the
shortest branch of the tree) and q = sup{k : (j1, . . . , jk) ∈ P} (the length of
the longest branch of the tree).

Lemma 1. For any tree P and any non-negative numbers {ak}m
k=1 we have

∑
P

aj1 . . . ajk
≥ inf

p≤k≤q

∑

Lk

aj1 . . . ajk
,

where p is the length of the shortest branch of P, and q is the length of the
longest one.

¦ Let Pj1...jp = {(i1, . . . , ik) ∈ P : (j1, . . . , jp) = (i1, . . . , ip)}, where (j1, . . . , jp) ∈
Lp. If (l1, . . . , lp) ∈ Lp, then

P ′ =
⋃
Lp

⋃
Pl1...lp

(j1, . . . , jp, lp+1, . . . , lk) (1)

is a tree. Note that the first p elements of (j1, . . . , jp, lp+1, . . . , lk) run through
Lp and the remaining elements run through the ends of (l1, . . . , lk) ∈ Pl1...lp .

We set

µj1...jp =

{ ∑
Pj1...jp

ajp+1 . . . ajk
if (j1, . . . , jp) 6∈ P

1 if (j1, . . . , jp) ∈ P ,

so ∑
P

aj1 . . . ajk
=

∑
Lp

aj1 . . . ajpµj1...jp . (2)
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Let µ = inf
Lp

µj1...jp . From (2) it follows that

∑
P

aj1 . . . ajk
≥

∑
Lp

aj1 . . . ajk

if µ = 1.
If µ < 1, then there exists (l1, . . . , lp) 6∈ P such that µ = µl1...lp . Thus, using

(2), we get
∑
P

aj1 . . . ajk
≥ µl1...lp

∑
Lp

aj1 . . . ajp

=
∑
Lp

aj1 . . . ajp

∑
Pl1...lp

alp+1 . . . alk =
∑

P′
aj1 . . . ajk

.

Thus it follows from (1) that P ′ is a tree. Clearly, the length of the shortest
branch of P ′ is equal to p′ > p, and the length of the longest branch of P ′ is
equal to q′ ≤ q.

We proceed in this way until, after a finite number of steps, we reach a tree
Lk, where p ≤ k ≤ q. This completes the proof. ¦

It is clear that lim inf
k→∞

∑
Lk

(rj1 . . . rjk
)t does not increase as t increases from 0

to ∞. Furthermore, if t < t′, then

inf
l≥k

∑

Ll

(rj1 . . . rjl
)t = inf

l≥k

∑

Ll

(rj1 . . . rjl
)t′+(t−t′) ≥ (rk)(t−t′) inf

l≥k

∑

Ll

(rj1 . . . rjl
)t′ .

Hence there exists a unique number s ≥ 0 such that

lim inf
k→∞

∑

Lk

(rj1 . . . rjk
)t =

{ ∞, t < s
0, t > s

. (3)

Lemma 2. Let {Vi} be a collection of disjoint open subset of Rn such that
each Vi contains a ball of radius c1ρ and is contained in a ball of radius c2ρ.
Then any ball B of radius ρ intersects, at most, (1 + 2c2)

nc−n
1 of the sets V̄i

(the bar denotes closure).

¦ If V̄i

⋂
B 6= ∅, V̄i is contained in a ball concentric with B and of radius

(1+2c2)ρ. Let h elements of the collection {V̄i} intersect B, then summing up
the volumes of the corresponding interior balls, we get h(c1ρ)n ≤ (1 + 2c2)

nρn,
which proves the Lemma. ¦

We say that the set of similitudes {ψj}m
j=1 satisfies the open set condition if

there exists a nonempty bounded open set V ⊂ Rn such that

ψj(V ) ⊂ V and ψj(V )
⋂

ψi(V ) = ∅ (4)

for any i, j = 1,m, j 6= i. Thus the sets {Vj1...jk
}Lk,k form a net in the sense

that any two of sets from the collection are either disjoint, or one set is included
into the other one. The collection {Vj1...jk

}P is disjoint for any tree P .
If (4) holds, then {ψk(V̄ )}k is a decreasing sequence of compact sets, which

converges to E with respect to the Hausdorff metric by Theorem 1. It follows

from the definition of Hausdorff metric that E =
∞⋂

k=1

ψk(V̄ ).
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The set E from Theorem 1 is called lacunary self-similar, if the open set
conditions holds true.

Theorem 2. The Hausdorff dimension of the lacunary self-similar set E is
equal to dim(E) = s, where s is determined by (3).

¦ For any Lk (moreover, for any tree P) the collection {V̄j1...jk
}Lk is a cover

of E. As

lim inf
k→∞

∑

Lk

|V̄j1...jk
|t = |V̄ | lim inf

k→∞

∑

Lk

(rj1 . . . rjk
)t =

{ ∞, t < s
0, t > s

and |V̄j1...jk
| ≤ rk|V̄ | k→∞−→ 0, we get dim(E) ≤ s.

To prove the opposite inequality we show that, if t ∈ [0, s), thenHt(E) = ∞.
Since E is compact, it is sufficient to prove that

lim inf
δ→0

∑
|Ui|t = ∞ ,

where the infimum is taken over all finite δ-covers {Ui} of E. Given any δ-cover
{Ui}N

i=1 of E, we can cover E by balls {Bi}N
i=1 with |Bi| ≤ 2|Ui|, then

N∑
i=1

|Ui|t ≥ 2−t

N∑
i=1

|Bi|t . (5)

Suppose that an open set V such that (4) holds true contains a ball of radius
c1 and is contained in a ball of radius c2. Take any ρ ∈ (0, 1). For each infinite
sequence (j1, j2, . . .) with (j1, . . . , jk) ∈ Lk for all k, curtail the sequence at the
least value of k such that

( min
1≤j≤m

rj)ρ ≤ rj1 . . . rjk
≤ ρ , (6)

and let us denote by P the set of finite sequences obtained in this way. It is
clear that P is a tree.

Each Vj1...jk
contains a ball of radius c1rj1 . . . rjk

and hence a ball of radius
c1ρ( min

1≤j≤m
rj), by (6), and is contained in a ball of radius c2rj1 . . . rjk

and there-

fore of radius c2ρ. By Lemma 2, any ball B of radius ρ intersects, at most,
h = (c1 + 2c2)

n(c1 min
1≤j≤m

rj)
−n sets of collection {V̄j1...jk

}P . Note that h does

not depend on ρ.
Let B be a ball of radius ρ. We denote

D = {(j1, . . . , jk) ∈ P : V̄j1...jk

⋂
B 6= ∅} .

The set D contains, at most, h elements. Hence
∑
D

(rj1 . . . rjk
)t ≤ hρt = h|B|t ,

hence

|B|t ≥ h−1
∑
D

(rj1 . . . rjk
)t . (7)
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Suppose that for any ball Bi from (5) we have constructed a tree Pi and a
subset Di ⊂ Pi . It follows from (7) that

N∑
i=1

|Bi|t ≥ h−1

N∑
i=1

∑
Di

(rj1 . . . rjk
)t . (8)

Let S =
N⋃

i=1

Di. From the construction of the S we see that the collection

{V̄j1...jk
}S is a (2c2δ)-cover of E. We set

P = {(j1, . . . , jk) ∈ S : for any l < k (j1, . . . , jl) 6∈ S} .

Clearly, P ⊂ S is a tree, hence the collection {V̄j1...jk
}P is a (2c2δ)-cover of E.

It follows from Lemma 1 that

N∑
i=1

∑
Di

(rj1 . . . rjk
)t ≥

∑
P

(rj1 . . . rjk
)t ≥ inf

p≤k≤q

∑

Lk

(rj1 . . . rjk
)t , (9)

where p and q are the lengths of the shortest and the longest branches of the
tree P , respectively.

Thus by (5), (8), (9),

N∑
i=1

|Ui|t ≥ 2−th−1 inf
p≤k≤q

∑

Lk

(rj1 . . . rjk
)t .

As |Bi| → 0 as δ → 0, we have p → ∞. It follows from the equality
lim inf

k→∞
∑
Lk

(rj1 . . . rjk
)t = ∞, t < s, that Ht(E) = ∞. ¦

Let {Ml}2m−1
l=1 be the collection of all nonempty subsets of {1, . . . ,m}. We

will denote by χMl
the characteristic function of Ml

χMl
(Nk) =

{
1 if Ml = Nk

0 if Ml 6= Nk

for any positive integer k and l = 1, . . . , (2m−1). Set fl(k) =
k∑

j=1

χMl
(Nj).

Corollary 1. Suppose that lim
k→∞

fl(k)
k

= Pl for any l = 1, . . . , (2m−1) and s is

the number such that
2m−1∏

l=1

(∑
Ml

rs
j

)Pl

= 1 . (10)

Then the Hausdorff dimension of the lacunary self-similar set E is equal to
dim(E) = s.

¦ We have

∑

Lk

(rj1 . . . rjk
)t =

k∏
i=1

(∑
Ni

rt
j

)
=

2m−1∏

l=1

(∑
Ml

rt
j

)fl(k)
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=




2m−1∏

l=1

(∑
Ml

rt
j

)(
fl(k)

k
−Pl) 2m−1∏

l=1

(∑
Ml

rt
j

)Pl




k

for any positive integer k. Hence

lim inf
k→∞

∑

Lk

(rj1 . . . rjk
)t =

{ ∞, t < s
0, t > s

. ¦

For instance, let Ω = {ω = (N1,N2,N3, . . .)} be the set of sequences of
independent random nonempty subsets of {1, . . . ,m}, where Nk = Ml with
probability Pl, l = 1, . . . , (2m−1). We will denote by P the probability measure
on Ω. Using Theorem 1 we construct the lacunary self-similar set Eω for any
ω ∈ Ω, if the open set conditions holds true. From the strong law of large
numbers it may be concluded that

P{ω ∈ Ω : lim
k→∞

fl(k)

k
= Pl} = 1 ,

and so
P{ω ∈ Ω : dim(Eω) = s} = 1 ,

where s is determined by (10).

2. The intersection of Cantor’s sets

Let us set K0 = [0, 1], K1 = [0, 1
3
]
⋃

[2
3
, 1], K2 = [0, 1

9
]
⋃

[2
9
, 1

3
]
⋃

[2
3
, 7

9
]
⋃

[8
9
, 1],

etc., Ki+1 is obtained from Ki by cutting out the open middle part of each
interval in Ki. Thus, Ki consists of 2i closed intervals of length 3−i. Taking

the intersection of all sets Ki, we obtain the Cantor set K =
∞⋂
i=0

Ki.

Consider the similitudes of the real line ψ1(x) = x
3
, ψ2(x) = x

3
+ 2

3
. Since

Ki =
⋃

j1...ji

(ψj1 ◦ . . . ◦ ψji
)([0, 1]) ,

where the sum is taken over all i-tuples {j1 . . . ji}, the Cantor set is the self-
similar set (it is the particular case of a lacunary self-similar set). It is known
that the Hausdorff dimension of the Cantor set is dim(K) = ln 2

ln 3
.

For a ∈ [0, 1], we set K + a = {x : x− a ∈ K}, Ea = K
⋂

(K + a).

Theorem 3. For almost all a ∈ [0, 1] with respect to Lebesgue’s measure, Ea

is a lacunary self-similar set and its Hausdorff dimension is equal to ln 2
3 ln 3

.

¦ For any non-negative integer i the set Sa,i = Ki

⋂
(Ki + a) is a covering of

Ea . It is clear that {Sa,i} is a decreasing sequence of sets, and Ea =
∞⋂
i=0

Sa,i.

From the definition of δ-parallel body we conclude that Sa,i ⊂ [Sa,i+1]3−i . Hence

d(Sa,i, Ea)
i→∞−→ 0 . (11)

Let a = 0, a1a2a3 . . . be the triadic expansion of a ∈ [0, 1]. We can exclude
from the consideration the set of a for which the triadic expansion is ambigu-
ously determined, because Lebesgue’s measure of this set, is equal to zero (for
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these a the set Ea is either finite or similar to Cantor’s set). We set

λa(k) =





0 if
k−1∑
i=0

ai = 0 (mod 2),

1 if
k−1∑
i=0

ai = 1 (mod 2),

for any positive integer k (we state a0 = 0). Let us consider the nonempty sets
Na,k ⊂ {1, 2}

Na,k =





{1} if ak 6= 2, λa(k) = 1,
{2} if ak 6= 0, λa(k) = 0,
{1, 2} if ak = 2, λa(k) = 1 or ak = 0, λa(k) = 0 .

The similitudes ψ1(x) = x
3
, ψ2(x) = x

3
+ 2

3
with ratios r1 = r2 = 1

3
and sets

Na,i generate (see. Section 1) the lacunary self-similar set Ga (the open set
condition holds for the open interval (0, 1)). As in Section 1 we set

Lk
a =

k∏
i=1

Na,i , ψk
a(F ) =

⋃

Lk
a

(ψj1 ◦ . . . ◦ ψjk
)(F ) =

⋃

Lk
a

Fj1...jk
,

where F is a nonempty compact set. By Theorem 1,

d(Ga, ψ
k
a([0, 1]))

k→∞−→ 0 . (12)

It follows from the construction that Sa,k ⊂ ψk
a([0, 1]) and ψk

a([0, 1]) ⊂
[Sa,k]3−k , hence

d(ψk
a([0, 1]), Sa,k)

k→∞−→ 0 . (13)

Thus by (11), (12), (13),

d(Ga, Ea) ≤ d(Ga, ψ
k
a([0, 1])) + d(ψk

a([0, 1]), Sa,k) + d(Sa,k, Ea)
k→∞−→ 0 ,

so Ea = Ga.
To find the Hausdorff dimension of Ea it is sufficient to calculate sa for which

lim inf
k→∞

∑

Lk
a

(rj1 . . . rjk
)t = lim inf

k→∞
3−tkMa(k) =

{ ∞, t < sa

0, t > sa
(14)

where Ma(k) is the number of elements of Lk
a.

Let us denote by χZ the characteristic function of a set Z. If Z is an integer,
we consider Z as the subset of the set of integers. By construction we have

Ma(k) = 2fa(k), where fa(k) =
k∑

i=1

(χ0(ai)χ0(λa(i)) + χ2(ai)χ1(λa(i))) .

(15)
It is clear that, given a triadic expansion of a, we can calculate the Hausdorff

dimension of Ea with the use of (14) and (15). However, for an arbitrary
irrational number we cannot even calculate explicitly number characteristics of
its triadic expansion, e.g. the proportion of digits 0, 1, 2 in its triadic expansion.
We only known [1] that almost all numbers in [0, 1] (with respect to Lebesgue’s
measure) have the property that the proportion of digits 0, 1, 2 in their triadic
expansion equals 1

3
.
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Let Ω = {ω = (a1, a2, a3, . . .)}, where ak are independent random variables
taking values 0, 1, 2 with probability 1

3
. Let us consider the mapping a : Ω →

[0, 1], a = a(ω) =
∞∑

k=1

ak

3k , then ω is the triadic expansion of a. It is known [1]

that for any Borel set B ⊂ [0, 1] we have P{ω : a(ω) ∈ B} = mes(B), where
P is a probability measure on Ω and ”mes” is the Lebesgue measure.

Now let us consider the mapping γ : Ω → Ω̂, γ(ω) = ω̂ = (â1, â2, â3, . . .),
where

âk = 0 if ak = 0, λa(k) = 0;
âk = 1 if ak = 1, λa(k) = 0;
âk = 2 if ak = 2, λa(k) = 0;
âk = 3 if ak = 0, λa(k) = 1;
âk = 4 if ak = 1, λa(k) = 1;
âk = 5 if ak = 2, λa(k) = 1 .

The probability P on Ω induces the probability P̂ = γ#P on Ω̂. With respect
to P the sequence of random variables â1, â2, â3, . . . is a homogeneous Markov
chain with the starting distribution p = (1

3
, 1

3
, 1

3
, 0, 0, 0) and the matrix of

transition probabilities

‖pi,j‖ =




1
3

1
3

1
3

0 0 0
0 0 0 1

3
1
3

1
3

1
3

1
3

1
3

0 0 0
0 0 0 1

3
1
3

1
3

1
3

1
3

1
3

0 0 0
0 0 0 1

3
1
3

1
3




.

It follows from the strong law of large numbers that

P

{
ω : lim

k→∞
1

k

k∑
i=1

χ0(ai) =
1

3

}
= 1 .

Hence

P̂

{
ω̂ : lim

k→∞
1

k

k∑
i=1

(χ0(âi) + χ3(âi)) =
1

3

}
= 1 . (16)

Since the starting distribution and the matrix of transition probability do not
change if we interchange the events ak = 3 and ak = 5, and the set in the
braces in (16) depends only on the starting distribution and the matrix of
transition probability, we have

P̂

{
ω̂ : lim

k→∞
1

k

k∑
i=1

(χ0(âi) + χ5(âi)) =
1

3

}
= 1 .

It follows from χ0(âi) = χ0(ai)χ0(λa(i)) and χ5(âi) = χ2(ai)χ1(λa(i)) that

mes

{
a ∈ [0, 1] : lim

k→∞
fa(k)

k
=

1

3

}

= P

{
ω : lim

k→∞
1

k

k∑
i=1

(χ0(ai)χ0(λa(i)) + χ2(ai)χ1(λa(i))) =
1

3

}
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= P̂

{
ω̂ : lim

k→∞
1

k

k∑
i=1

(χ0(âi) + χ5(âi)) =
1

3

}
= 1 .

From this and Corollary 1 we conclude that for almost all a ∈ [0, 1] the
Hausdorff dimension of Ea equals s, where s is determined by

3−
2
3
s(3−s + 3−s)

1
3 = 1

ln 2

3 ln 3
. ¦

The next Theorem gives a generalization of the previous one. Let us denote
by Kp the set of numbers in [0, 1] which admit base p-expansion without odd
digits. Note that K2 = {0} and K3 is the middle third Cantor set. Given
a ∈ [0, 1], we set Kp + a = {x : x− a ∈ Kp}, Ep

a = Kp
⋂

(Kp + a).

Theorem 4. If p is an even number, then for almost all a ∈ [0, 1] with respect
to Lebesgue’s measure, Ep

a = ∅.
If p is an odd number, then for almost all a ∈ [0, 1] with respect to Lebesgue’s

measure, Ep
a is a lacunary self-similar set and

dim(Ep
a) =

2 ln((p+1
2

)!)− ln(p+1
2

)

p ln p
.

¦ The proof of the first statement is trivial. The second statement can be
proved just in the same way as Theorem 3. ¦
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