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MIXED HYBRID FINITE ELEMENT SCHEME FOR STEFAN
PROBLEM WITH PRESCRIBED CONVECTION

Abstract. We construct a mixed hybrid finite element scheme of
lowest order for the Stefan problem with prescribed convection and sug-
gest and investigate an iterative method for its solution. In the iterative
method we use a preconditioner constructed by using ”standard” finite
element approximation of Laplace operator on a finer grid.

The proposed approach develops the results of [1], where a spectrally
equivalent preconditioner for the condensed matrix in mixed hybrid fi-
nite element approximation for linear elliptic equation was constructed.

1. Introduction

Stefan problem with prescribed convection serves as a mathematical model
for the heat transfer and solidification process in the metal casting (see [2, 3]).
Commonly used numerical methods of its solving are based on the implicit
or semi-implicit mesh approximations in time variable with lowest order finite
element approximation in space variables [4, 5].

Because in the applied problems both the temperature fields and fluxes are
of practical interest, mixed and mixed hybrid finite element schemes appear
as important method for its numerical solution.

Mixed and mixed hybrid finite element schemes are thoroughly investigated
for the linear boundary-value problems (cf. [6, 7] and bibliography therein),
while a few publications have concern with these methods for nonlinear prob-
lems, especially for free and moving boundary problems. We construct a mixed
hybrid finite element scheme for a Stefan problem which is a case of moving
boundary problem.

The main purpose of the article is to suggest an effective iterative algorithm
to solve this finite element scheme. We construct and investigate an iterative
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process with a preconditioner, the rate of convergence of this algorithm does
not depend on the mesh size. On the other hand, the implementation of the
iterative method reduces to the solution of a ”standard” finite-dimensional
variational inequality, which can be made by using any of coordinate or gra-
dient relaxation methods.

2. Mathematical model

Let Ω ⊂ R2 be a domain with piecewise smooth boundary ∂Ω = ΓD ∪ ΓN .
We consider the following nonlinear problem: find (u(x, t), θ(x, t)) such that





∂θ

∂t
+ v

∂θ

∂x1

−∆u = 0, in Ω, t > 0,

u = z(x, t) on ΓD, t > 0,

∂u

∂n
= g(x, t) on ΓN , t > 0,

θ(x, t) ∈ H(u(x, t)) in Ω, t > 0,
θ(x, 0) = θ0(x) in Ω̄,

(1)

where n is the unit vector of outward normal, v = const > 0, z, g and θ0

are given functions. We consider the case when the graph of H : R1 → R1

monotonically increases and contains a vertical segment and suppose that the
function H has a single values at points on ΓD.

Problem (1) can serve as a simplified model of continuous casting process,
where u is the temperature of casting metal, θ(u) is the enthalpy function and
v is the casting speed in x1 direction. The enthalpy function has a mentioned
above property for example in the case of copper casting.

The existence and uniqueness of a weak solution for problem (1) are studied
in [8, 9].

3. Semi-discretization

First, we introduce the semi-discretization of problem (1) using the charac-
teristics of the first order differential operator and constant steps τ in time.
Namely, if (x1, x2, t) is the point at the time level t we use the following ap-
proximation:

(
∂

∂t
+ v

∂

∂x1

)
H ≈ 1

τ
(H(x1, x2, t)−H(x̃1, x2, t− τ)) , x̃1 = x1 − vτ.

If x1 − vτ < 0 then we put x̃1 = 0.
After semi-discretization problem (1) on each time level can be formally

written in the pointwise form as




−∆u + Pu 3 f in Ω,
u = z on ΓD,
∂u

∂n
= g on ΓN ,

(2)

where Pu = H(u)/τ is the multivalued maximal monotone nonlinear operator
and the right-hand side f = H̃(u)/τ also arises due to semi-discretization.
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Because of maximal monotonicity of function H and the property Dom(H)
= R the operator Pu is the subdifferential of convex continuous function ϕ(u).
The weak formulation of problem (2) can be written in the form of variational
inequality: find u(x) ∈ H1(Ω), u(x) = z(x) on ΓD such that

∫

Ω

∇u∇(q − u)dx + ϕ(q)− ϕ(u) >
∫

Ω

f(q − u)dx +

∫

ΓN

g(q − u)dΓ (3)

∀q ∈ H1(Ω), q(x) = z(x) on ΓD.
It is well known that (3) has a unique solution [10].

4. Mixed hybrid formulation of the problem

Now, let v = ∇u be so called flux function, then we get the following mixed
formulation of (2):





v −∇u = 0 in Ω,

div v − Pu 3 −f in Ω,

u = z on ΓD,

v · n = g on ΓN .

(4)

Let H(div, Ω) = {w ∈ L2(Ω)n : div w ∈ L2(Ω)} with the norm ‖w‖2 =∫
Ω
(|w|2 + | div w|2)dx, H(div, Ω) = {w ∈ H(div, Ω) : w · n ∈ L2(∂Ω)} with

the norm ‖w‖2
H = ‖w‖2 +

∫
∂Ω

(w · n)2dΓ and subspaces HN(div, Ω) = {w ∈
H(div, Ω) : w · n̄ = g a. e. on ΓN}, H0

N(div, Ω) = {w ∈ H(div, Ω) : w · n =
0 a. e. on ΓN}. Now by a weak solution of problem (4) we mean a triple
(u,v, σ) ∈ L2(Ω)×HN × L2(Ω), such that





∫

Ω

v ·w dx +

∫

Ω

u div wdx−
∫

ΓD

z(w · n)dΓ = 0 ∀w ∈ H0
N ,

∫

Ω

div v qdx−
∫

Ω

σ(x)qdx = −
∫

Ω

fqdx ∀q ∈ L2(Ω),

σ(x) ∈ Pu(x) for a. e. x ∈ Ω.

(5)

Note, that by construction if u is solution of (5) then (u,∇u, σ) is a solution
of problem (5).

Let Ω̄ =
m⋃

i=1

ēi be a partitioning of the domain into m nonoverlapping subdo-

mains, where ei has a piecewise smooth boundary. Hereafter we suppose that
the parts ΓD and ΓN of the boundary ∂Ω are composed by the whole sides
∂ei. The common sides of elements ei and ej we denote by Γij, where i 6= j,
i, j = 1,m. We suppose that ∂Ω consists of s segments, which we denote as
Γ1, . . . , Γs. Let the intersections ∂ei with Γj, j = 1, s be denoted by Γi,m+j,
i = 1, m, j = 1, s and let Γi,m+j for j = 1, s1, s1 < s compose ΓN , while Γi,m+k,
i = 1, m, k = s1 + 1, s compose ΓD.
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Let further v = (v1, . . . ,vm), u = (u1, . . . , um). Then system (4) can be
written in the following form





vi −∇ui = 0, div vi − σi = −fi, σi ∈ Pui in ei,

ui − uj = 0, vi · nij − vj · nij = 0 on Γij, i, j = 1,m,

ui = z on Γi,m+k, k = s1 + 1, s,

vi · ni = g on Γi,m+j, j = 1, s1,

(6)

where ni is the outward normal vector to ∂ei and nij is the unit normal vector
to Γij directed from ei to ej. Let us note that in semi-discretized problem the
flux function v ·n is continuous in Ω though in initial differential problem flux
may have a jump.

On the basis of (6) we define a weak mixed hybrid formulation of problem
(2). Let U =

∏
16i6m

L2(ei), V =
∏

16i6m

H(div, ei) and Λ =
∏
i>j

L2(Γij). We

introduce the bilinear forms M : V ×V → R, B : U ×V → R, C : Λ×V → R
and D : U × U → R by the following equalities

M(v,w) =
m∑

i=1

∫

ei

vi ·widx, B(u,w) =
m∑

i=1

∫

ei

ui div widx,

C(λ,w) =
m∑

i=1

( m∑
j=i+1

∫

Γij

λij(wj −wi) · nijdΓ−
s1∑

j=1

∫

Γi,m+j

λi,m+j(wi · ni,m+j)dΓ
)
,

D(q, σ) =
m∑

i=1

∫

ei

σiqidx

and linear functionals

F (q) =
m∑

i=1

∫

ei

fqidx, `(µ) =
m∑

i=1

s1∑
j=1

∫

Γi,m+j

gµi,m+jdΓ,

r(w) =
m∑

i=1

s∑

k=s1+1

∫

Γi,m+k

z(wi · ni)dΓ.

The weak mixed hybrid formulation is as follows: find (u,v, λ, σ) ∈ U×V ×
Λ× U such that





M(v,w) + B(u,w) + C(λ,w) = r(w) ∀w ∈ V,

B(q,v) +D(q, σ) = −F (q) ∀q ∈ U,

C(µ,v) = −`(µ) ∀µ ∈ Λ,

σ(u) ∈ P̄ u,

(7)

where P̄ u = (H(u1)/τ, . . . , H(um)/τ) for u ∈ U .

Proposition 1. The problems (3) and (7) are equivalent in the following
sense:
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if u is the solution of (3), then (u,v, λ, σ) with ui = u|ei
– restriction of u

to ei, vi = ∇ui a. e. in ei, λij = ui a. e. on Γij and σ ∈ P̄ (u) is the solution
of (7);

backwards, if (u,v, λ, σ) is the solution of problem (7), then the function
u : u|ei

= ui is a solution to problem (3).

5. Approximation

Let further Ω be a polygonal domain and τh = {e1, e2, . . . , em} be its con-
forming triangulation [11]. We assume that all ei are convex polygons.

Let Uh, Vh and Λh be finite element subspaces of the corresponding spaces

Uh =
∏

16i6m

Uih, Vh =
∏

16i6m

Vih

and refer to Λh as the space of vector-functions with constant components.
Here Vih is a finite dimensional subspace inH(div, ei) of dimension ni consisting
of vector-functions vi ∈ H(div, ei) such that vi · nij is a constant on the
corresponding interface Γij and Uih is a subspace of U consisting of vector-
functions such that each its coordinate is a constant on each subdomain ei.
The value of ni is equal to the total number of interfaces Γij belonging to the

boundary of ei, i = 1,m. Thus, the dimension of Vh is equal to n̂ =
m∑

i=1

ni, the

dimension of Uh is equal to m, and the dimension of Λh is equal to ň where ň
is the total number of interfaces.

The finite element approximation of (7) reads as follows: find (uh,vh, λh, σh) ∈
Uh × Vh × Λh × Uh satisfying the following relations:




M(vh,w) + B(uh,w) + C(λh,w) = r(w) ∀w ∈ Vh,

B(q,vh) +D(q, σ(uh)) = −F (q) ∀q ∈ Uh,

C(µ,vh) = −`(µ) ∀µ ∈ Λh,

σh ∈ P̄ u.

(8)

Let now vij be the degrees of freedom for vector-function vih, associated
with Γij, ui be the degrees of freedom for the function uh, associated with
ei, and λij be the degrees of freedom for λh, associated with Γij, j > i. The
algebraic formulation of (8) is: to find (v̄, ū, λ̄, σ̄) such that





M̂(v̄, w̄) + B̂(ū, w̄) + Ĉ(λ̄, w̄) = r̂(w̄),

B̂(q̄, v̄) + D̂(q̄, σ(ū)) = −F̂ (q̄),

Ĉ(µ̄, v̄) = −̂̀(µ̄),

σ̄ ∈ P̄ ū,

(9)

∀(w̄, q̄, µ̄) ∈ Rn̂ × Rm × Rň. Here

M̂(v̄, w̄) =
m∑

i=1

(Miv̄i, w̄i), v̄i, wi ∈ Rni ,

B̂(ū, w̄) =
m∑

i=1

ui(−
i−1∑
j=1

wij|Γij|+
m+s∑

j=i+1

wij|Γij|),



20 M.A.IGNATIEVA AND A.V.LAPIN

Ĉ(λ̄, w̄) =
m∑

i=1

(
m∑

j=i+1

λij(wji − wij)|Γij| −
s1∑

i=1

λi,m+jwi,m+j|Γi,m+j|),

D̂(q̄, σ̄) =
m∑

i=1

σiqimes(ei)

are the bilinear forms on Rn̂×Rn̂, Rm×Rn̂, Rň×Rn̂ and Rm×Rn̂, respectively,
and

r̂(w̄) =
m∑

i=1

s∑
j=s1+1

zi(wi · ni)dΓ,

∫

Γi,m+j

zdΓ, i = 1,m, j = s1 + 1, s,

F̂ (q̄) =
m∑

i=1

fiqi, fi =

∫

ei

fdx, i = 1,m,

̂̀(µ̄) =
m∑

i=1

(

s1∑
j=1

gijµi,m+j), gij =

∫

Γi,m+j

gdΓ, i = 1,m, j = 1, s1

are linear forms defined on Rň, Rm and Rň.

The entries m
(i)
k,l of matrices Mi are defined by the standard way using the

L2(ei) scalar products of the nodal basis functions of the subspaces Vih.
In matrix-vector form problem (9) can be written as follows:

A




v̄
ū
λ̄


 +




0
−P̄ (ū)

0


 3




r̄
−f̄
−ḡ


 , A =




M BT CT

B 0 0
C 0 0


 . (10)

We rewrite the system as



Mv̄ + BT ū + CT λ̄ = r̄,

Bv̄ − P̄ ū 3 −f̄ ,

Cv̄ = −ḡ

(11)

and eliminate v̄ from the system. After that we obtain a reduced system which
can be written in block form by(

BM−1BT BM−1CT

CM−1BT CM−1CT

)(
ū
λ̄

)
+

(
P̄ ū
0

)
3

(
f + BM−1r̄
g + CM−1r̄

)
.

Using notations

S =

(
BM−1BT BM−1CT

CM−1BT CM−1CT

)
, µ =

(
ū
λ̄

)
,

F =

(
f + BM−1r̄
g + CM−1r̄

)
, P̃ =

(
P̄ 0
0 0

)
,

we finally obtain the following finite-dimensional problem:

Sµ + P̃µ 3 F. (12)

Note that Schur complement matrix S is a symmetric and positive definite
matrix [1], while P̃ is a maximal monotone operator. Owing to this fact
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problem (12) has a unique solution, whence problem (11) has also a unique
solution.

6. Iterative method

For the sake of simplicity we analyze only the case of rectangular meshes.
We suppose that Ω is the unit square and construct mesh with step h in both
directions which defines the partitioning of Ω into elements ei.

To obtain preconditioner for (12) we construct finer grid in Ω with the step
h/2. We denote by τh/2 the new partitioning of Ω. Let further Wh/2 be the
piecewise finite element subspace of H1(Ω) and A be the stiffness matrix,
corresponding to the approximation in this subspace of Laplace operator with
Dirichlet boundary conditions on ΓD. Let the nodes of τh/2 consist of two
groups: the first group contains the nodes of τh, while the second one contains
all others (called by the fictitious ones). Then matrix A can be represented in
the corresponding block form:

A =

(A11 A12

A21 A22

)
.

It is shown in [1] that the operator S is spectrally equivalent to the Schur
complement SA:

SA = A11 −A12A−1
22 A21

with constants of equivalence which do not depend on mesh size:

α(SAµ, µ) 6 (Sµ, µ) 6 β(SAµ, µ) ∀µ.

In the case under consideration we get α = 1, β = 6.
This observation allows us to use the matrix SA as a preconditioner in iter-

ative process for solving (12):

SA
µn+1 − µn

τ
+ Sµn + P̃ µn+1 3 F. (13)

The following statement is valid.

Proposition 2. The iterative method (13) converges for any τ ∈ (0, 2/β)
and for τ = 2/(α + β) the following estimate holds:

(SA(µn+1 − µ), µn+1 − µ)1/2 6 β − α

β + α
(SA(µn − µ), µn − µ)1/2.

To avoid the explicit calculation of SA on each step of process (13) we use
the following trick. We complete the system (12) by the equations in fictitious
nodes, so that the algebraic size of resulting system

{
Sµ + P̃ µ 3 F,

0 = 0

is equal to number of fine grid nodes. After we write iterative process with
operator A as a preconditioner for this system using block representation of
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A: 


A11

µn+1 − µn

τ
+A12

µ̃n+1 − µ̃n

τ
+ Sµn + P̃ µn+1 3 F,

A21
µn+1 − µn

τ
+A22

µ̃n+1 − µ̃n

τ
+ 0 = 0,

(14)

where µ̃ are fictitious components. Eliminating from the second equation fic-
titious values we can verify that it is an equivalent form of process (13) for
solving (12) with SA as preconditioner.

For a fixed n problem (14) is the finite element variational inequality with
positive definite and symmetric matrix A, so, it can be solved, for example,
by using any coordinate relaxation or gradient relaxation method.

On each step of constructed method we need to calculate F −Sµ. It is easy
to do if we take into account the identity

F − Sµn =

(
Bv̄n

Cv̄n

)

with v̄n = M−1(r̄ −BT ūn − CT λ̄n).
Thus, to solve (14) we get the the following

Algorithm

(1) Define µ0 = (ū0, λ̄0).
(2) For n > 0 on each element ei calculate v̄n by formula

v̄n
i = M−1

i (r̄i −BT
i ūn

i − CT λ̄n
i ).

(3) Calculate µn+1 = (ūn+1, λ̄n+1) by solving (14).
(4) n := n + 1 goto step 2.

7. Numerical results

In numerical test we take Ω = (0, 1) × (0, 1), ΓD = {(x1, x2) ∈ ∂Ω : x2 =
0}∪{(x1, x2) ∈ ∂Ω : x2 = 1}, ΓN = ∂Ω\ΓD. We solve problem in time interval
[0,1] using constant time step τ = 0.05 and various grids in space to compare
number of iterations. As H we take the function

H(u) =





0.5u if u < 0,
[0, 1] if u = 0,
u + 1 if u > 0.

On the top of square Ω we put g = −3 in the boundary condition, on bottom
we use value g = 0, on the left side z = 2, and on the right side z = −1. As
initial condition we take u0 = −1.

To solve inequality with matrix A on each step of iterative process (14) we
use SOR-method, the stopping criterion was ‖µk+1 − µk‖ 6 10−13 and the
stopping criterion of outer process was ‖µn+1 − µn‖ 6 10−12. As iterative
parameter in outer process we take τ = 2/7, which we get using estimates of
equivalence of matrices S and SA.

In the second column of table 1 we show the number of iteration which we
need to solve problem on the first time level (on the next levels the number
of iterations becomes smaller) and in the third column – the total number of
iteration, which is equal to the sum of iterations on all time steps. From the
table we can see that the number of iterations does not depend on mesh size.
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Figure
1. Temperature
distribution on
t = 0.0125

Figure
2. Temperature
distribution on
t = 0.0750
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Figure
3. Temperature
distribution on
t = 0.0225

Figure
4. Temperature
distribution on
t = 1

On the figures we show temperature distributions at several time levels.

Grid size Iter 1 Total Iter
11× 11 81 1195
21× 21 82 1183
41× 41 83 1189
81× 81 83 1189

161× 161 83 1171
Table 1. Number of iterations
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