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Abstract. All natural operators lifting linear vector fields to prod-
uct preserving gauge bundle functors on vector bundles are classified.
Some relevant properties of Weil modules are studied, too.

Introduction

Let F : VB → FM be a covariant functor from the category VB of all
vector bundles and their vector bundle homomorphisms into the category
FM of fibered manifolds and their fiber maps. Let BVB : VB → Mf and
BFM : FM → Mf be the respective base functors. A gauge bundle functor
on VB is a functor F satisfying

G I. (Base-preservation) BFM ◦ F = BVB
G II. (Locality) for every inclusion of an open vector subbundle iE|U : E|U →

E, F (E|U) is the restriction p−1
E (U) of pE : FE → BVB(E) over U and

FiE|U is the inclusion p−1
E (U) → FE

Given two gauge bundle functors F1, F2 on VB, by a natural transformation
τ : F1 → F2 we mean a system of base preserving fibered maps τE : F1E → F2E
for every vector bundle E satisfying F2f ◦τE = τĒ ◦F1f for every vector bundle
homomorphism f : E → Ē. If proj1 and proj2 are projections in VB of E1×E2

to E1 and E2, respectively, then we say that a gauge bundle functor F on VB
is product preserving if FE1

F proj1←− F (E1×E2)
F proj2−→ FE2 is a product diagram

in FM.
The structure of the paper is the following. The properties of Weil modules

are studied in the Section 1. We refer to [4], [5], where Weil modules are
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also used. We publicize a number of examples of Weil modules in 1.3 and
generalize the classical result from the Lie group theory about the identification
of algebra of derivations and Lie algebra of the group of automorphisms in 1.6.
The canonical vector fields on vector bundles with m-dimensional base and n-
dimensional fibers are classified in Section 2. The Section 3 contains the main
results of the paper. Namely, the theorem classifying all natural operators
lifting linear vector fields to product preserving gauge bundle functors on vector
bundles is expressed in 3.5.

All manifolds in the paper are assumed to be Hausdorff, finite-dimensional,
without boundary and of class C∞. All maps are assumed to be of class C∞.

1. Weil modules

1.1. We denote by WA the category with Weil algebras as objects and
algebra homomorphisms of Weil algebras as morphisms. Then the classical
result of Kainz and Michor, Luciano and Eck reads as follows (see [2]).
Theorem A. Product preserving bundle functors from the category Mf of
manifolds into the category FM of fibered manifolds are in bijection with ob-
jects of WA and natural transformations between two such functors are in
bijection with the morphisms of WA.

In particular, for a given Weil algebra A we can construct a product pre-
serving bundle functor TA by

TAM :=
⋃

z∈M

{φ | φ ∈ Hom(C∞
z (M), A)},

where M is an object of Mf , C∞
z (M) is the algebra of germs of smooth func-

tions from M into R in z ∈ M and Hom(C∞
z (M), A) is the set of all algebra

homomorphisms from C∞
z (M) into A.

1.2. Let A be a Weil algebra and V a A-module. If V is finite-dimensional
as a real vector space, we name it the Weil A-module. More precisely, Weil
A-module is a triple (A, V, ∗), where A is an object of WA, V is a finite-
dimensional real vector space, and ∗ : A × V → V is a bilinear mapping en-
dowing V with a structure of A-module; we write av instead ∗(a, v) (for a ∈ A,
v ∈ V ). If there is no confusion, we write (A, V ) or only V instead (A, V, ∗) as
well.

For a clear understanding, the roman font (Hom, End, Aut, . . . ) is used
for algebra homomorphisms and the italic font (Hom, End, Aut, . . . ) for
homomorphisms of vector spaces from now on. If we write no subscript, we
think the homomorphisms over R. If A, B be two Weil algebras, V a Weil
A-module and W a Weil B-module, then we can consider a homomorphism ψ
from V to W as a homomorphism of R-modules (real vector spaces) and write
ψ ∈ Hom(V, W ). Apart from that, we can consider an algebra homomorphism
φ from A to B, i.e. φ ∈ Hom(A,B), and a map ψ from V to W satisfying
ψ(v + w) = ψ(v) + ψ(w), ψ(av) = φ(a)ψ(v) for all a ∈ A, v, w ∈ V . In this
case we write ψ ∈ HomA,B(V,W ). (If A = B, we write HomA(V, W ) instead
HomA,A(V,W ).) Of course, ψ ∈ HomA,B(V, W ) =⇒ ψ ∈ Hom(V, W ). It is
evident that, for a given ψ, the relation ψ(av) = φ(a)ψ(v) is not satisfied for
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an arbitrary φ ∈ Hom(A, B); if it is satisfied, we say that ψ is over φ. We
write a pair of homomorphisms φ ∈ Hom(A,B), ψ ∈ HomA,B(V,W ), where ψ
is over φ, exclusively in brackets 〈〉, i.e. 〈φ, ψ〉.

We obtain the category WM, objects of which are Weil modules, and mor-
phisms of which are pairs 〈φ, ψ〉 consisting of a homomorphism φ ∈ Hom(A,B),
ψ ∈ HomA,B(V,W ), where ψ is over φ.

1.3. We introduce some examples of Weil modules.

(i) An arbitrary ideal i of a Weil algebra A is a Weil A-module. In partic-
ular, A is a Weil A-module.

(ii) If i is an ideal of a Weil algebra A and V a Weil A-module, then iV is
a Weil A-module.

(iii) If V and W are Weil A-modules of a Weil algebra A, the V ⊕ W is
a Weil A-module. Further, by a free Weil A-module we mean a Weil

A-module V in the form V =
n⊕

i=1

Vi, where every Vi is isomorphic with

the Weil A-module A.
(iv) If A and B are Weil algebras and if A is a subalgebra of B, then B

is a Weil A-module, in which ∗ operates usually (not necessarily) as
product in B.

(v) If φ ∈ Hom(B,A) is a homomorphism of Weil algebras and if V is a
Weil A-module, then V is also B-module as we can define bv as φ(b)v
(for b ∈ B and v ∈ V ). In particular, for a Weil algebra with the order
ord(A) = r and with the width w(A) = k there is an epimorphism
πA : Dr

k → A and that is why every A-module is a Dr
k-module as well.

(vi) If U is a vector space and if V is a Weil A-module, then Hom(U, V ) is
a Weil A-module.

(vii) If V and W are Weil A-modules, then HomA(V, W ) is a Weil A-module.
(viii) If A and B are Weil algebras and if V is a A-module and W is a B-

module, then V ⊗W is a Weil (A⊗B)-module.

1.4. The second author have generalized Theorem A as follows (see [3]).
Theorem B. Product preserving gauge bundle functors from the category VB
of vector bundles into the category FM of fibered manifolds are in bijection
with objects of WM and natural transformations between two such functors
are in bijection with the morphisms of WM.

In particular, for a given Weil module V we can construct a product pre-
serving bundle functor TA,V by

TA,V E :=
⋃

z∈M

{〈φ, ψ〉|φ ∈ Hom(C∞
z (M), A), ψ ∈ HomC∞z (M),A(C∞, f.l.

z (E), V )},

where E is an object of VB, C∞
z (M) is the algebra of germs of smooth functions

from M into R in z ∈ M , C∞, f.l.
z (E) is the C∞

z (M)-module of germs of smooth
fiber linear functions from E into R in z ∈ M , Hom(C∞

z (M), A) is the set of all
algebra homomorphisms from C∞

z (M) into A and HomC∞z (M),A(C∞, f.l.
z (E), V )

is the set of all module homomorphisms from C∞, f.l.
z (E) into V .
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1.5. Let A be a Weil algebra. The group Aut(A) of automorphisms of A is
a closed subgroup of the Lie group GL(A), so therefore Aut(A) is a Lie group.
The Lie algebra of GL(A) is gl(A) = End(A) and the Lie algebra of Aut(A) is

aut(A) = {D ∈ End(A) | exp(tD) ∈ Aut(A) ∀t ∈ R}.
The algebra of derivations of A is defined as

Der(A) = {D ∈ End(A) |D(ab) = D(a)b + aD(b) ∀a, b ∈ A}.
In the classical Lie group theory, the identification Der(A) = aut(A) is proved.

1.6. Let A be a Weil algebra and V a Weil A-module. The group Aut(A, V )
consists of pairs 〈φ, ψ〉, where φ ∈ Aut(A) and ψ ∈ AutA(V ); Aut(A, V ) is a
closed subgroup of the Lie group GL(A)×GL(V ), so therefore Aut(A, V ) is a
Lie group. The Lie algebra of Aut(A, V ) is

aut(A, V ) = {(D, ∆) ∈ End(A)× End(V ) | 〈exp(tD), exp(t∆)〉 ∈ Aut(A)× AutA(V )

∀t ∈ R}.
Further, the algebra of derivations of (A, V ) is

Der(A, V ) = {(D, ∆) ∈ End(A)× End(V ) | D(ab) = D(a)b + aD(b) ∀a, b ∈ A,

∆(av) = D(a)v + a∆(v) ∀a ∈ A, v ∈ V }.
We improve the classical result from 1.5 by the following assertion. Another
useful generalization is e.g. in [6].

Proposition 1. Der(A, V ) = aut(A, V ).

Proof. Step 1. Let us consider (D, ∆) ∈ aut(A, V ). The condition exp(tD) ∈
Aut(A) means

exp(tD)(ab) = exp(tD)(a) exp(tD)(b).

The differentiating with respect to t gives

exp(tD)D(ab) = exp(tD)D(a) exp(tD)(b) + exp(tD)(a) exp(tD)D(b),

or when evaluated at t = 0,

D(ab) = D(a)b + aD(b).

Similarly, exp(t∆) is over exp(tD) means

exp(t∆)(av) = exp(tD)(a) exp(t∆)(v).

The differentiating with respect to t gives

exp(t∆)∆(av) = exp(tD)D(a) exp(t∆)(v) + exp(tD)(a) exp(t∆)∆(v),

or when evaluated at t = 0,

∆(av) = D(a)v + a∆(v).

We have proved (D, ∆) ∈ aut(A, V ) =⇒ (D, ∆) ∈ Der(A, V ).
Step 2. Let us consider (D, ∆) ∈ Der(A, V ). Take P (t) := exp(tD)(ab),

S(t) := exp(tD)(a) exp(tD)(b). Then

d

dt
P (t) =

d

dt
exp(tD)(ab) = exp(tD)D(ab) = D exp(tD)(ab) = DP (t)
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and
P (0) = ab.

Also,

d

dt
S(t) =

d

dt
(exp(tD)(a) exp(tD)(b)) = exp(tD)D(a) exp(tD)(b) + exp(tD)(a) exp(tD)D(b)

= D exp(tD)(a) exp(tD)(b) + exp(tD)(a)D exp(tD)(b)D exp(tD)(a) exp(tD)(b)

= DS(t)

and
S(0) = ab.

We have
d

dt
P (t) = DP (t) and P (0) = ab,

d

dt
S(t) = DS(t) and S(0) = ab.

It means P (t), S(t) satisfy the same first order differential equations and initial
conditions. Hence P (t) = S(t).

Now, take Π(t) := exp(t∆)(av), Σ(t) := exp(tD)(a) exp(t∆)(v). Then

d

dt
Π(t) =

d

dt
exp(t∆)(av) = exp(t∆)∆(av)∆ exp(t∆)(av) = ∆Π(t)

and
Π(0) = av.

Also,

d

dt
Σ(t) =

d

dt
(exp(tD)(a) exp(t∆)(v)) = exp(tD)D(a) exp(t∆)(v) + exp(tD)(a) exp(t∆)∆(v)

= D exp(tD)(a) exp(t∆)(v) + exp(tD)(a)∆ exp(t∆)(v)

= ∆ exp(tD)(a) exp(t∆)(v) = ∆Σ(t)

and
Σ(0) = av.

We have
d

dt
Π(t) = ∆Π(t) and Π(0) = av,

d

dt
Σ(t) = ∆Σ(t) and Σ(0) = av.

It means Π(t), Σ(t) satisfy the same first order differential equations and initial
conditions. Hence Π(t) = Σ(t). We have proved (D, ∆) ∈ Der(A, V ) =⇒
(D, ∆) ∈ aut(A, V ), too. ¤

1.7. Now, we derive the result about the important case V = A. For it, we
define the algebra of fissions of A as

Fis(A) = {F ∈ End(A) | F (ab) = aF (b) ∀a, b ∈ A}.
Then the following assertion holds.

Proposition 2. Der(A,A) = {(D,D + F ) |D ∈ Der(A), F ∈ Fis(A)}.
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Proof. By the definition,

Der(A,A) = {(D, ∆) ∈ End(A)× End(A) | D(ab) = D(a)b + aD(b),

∆(ab) = D(a)b + a∆(b) ∀a, b ∈ A}.
It follows

D(ab)− aD(b) = ∆(ab)− a∆(b).

Let F := ∆−D. Then F ∈ End(A) and relation above reads as F (ab) = aF (b).
Conversely, if we take D ∈ Der(A) and F ∈ Fis(A), then for ∆:= D + F

∆(ab) = D(ab) + F (ab) = D(a)b + aD(b) + aF (b) = D(a)b + aD(b) + a(∆(b)−D(b))

= D(a)b + a∆(b)

is satisfied. ¤

1.8. We illustrate the previous result on the Weil algebra A = D = R[t]/〈t2〉.
The elements A can be expressed as

k1 + k2t, where k1, k2 ∈ R.

It is not difficult derive that every D ∈ Der(A) has a form

k1 + k2t 7→ qk2t, q ∈ R,

and every F ∈ Fis(A) has a form

k1 + k2t 7→ qk1 + (rk1 + qk2)t, q, r ∈ R.

2. Absolute operators

2.1. We denote by VBm,n the category of vector bundles with m-dimensional
base and n-dimensional fibers together with local vector bundle isomorphisms.

Proposition 3. Let m,n ∈ N and let F : VB → FM be a product preserving
gauge bundle functor. Every natural transformation τ ¦ : F |VBm,n → F |VBm,n

can be extended uniquely to a natural transformation τ : F → F .

Proof. Step 1. Let x1, . . . , xm, y1, . . . , yn be the usual coordinates on the
trivial vector bundle Rm × Rn → Rm, which is an object of VBm,n. Let
us consider a natural transformation τ ¦ : F |VBm,n → F |VBm,n . As we have
F (Rm × Rn) ∼= Am × V n, the transformation τ ¦ corresponds with the map

T : Am × V n → Am × V n,

T : (a1, . . . , am, v1, . . . , vn) 7→ (φ1(a1, . . . , am, v1, . . . , vn), . . . , φm(a1, . . . , am, v1, . . . , vn),

ψ1(a1, . . . , am, v1, . . . , vn), . . . , ψn(a1, . . . , am, v1, . . . , vn)),

where a1, . . . , am ∈ A, v1, . . . , vn ∈ V . Thus, by the invariance of τ ¦ with
respect to the homotheties

(x1, . . . , xm, y1, . . . , yn) 7→ (K1x
1, . . . , Kmxm, L1y

1, . . . , Lny
n),
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(K1, . . . , Km, L1, . . . , Ln ∈ R+) which represent morphisms of VBm,n, we have
obtained the homogeneity conditions

K1φ
1(a1, . . . , am, v1, . . . , vn) = φ1(K1a

1, . . . , Kmam, L1v
1, . . . , Lnv

n)

. . .

Kmφm(a1, . . . , am, v1, . . . , vn) = φm(K1a
1, . . . , Kmam, L1v

1, . . . , Lnvn)

L1ψ
1(a1, . . . , am, v1, . . . , vn) = ψ1(K1a

1, . . . , Kmam, L1v
1, . . . , Lnv

n)

. . .

Lnψ
n(a1, . . . , am, v1, . . . , vn) = ψn(K1a

1, . . . , Kmam, L1v
1, . . . , Lnvn).

Inasmuch the homogeneous function theorem (see e.g. [2]) holds, φi depends
linearly on ai (i = 1, . . . , m), ψj depends linearly on vj (j = 1, . . . , n) and they
do not depend on the remaining a’s and v’s. As to permissible permutations
in Am × V n, we have that φ1 = · · · = φm =: φ belongs to End(A) and ψ1 =
· · · = ψm =: ψ belongs to End(V ).

Step 2. We need to prove that φ ∈ End(A) and ψ is over φ. As T is
invariant with respect to the morphism of VBm,n

(x1, . . . , xm, y1, . . . , yn) 7→ (x1 + (x1)2, x2, . . . , xm, y1, . . . , yn),

we have

φ(a + a2) = φ(a) + (φ(a))2

and the linearity of φ yields

φ(a2) = (φ(a))2.

It gives for a = b + c

φ(b2 + 2bc + c2) = φ((b + c)2) = (φ(b + c))2 = (φ(b) + φ(c))2,

whence

φ(bc) = φ(b)φ(c)

is satisfied for all b, c ∈ A and that is why φ ∈ End(A).
Further, as T is invariant with respect to the morphism of VBm,n

(x1, . . . , xm, y1, . . . , yn) 7→ (x1, . . . , xm, y1, y1 + x1y1, y2, . . . , yn),

we have

ψ(v + av) = ψ(v) + φ(a)ψ(v)

and the linearity of ψ yields

ψ(av) = φ(a)ψ(v)

and that is why ψ is over φ.
Thus, 〈φ, ψ〉 is a morphism of the category WM.
Step 3. We denote by τ : F → F the natural transformation which corre-

spond with 〈φ, ψ〉. Clearly, τ ¦ is the restriction of τ . If τ̄ : F → F is another
natural transformation, restriction of which is τ ¦, then τ̄ = τ , because τ and
τ̄ determine the same morphism 〈φ, ψ〉. ¤
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In particular, the corollary of [3] and the previous proposition is, that nat-
ural transformations of F |VBm,n into itself correspond exactly to Aut(A, V ).

2.2. Let us consider (D, ∆) ∈ Der(A, V ) = aut(A, V ). Then 〈exp(tD), exp(t∆)〉
is a 1-parameter subgroup of Aut(A, V ), i.e. it can be considered as a 1-
parameter subgroup of natural transformations F |VBm,n → F |VBm,n . If Y is an
object of VBm,n, then 〈exp(tD), exp(t∆)〉 defines the flow on FY of a vector
field on FM , and accordingly, this vector field. We denote it by op(D, ∆). So,
the vector field op(D, ∆) on FY is the canonical VBm,n-invariant.

Proposition 4. Let m,n ∈ N and let F : VB → FM be a product preserving
gauge bundle functor with the corresponding Weil module (A,V). Then every
canonical vector field (or absolute operator) on F have a form op(D, ∆) for
some (D, ∆) ∈ Der(A, V ).

Proof. Let us consider such a vector field Ξ; the flow of Ξ on FY for an object Y
of VBm,n is VBm,n-invariant. We denote the flow by Fl Ξ

τ . Using homotheties,
we can easily show that there exists u ∈ FY such that FY is the orbit of
a neighborhood U ⊂ FY of u. This yields Ξ is complete, i.e. Fl Ξ

τ is global.
Hence Fl Ξ

τ corresponds to some 1-parameter subgroup in Aut(A, V ). Thus, the
corresponding pair 〈D, ∆〉 ∈ Der(A, V ) is determined. Clearly, Ξ = op(D, ∆).

¤

3. Linear vector fields

3.1. We recall the following noted Kolář’s result. (see [1]).
Theorem C. Let F = TA be a Weil bundle. All natural operators trans-
forming vector field on a manifold M into a vector field on FM (i.e. natural
operators T Ã TTA) are of the form

F (a) + op(D),

where F (a) := af(a) ◦ F (af(a) is a natural affinor determined by a ∈ A) and
D ∈ Der(A).

3.2. Let F = TA,V be a product preserving gauge bundle functor on vector
bundles. Let Y → M be an object of VBm,n. Then TY → TM is a vector
bundle. A vector field X : Y → TY is called linear, if it represents a homomor-
phism of vector bundles Y → M and TY → TM . Equivalently, the flow Fl X

t

is a VBm,n-morphism. In the remaining text, we shall study natural operators
transforming linear vector fields on a vector bundle Y with m-dimensional base
and n-dimensional fibers into a vector fields on FY . Respecting the notation
of [2], we write such natural operators as Tlin|VBm,n Ã TTA,V .

3.3. Now, we construct for F = TA,V the flow operator F : Tlin|VBm,n Ã
TTA,V . Let Y → M be an object of VBm,n. Let us consider a linear vector
field X on Y . Applying F to the flow Fl X

t , we obtain the flow F (Fl X
t ) of

a vector field on FY . This corresponding vector field on FY determines the
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operator F by

FX :=
∂

∂t

∣∣∣
0
F (Fl X

t ).

The natural operator F is called the flow operator of F |VBm,n .

3.4. The construction of the flow operator of F |VBm,n can be generalized
by the following way. The linear vector field X on Y can be assumed to be
complete thanks to locality. The flow Fl X of X can be considered as the
morphism of vector bundles:

R× Y
Fl X

//

idR×p

²²

Y

p

²²
R×M // M

Applying F , we obtain

F (Fl X) : A× FY → FY.

The flow condition

Fl X(t1 + t2, y) = Fl X(t1,Fl X(t2, y))

(t1, t2 ∈ R, y ∈ Y ) transforms to

F (Fl X)(a1 + a2, w) = F (Fl X)(a1,Fl X(a2, w))

(a1, a2 ∈ A,w ∈ FY ). Hence

ΦX,a
t := F (Fl X)(at, )

is a flow on FY . The corresponding vector field on FY determines the natural
operator F (a) : Tlin|VBm,n Ã TF .

Clearly, F (1) = F and the map

a 7→ F (a)

belongs to Mon(A, S), where S is the vector space of all linear natural opera-
tors Tlin|VBm,n Ã TF .

3.5. Let F = TA,V be a product preserving gauge bundle functor on vector
bundles. We present the following assertion analogous to Theorem C.

Theorem 1. All natural operators transforming linear vector field on a vector
bundle Y with m-dimensional base and n-dimensional fibers into a vector field
on FY (i.e. natural operators Tlin|VBm,n Ã TTA,V ) are of the form

L = F (a) + op(D, ∆),

where (D, ∆) ∈ Der(A, V ).
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Proof. Let x1, . . . , xm, y1, . . . , yn be the usual coordinates on the trivial vec-
tor bundle Rm × Rn → Rm, which is the standard object of VBm,n. Let
x̃1, . . . , x̃m : F (Rm×Rn) → A, ỹ1, . . . , ỹn : F (Rm×Rn) → V be the induced co-
ordinates (cf. Example 1 in [3]). Let λα : A → R, α = 1, . . . , dimA, µβ : V → R,
β = 1, . . . , dimV be a basis of the dual vector spaces A∗ and V ∗. Then

xi,α := λα ◦ x̃i

together with

yj,β := µβ ◦ ỹj

(i = 1, . . . , m, j = 1, . . . , n) form a coordinate system on F (Rm × Rn). Let
∂

∂x1 be the standard linear vector field on Rm × Rn. Since any non-vanishing

linear vector field can be expressed locally as ∂
∂x1 in a suitable vector bundle

coordinates, then L is uniquely determined by L( ∂
∂x1 ).

We can write

L(t
∂

∂x1
)
∑
i,α

fi,α(t, a, v)
∂

∂xi,α
(a, v) +

∑

j,β

gj,β(t, a, v)
∂

∂yj,β
(a, v).

Using the invariance of L with respect to the homotheties K idRm×Rn , we obtain
the homogeneity conditions

fi,α(Kt, Ka, Kv) = Kfi,α(t, a, v)

gj,β(Kt, Ka, Kv) = Kgj,β(t, a, v).

Inasmuch the homogeneous function theorem holds, each fi,α, gj,β depend
linearly on t, a, v. Further, L(0) corresponds to an absolute vector. So,
L(0) = op(D, ∆) for some (D, ∆) ∈ Der(A, V ). Replacing L by L − L(0), we
can assume that L(0) = 0, i.e.

fi,α(0, a, v) = 0

gj,β(0, a, v) = 0.

Thus,

fi,α(t, a, v) = Ai,αt

gj,β(t, a, v) = Bj,βt

for some Ai,α, Bj,β ∈ R. Further, using the invariance of L with respect to the
homotheties

(x1, . . . , xm, y1, . . . , yn) 7→ (x1, Kx2, . . . , Kxm, Ky1, . . . , Kyn)

(K 6= 0), we obtain the conditions

Ai,α = 0 for i = 2, . . . , m

Bj,β = 0 for j = 1, . . . , n.

Hence L is uniquely determined by A1,α, α = 1, . . . , dim A. It implies that the
vector space S of all linear natural operators Tlin|VBm,n Ã TF with L(0) = 0
has the dimension less or equal dim A.

Of course, the vector space {F (a)}a∈A has the dimension exactly dim A. It
follows S identifies with {F (a)}a∈A and then L = F (a) for some a ∈ A. ¤
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1. Kolář, I., On the natural operators on vector fields, Ann. Global Anal. Geom., 6, No. 2,
109–117 (1988)
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nology, Technická 2, 61669 Brno, Czech Republic
E-mail address: kures@mat.fme.vutbr.cz
WÃlodzimierz M. Mikulski, Institute of Mathematics, Jagiellonian Uni-
versity, Reymonta 4, 30-059 Kraków, Poland
E-mail address: mikulski@im.uj.edu.pl

Received January 28, 2003


