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Abstract. The norm estimation of the Lagrange interpolation oper-
ator is obtained. It is shown that the rate of convergence of the interpola-
tive polynomials depends on the choice of the sequence of multiindices
and, for some sequences, is equal to the rate of the best approximation
of the interpolated function.

Introduction

In the paper [1] the collocation method for singular integral equations

and periodic pseudodifferential equations in 1-dimensional Sobolev space

was justified. The crucial role in the justification and error estimation

plays the fact (Lemma 4) that the Lagrange interpolation operator in

this space is bounded. To generalize this results for the multidimensional

case the norm estimation (i.e. estimation of the Lebesgue constant) of

the Lagrange interpolation operator in multidimensional Sobolev spaces

is needed.

Here, we show that in m-dimensional Sobolev space Hs (s > m/2) the

norm of n-order (n = (n1, n2, ..., nm)) Lagrange interpolation operator

depends of the function M(n, s) which, w.r.t. the choice of the sequence

of multiindices (n), n →∞, is either bounded, or grows infinitely.
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1. Formulation of the problem

Let’s fix the natural m ∈ N and denote by N = Nm, N0 = Nm
0 ,

Z = Zm, R = Rm, ∆ = ∆m Cartesian degrees of the sets of natural N ,

natural with zero added N0, integer Z, real R numbers and the interval

∆ = (−π; π] ⊂ R correspondingly. For the elements of these sets (m-

components vectors) besides the usual operations of addition, subtraction

and multiplication to the number we’ll define the following operations

l · k =
m∑

j=1

ljkj, l2 =
m∑

j=1

l2j , l ∗ k = (l1k1, l2k2, ..., lmkm), [l] =
m∏

j=1

lj,

and the partial order

l < k ≡ &m
j=1(lj < kj), l = (l1, l2, ..., lm), k = (k1, k2, ..., km).

By n →∞ we’ll mean, that n takes the values of sone sequence

(nj), nj ∈ N, nj < nj+1, j = 1, 2, ... .

Furthermore, in a sake of simplicity we’ll write

min(n) instead of min
1≤j≤m

{nj | n = (n1, n2, ..., nm) ∈ N}
and

max(n) instead of max
1≤j≤m

{nj | n = (n1, n2, ..., nm) ∈ N}.
For the fixed s ∈ R let Hs denote m-dimensional Sobolev space, i.e.

the closure of all m-dimensional smooth 2π-periodic by every variable

complex-valued functions w.r.t. the norm

‖u‖s = ‖u‖Hs = (
∑

l∈Z

(1 + l2)s | û(l) |2)1/2,

where

û(l) = (2π)−m

∫

∆

u(τ)ēl(τ)dτ, l ∈ Z,

are the complex-valued Fourier coefficients of the function u ∈ Hs w.r.t

the trigonometric monomials

el(τ) = exp(il · τ), l ∈ Z, τ ∈ ∆, i =
√−1.

It is known that, being equipped with the inner product

< u, v >s=
∑

l∈Z

(1 + l2)sû(l)¯̂v(l), u, v ∈ Hs,

Hs becomes Hilbert space. For the following we’ll assume that s > m/2,

providing (see e.g. [2]) the embedding of Hs in the space of continuous

functions.
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Let’s fix n = (n1, n2, ..., nm) ∈ N, denote by

In = In1×In2×···×Inm , Inj
= {kj | kj ∈ Z, | kj |≤ nj}, j = 1, 2, ..., m,

the set of indices and define uniform partition

∆n = {tk = (tk1 , tk2 , ..., tkm) | k = (k1, k2, ..., km) ∈ In,

tkj
= kjhj, hj = 2π/(2nj + 1), j = 1, 2, ..., m},

on ∆. By Pn we denote Lagrange interpolation operator that assigns to

every function u ∈ Hs polynomial

(Pnu)(τ) =
∑

k∈In

u(tk)ξn(τ, tk), τ = (τ1, τ2, ..., τm) ∈ ∆,

where tk = (tk1 , tk2 , ..., tkm) ∈ ∆n, coinciding with u in the nodes ∆n.

Here

ξn(τ, tk) =
m∏

j=1

sin((2nj + 1)(τj − tkj
)/2)

(2nj + 1) sin((τj − tkj
)/2)

= [2n + 1]−1
∑

l∈In

el(τ− tk),

1 = (1, 1, ..., 1) ∈ N, τ ∈ ∆, tk ∈ ∆n,

are fundamental polynomials satisfying

ξn(tl, tk) =

{
1, l = k,

0, l 6= k, l,k ∈ In.

We have to estimate the norm of the operator Pn : Hs → Hs.

2. Preliminaries

The results of this section are technical ones. They are gathered

in 2 lemmas to exclude less important details from the proof of the main

result.

Lemma 1. For every m ∈ N, s ∈ R, s > m/2 and n ∈ N

∑

j∈Z

((n + j ∗ (2n + 1))2)−s ≤ 2m
∑

l∈N

((n ∗ (2l− 1))2)−s.

Proof. To change the set of sum indices from Z to N let’s represent

Z as a merge of two sets: {−l | l ∈ N} and {l− 1 | l ∈ N}. For the k-th,
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1 ≤ k ≤ m, component of the vector n + j ∗ (2n + 1) we’ll obtain

(nk + jk(2nk + 1))2 = (lk(2nk + 1)− nk)
2

= (nk(2lk +
lk
nk

− 1))2 ≥ (nk(2lk − 1))2,

jk ∈ Z, jk < 0, lk = −jk ∈ N ;

(nk+jk(2nk+1))2 = (nk+(lk−1)(2nk+1))2 = (nk+2nklk+lk−2nk−1)2)

= (nk(2lk +
lk
nk

− 1)− 1)2 ≥ (nk(2lk − 1))2,

jk ∈ Z, jk ≥ 0, lk = jk + 1 ∈ N.

As to each summand of index l ∈ N correspond 2m summands when

adding by Z then
∑

j∈Z

((n + j ∗ (2n + 1))2)−s ≤ 2m
∑

l∈N

((n ∗ (2l− 1))2)−s.¤

Let

Am
p = {k | k = (k1, k2, ..., km) ∈ N0,

m∑
j=1

kj = p}

be the set of vectors from N0 which component’s sum is p ∈ N0. By

R(Am
p ) we denote the number of elements of Am

p .

Lemma 2. For every p,m ∈ N

R(Am
p ) ≤ mpm−1.

Proof. We’ll show first that

R(Am
p ) = Cp

m+p−1 =
(m + p− 1)!

p!(m− 1)!
, p ∈ N0, m ∈ N, (1)

and then that

Cp
m+p−1 ≤ mpm−1, p, m ∈ N. (2)

Let m = 1, then for every p ∈ N0 the set A1
p contains only one vector,

and hence R(A1
p) = Cp

p = p0 = 1. Assume that (1) is valid for some

m ∈ N , and prove that it is valid then for m + 1. We’ll construct the set

Am+1
p as a merge of the sets Am

j , j = 0, 1, ..., p, adding to each element

of the set Am
j m + 1-th component equal to p− j, j = 0, 1, ..., p. Then

R(Am+1
p ) =

p∑
j=0

R(Am
j ) =

p∑
j=0

Cj
m+j−1 =

(m + p)!

m!p!
= Cp

m+1,

and hence (1) is valid for all p ∈ N0 and m ∈ N .
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Now assume that estimation (2) is valid for some m ∈ N , and prove

that it is valid then for m + 1. Indeed,

Cp
m+p =

(m + p)!

m!p!

= Cp
m+p−1

m + p

m
≤ mpm−1m + p

m
= pm(

m

p
+ 1) ≤ (m + 1)pm.¤ (3)

3. Main results

Theorem 1. For every s ∈ R, m ∈ N, s > m/2 and n ∈ N following

estimation is valid

‖Pn‖Hs→Hs ≤ 2
m−s

2 m
s+1
2 M(n, s)

√
1 + ζ(2s−m + 1),

where

M(n, s) =

( √
n2

min(n)

)s

,

and ζ(t) =
∑∞

j=1 j−t - is Riemann’s ζ-function bounded and decreasing

for t > 1.

Proof. Let’s fix m ∈ N, s ∈ R, s > m/2, n ∈ N, choose an arbitrary

function u ∈ Hs and write Lagrange interpolative polynomial w.r.t. the

nodes ∆n for it

(Pnu)(τ) =
∑

k∈In

u(tk)ξn(τ, tk).

It’s Fourier coefficients are

(P̂nu)(l) =

{
[2n + 1]−1

∑
k∈In

u(tk)ēl(tk), l ∈ In,

0, l 6∈ In.

Substituting the values of function u in the nodes ∆n by its Fourier series

expansion we’ll obtain

(P̂nu)(l) = [2n + 1]−1
∑

k∈In

(
∑

j∈Z

û(j)ej(tk))ēl(tk) =

= [2n + 1]−1
∑

j∈Z

û(j)
∑

k∈In

ej(tk)ēl(tk) =
∑

j∈Z

û(l + j ∗ (2n + 1)).
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Further, according to the proof of Lemma 2 [1], we get

‖Pnu‖2
s =

∑

l∈In

(1+l2)s | (P̂nu)(l) |2=
∑

l∈In

(1+l2)s |
∑

j∈Z

û(l+j∗(2n+1)) |2

=
∑

l∈In

|
∑

j∈Z

(1 + l2)
s
2 û(l + j ∗ (2n + 1)) |2

=
∑

l∈In

|
∑

j∈Z

(1+l2)
s
2 (1+(l+j∗(2n+1))2)−

s
2 û(l+j∗(2n+1))(1+(l+j∗(2n+1))2)

s
2 |2

≤
∑

l∈In

(
∑

j∈Z

((1 + l2)/(1 + (l + j ∗ (2n + 1))2))s

∑

j∈Z

| û(l + j ∗ (2n + 1)) |2 (1 + (l + j ∗ (2n + 1))2)s) ≤

≤ max
l∈In

(
∑

j∈Z

((1 + l2)/(1 + (l + j ∗ (2n + 1))2))s)‖u‖2
s.

It is easy to check that sum

∑

j∈Z

((1 + l2)/(1 + (l + j ∗ (2n + 1))2))s

reaches maximum when l = n, so using Lemma 1 we have

max
l∈In

(
∑

j∈Z

((1 + l2)/(1 + (l + j ∗ (2n + 1))2))s)

=
∑

j∈Z

((1 + n2)/(1 + (n + j ∗ (2n + 1))2))s

≤ 2s(n2)s
∑

j∈Z

((n + j ∗ (2n + 1))2)−s ≤ 2s+m(n2)s
∑

j∈Z

((n ∗ (2j− 1))2)−s

≤ 2s+mM2(n, s)
∑

j∈N

((2j− 1)2)−s.

Summands could be estimated as

((2j− 1)2)−s = (
m∑

k=1

(2jk − 1)2)−s ≤
(

m

(
∑m

k=1(2jk − 1))2

)s

,
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and using Lemma 2 we obtain

2s+mM2(n, s)
∑

j∈N

((2j− 1)2)−s

≤ 2s+mmsM2(n, s)
∑

j∈N

(
m∑

k=1

(2jk − 1))−2s

= 2s+mmsM2(n, s)
∑

j∈N

(2
m∑

k=1

jk−m)−2s = 2s+mmsM2(n, s)
∑
j∈N0

R(Am
j )

(m + 2j)2s

≤ 2s+mmsM2(n, s)

(
m−2s +

∑

j∈n

mjm−1

(m + 2j)2s

)

≤ 2m−sms+1M2(n, s)(1 +
∑
j∈N

j−(2s−m+1)).

Theorem is proved. ¤
Denote polynomial of the best approximation to u ∈ Hs of degree not

higher than n ∈ N0 and the corresponding best approximation

(Snu)(τ) =
∑

l∈In

û(l)e(iτ · l), En(u)s = ‖u− Snu‖s,

where (Snu)(τ) is the n-th partial sum of Fourier series of u.

Corollary 1. For every s ∈ R, m ∈ N, s > m/2, n ∈ N and arbitrary

function u ∈ Hs

‖u− Pn‖s ≤ (1 + 2
m−s

2 m
s+1
2 M(n, s)

√
1 + ζ(2s−m + 1))En(u)s. (4)

The proof is obvious. ¤

Corollary 2. For every s ∈ R, m ∈ N, s > m/2, n ∈ N, arbitrary

function u ∈ Hs and sequence of indices (nj)j∈N satisfying

lim
n→∞

M(n, s) < ∞,

sequence of polynomials (Pnu) converges to function u with the error

estimate

‖u− Pnu‖s = O(En(u)s).

Proof follows directly from Corollary 1. ¤

Corollary 3. For any p, s ∈ R, m ∈ N, p ≥ s > m/2, n ∈ N and

arbitrary function u ∈ Hp the following estimation is valid

En(u)s ≤ (1 + n2)
s−p
2 En(u)p.
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Proof follows from properties of the best approximation and definitions

of norms in Hs and Hp. ¤
Corollary 3 allows to generalize Corollary 2.

Corollary 4. For any p, s ∈ R, m ∈ N, p ≥ s > m/2, n ∈ N, arbitrary

function u ∈ Hp and sequence of indices (nj)j∈N satisfying

lim
n→∞

M(n, s)(n2)
s−p
2 < ∞,

sequence of polynomials (Pnu) converges to function u with error estimate

‖u− Pnu‖s = O(En(u)p).

Proof follows from Corollaries 1 - 3.

Remark 1. For any constant C, C ≥ √
ms, the set {n | M(n, s) ≤ C}

is a cone in N. Choosing indices from this cone we’ll obtain sequence of

interpolation polynomials converging with estimation (4) where M(n, s)

is substituted by C. The minimal possible value of M(n, s) =
√

ms will

be on the set

{n | n ∈ N,n = (n1, n2, ..., nm), nk = nl, 1 ≤ k, l ≤ m}
of indices with equal components.
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