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Abstract. We consider a manifold M with a foliation F given by a
locally free action of a commutative Lie group H. Also we assume that
there exists an integrable Ehresmann connection on (M, F ) invariant
with respect to the action of the group H. We get the structure of the
restriction of the algebra C0(M) to the leaves in three partial cases. Also
we consider a classification of the quasiinvariant measures and means on
the leaves of F .

1. Introduction.

In the present paper we consider a manifold M with a foliation F given

by a locally free action of a commutative Lie group H. Let us denote

this action by R : M × H → M . Let dim H = n, and π : Rn → H be

the universal covering. Then h 7→ Rπ(h) is the locally free action of Rn

on M . Thus, without loss of generality, we can set H = Rn.

Also we assume that there exists an integrable Ehresmann connection

[1] on (M, F ) which is invariant with respect to the action of H.

Let us denote by C0(M) the algebra consisting of continuous func-

tions on M vanishing at infinity. The main object of our investigation

is the algebra C0(M)|L obtained by restriction of C0(M) to a leaf of the

foliation.
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Recently the author proved that, under the assumptions given above,

there exists an almost everywhere continuous bijection φ : M → P ×
H/HP , where P is a connected total transversal tangent to the Ehres-

mann connection and HP = {h ∈ H|hP = P}. The main problem is to

describe C0(M)|L for L ∈ F under different assumptions. We consider

three distinct cases:

1) P/HP is a Hausdorff space;

2) any leaf L ∈ F is dense on M , there exists an HP -invariant metric

on the transversal P , and the isotropy groups of all the leaves coincide;

3) a base of HP is a contraction on P .

2. The first case.

Definition 1. For any ε > 0 we define the set of algebras Bε,x(M) =

{f ∈ C0(M)|f isHε,x−invariant}, here Hε,x = {h ∈ H|hUε,x

⋂
Uε,x 6= ∅}.

Set Bε =
⋂

x∈P

Bε,x.

Let us say that Bε → C0(M) as ε → 0 if for any f ∈ C0(M) and

a sequence (εn)n∈N (εn → 0 as n → ∞) there exists a sequence (fn),

fn ∈ Bεn such that fn → f in the usual ‖ · ‖0 or sup norm.

Statement 1. The following assumptions imply that Bε → C0(M) as

ε → 0:

1) P/HP is a Hausdorff space,

2) P ′
i = {p ∈ P ′|there existsHi ⊂ HP , Hip = p} are submanifolds of

the global transversal P .

• The first assumption implies that Bε,x → C0(M) as ε → 0 for all x ∈
P , otherwise P/HP is not a T1-space and moreover not a Hausdorff one.

From Corollary 27 [4] it follows that there exists a metric on P invariant

with respect to the action of HP . (Our assertions imply that Q = P/HP

is a manifold with a boundary given by
⋃
i

P ′
i . So we take a slice [4]

σ : Q → P , such that σ is continuous on Q \π(
⋃
i

P ′
i ). The last condition

of Corollary 27 [4] is met since the set P \ ⋃
i

P ′
i (P,Q \ π(

⋃
i

P ′
i ), π) is

a cover of Q with the covering group HP . Let us extend σ to
⋃
i

P ′
i

by continuity. (In fact we get a multivalued map). Let us define a

metric d on P as follows: On the factor Q d(x, y) can be an arbitrary

one. Then we must put into consideration the set of continuous sections

Σ =
⋃

h∈HP

hσ. Let us point out that hσ
⋂

h′σ ⊂ ⋃
i

P ′
i . Then we define

metric on P by gluing metrics on the images hσ, i.e. for any h ∈ HP we
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put d(hx, hy) = d(x, y). Since the set I of disjunct continuous sections

is at most countable one and
⋃
i∈I

σi(Q) = P this metric is a correctly

defined one on the whole manifold P . This definition is correct since by

construction metrics coincide on the borders of the sets. Thus we apply

the construction from [4].)

Let us prove now that Bε → C0(M) (ε → 0). The proof is by induction

on the dimension of the subset of P . Let us first define the step of

the induction as follows: fn(tγ) = f(γ) γ ∈ P ′, t ∈ [0, 1/n] from the

normal foliation on U2/n(
⋃
i

P ′
i ), fn(tγ) = f(tγ), t ≥ 2/n, fn(tγ) = at + b,

t ∈ [1/n, 2/n], a = n(f(2γ/n)− f(γ)), b = 2f(γ)− f(2γ/n). In the zero-

dimensional case (being the base of the induction) we apply the same

construction as in the induction step. the first assumption implies that

for any point y ∈ P \P ′ one can find such ε(y) > 0 that Bε(y),y = C0(M).

Then by considering the continuity modulus of the function f we prove

the theorem. .

Note 1. As a consequence of the proof of the previous statement one

can weaken the first assumption. One can assume the existence of such

system of ε-neighbourhoods Uε(P
′
i ) of the submanifolds P

′
i (ε0 > ε >

0) that for all ε ∈ (0, ε0) HP (Uε(P
′
i )) = Uε(P

′
i ), and Uε(P

′
i )/HP is a

Hausdorff space.

Note 2. Let us point out now that Bε,x → Br(G) as ε → 0 means that

the point x can be separated from any other point y ∈ P/HP . It is the

topological T1 axiom. Note that the previous statement does not prove

the inverse (T1 ⇒ Bε,x → Br(G)) though T2 axiom almost certainly leads

to convergence of Bε,x → Br(G) as ε → 0 since it provides us with a

slice used in the construction of the invariant metric. Nevertheless in

case there exists a structure of a Lie group on P we have Bε,x → Br(G),

hence T1 is true, and hence T2 is also true by ([7], Lemma, p. 144 ).

So later on in this paper we consider only cases in which Bε,x 6→
Br(G), ε → 0. In general, the situation here is rather complicated so we

will consider the partial case when there exists a leaf L ∈ F such that

L
⋂

P \ L
⋂

P 6= ∅.
Then the following cases are possible:

1) Let Xh stand for the graph of the map h : P → P . We assume that

the graphs Xh, h ∈ HP do not intersect each other (this is possible in

case for example there exists a graph of a number of these maps in any

neighbourhood of the diagonal graph D =
⋃

x∈M

(x, x)).
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2) The graphs of the maps generated by elements of HP do intersect

in a point (x, x) ∈ D.

The graphs of the maps are uniformly separated in any other case, that

is there exists ε > 0 such that Uε(Xi)
⋂

Uε(Xj) = ∅. Let us mention now

that in this case we can apply the first part of Statement 1 and there

exists a metric on P invariant under the action of the group HP (note

that the converse is not true, e.g. any Kronecker foliation on the torus

T2).

3. The second case.

Lemma 1. Let P be a k-dimensional manifold endowed with a Riemann-

ian metric ρ′. Let f : P → P be a diffeomorphism such that

1) The set
⋃

n∈Z
fn(x) is dense for any x ∈ P .

2) There are no fixed points: for any p ∈ P and for all n ∈ N (fn(p) 6=
p).

3) The absolute values of the maps ρ(fn(·), fn(·)) : P×P → R+, n ∈ Z
are bounded from above and below: there exist δ, ∆ > 0 such that for any

n ∈ Z, and arbitrary x, y ∈ P , δρ′(x, y) ≤ ρ′(fn(x), fn(y)) ≤ ∆ρ′(x, y).

Then there exists a metric ρ, ρ : P × P → R+ such that ∀x, y ∈ P

ρ(f(x), f(y)) = ρ(x, y).

• Let us deform a metric ρ′ on P , so that for all n ∈ N, ρ(x, fn(x)) =

const(n). Then there exists x ∈ P such that ρ(fnk(x), fnk+1(x)) → 0,

(k →∞), this implies that the graphs Γ(fn) are dense in the space P×P .

Thus we will consider only the situation in which any leaf is everywhere

dense because otherwise we can apply Statement 1.

Then we can consider only the case in which for any n ∈ Z, and for

all x ∈ P , fn(x) 6= x, otherwise for some fixed x ∈ P we can find

a natural number k = inf{n ∈ N|fn(x) = x}. Fix the set of points

X = {fn(x)}n∈Z. On the one hand X = P but on the other hand

fn(x) = f lk+j(x) = f j(x), 0 ≤ j ≤ k − 1 is a finite set.

Now for a compact manifold P we take the following form as ρ:

ρ(x, y) = lim
n→∞

n∑
k=−n

ρ′(fk(x), fk(y))

2n

here ρ′ is a nonsingular metric on P . Let us turn to the proof of metric

axioms. Let us prove first that ρ(x, y) ≥ 0 for x 6= y ∈ P . Assume the

contrary. Then there exists a subset J of density 0 of the set N such

that the sequence ρ(fn(x), fn(y)) → 0 as n → ∞, n ∈ N \ J [2]. But
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then the compactness of P implies that there exists the point z ∈ P

fnk(x), fnk(y) → z as k →∞, this contradicts the third condition of the

assumption. The other metric axioms follow from the construction of ρ′.
Let us prove now that the metric defined above is equivalent to the first

one. Assume the contrary, i.e. there exist a ε > 0 and x ∈ P such that for

all σ > 0 one can find y ∈ P ρ′(x, y) < σ ρ(x, y) ≥ ε. Then again there

exists a sequence fnk(x), fnk(y) such that ρ′(fnk(x), fnk(y)) ≥ ε. In case

σ is sufficiently small and ε/σ > δ we again arrive to the contradiction

with the third assumption of the statement. The same considerations

show us that the convergence yn →ρ x implies that yn →ρ′ x as n →∞.

Let us again assume the contrary, i.e. there exists a sequence (yn)n∈N
yn →ρ x but yn 6→ρ′ x. We infer from the first convergence that for any

ε > 0 there exist n(ε), l(ε) ∈ N, ρ′(fk(yn), fk(x)) < ε for ∀n ≥ n(ε)

and k |k| > l(ε), of the density 1. Then again by the third assumption

ρ′(yn, x) = ρ′(f−k◦fk(yn), f−k◦fk(x)) ≤ Dρ′(fk(yn), fk(x))+o(ε) = o(ε),

this contradiction completes the proof.

Now let P be a noncompact manifold and the set of images fn(p) be

dense in P , then any two points from A = (P/ ∼), (here x ∼ y if and only

if there exists L ∈ F such that the points x, y ∈ L) can not be separated.

Let us construct the invariant metric on P as follows: Let ρ′ be a fixed

metric on P . Fix a neighbourhood Uε(x) of a point x ∈ P . Let us now

define the metric inside Uε(x) by putting for fn+k(x), fn(x) ∈ Uε(x)

ρ(fn+k(x), fn(x))

≡ sup{ρ(fn+k+l(x), fn+l(x))|fn+k+l(x), fn+l(x) ∈ Uε(x)}.
Now since the set fn(p) is dense the sequence fn(Uε(x)) defines a locally

finite atlas on P . So we define the metric on P as the image of the

metric on Uε(x) under the actions of fn. Let us then glue metrics on

the images of Uε(x) as it was done in the first statement for a Hausdorff

factor P/HP . Let us then make ε → 0 and consider the limit metric ρl.

Note that ρl ≤ ρε ≤ ρε′ for 0 < ε < ε′. This makes the definition correct

one.

Equivalence of the constructed metric to the given one holds true due

to the third condition and the construction algorithm. The limit length

for y → x is bounded from both sides: δρ(x, y) < ρl(x, y) < ∆ρ(x, y). .

Note 3. Assume that:

(a) all points on P have the same isotropy group,

(b) there exists an H-invariant metric g on M ,

(c) the set HP{x} is dense in P .
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Then for any y ∈ P , HP{y} is dense in P .

• Let x ∈ P be such a point that (fn(x))n∈Z is dense. Let there exist

y ∈ P such that the set
⋃

n∈Z
fn(y) is not everywhere dense. Let fnk(x) →

y be a subsequence of fn(x) then for arbitrary l ∈ Z f l ◦ fnk(x) → f l(y)

(nk →∞), moreover the union of all shifted subsequences coincides with

the sequence fn(x). Then the limit point set of fn(x) must coincide with

the same set of the sequence fn(y). This contradiction completes the

proof. .

Example 1. Let us show that the third condition of the previous state-

ment is necessary. For the irrational flow on torus T2 as the foliation

F and take a parallel of torus as a transversal submanifold P . Thus

leaves of the foliation define a rotation of the transversal. The standard

Kronecker foliation satisfies all conditions of the lemma and the standard

angle metric on the S1 is invariant under the action of the rotation group.

There is an example constructed by Arnold which shows us that this

homeomorphism is not necessary a diffeomorphism on a dense set of

points [5].

In order to make condition 3) more evident we consider the following

example:

Example 2. [12] Fix a sequence of points xn = 1/n ∈ R, n ∈ N. Let

us consider a 1-dimensional foliation on the cylinder S1 × R. Let the

Ehresmann connection be given by the distribution orthogonal to each

S1 × {t} ⊂ S1 × R. Let the set (xn)n∈N be the set of fixed points of the

first return map on the transversal P ∼= R. Assume also that this first

return map is strictly monotone on the intervals ( 1
n
, 1

n+1
). This is the

so-called IIIλ case. Then there is no invariant metric on the transversal

P .

Statement 2. For complete geodesic manifold P the nonsingular metric

from the previous statement is unique (up to multiplication by a constant)

under the same restrictions on the map f : P → P .

• First let us prove this for a 1-dimensional manifold P with a Rie-

mannian metric. Let us consider a groupoid of geodesics on P . γ :

[0, 1] → P , γ(0) = x, γ(1) = y, γ ◦γ′ ≡ γ′′, for γ′(0) = γ(1), γ′′ being the

geodesic from γ(0) to γ′(1). In this case these rays are uniquely defined

by source and range, so we get a groupoid structure on P × P .

Let us point out now that a metric ρ on P gives rise to a cocycle

D : P̃ × P̃ → R [9, 11] defined on the product of the universal covering
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spaces of P . Since there exists a direction on the universal covering

space of P we can correctly define D(x, y) = ρ(x, y) in case x < y and

D(x, y) = −ρ(x, y) otherwise. Now, since ρ is not a singular metric, the

cocycle D gives rise to an invariant measure on P̃ [9]. Since this measure

is unique D must be equal to K for a K ∈ R. This proves the statement

in this case.

Now we turn to the general case. Fix the set of complete geodesic

lines for any x ∈ P and any direction v ∈ TxX, γ : R → P , γ(0) = x,
dγ
dt

= v. Next we can construct for fk : P → P , k ∈ Z a pair of maps

γ
′−1
± ◦ f ◦ γ : R→ R for any γ′ with γ

′
±(±t(k)) = f(x), where x = γ(0),

and t(k) = ρ(x, fk(x)). This is true since the set of directions is compact.

The set
⋃

k∈Z
fk(x) is everywhere dense on P , hence

⋃
k∈Z

t(k) is dense on

R. Thus we reduce the general case to the 1-dimensional one. From this

follows the statement for the manifolds of dimension greater than 1. .

Now the statements above provide us with the set of almost periodic

transformations [3].

Note 4. Assume that a function f : P → P satisfies the following con-

ditions:

1) For all n ∈ Z and p ∈ P fn(p) 6= p.

2) There exists a point x ∈ P , fnk(x) → y, (nk ∈ K ⊂ Z).

Then there may exist a homeomorphism φ : P → P such that the set

fn(x) is dense on P ′ ⊂ P for some not discrete P ′.

This homeomorphism can be constructed as follows. Let us take the set

of graphs Γfn(P ) ⊂ P×P . Let us deform all these graphs simultaneously.

Let φ(fnk−nk−1(x)) ≡ y(nk − nk−1) ∈ P such that ρ(y, x) = ρ(fnk(x), y)

(there is a wide range of choice of points that satisfy this property).

Then we define φ(fn+nk−nk−1(x)) := z(n+nk−nk−1) such that ρ(z, x) =

ρ(fn+nk−nk−1(x), fn(x)). The open problem here is whether there exists

a map φ, which at the same time is a homeomorphism.

With the help of this homeomorphism one can improve the situation

from the first example. Nevertheless the second example can not be

improved in the same way.

So we consider only the possibilities given below:

1) There exists a metric ρ : P × P → R+ and ε > 0 such that for

all x ∈ P and k, l ∈ Z, k 6= l, ρ(f l(x), f (k)(x)) ≥ ε. This situation

was explored in [4] where P/HP is a Hausdorff space. One can apply

Statement 1.

2) There exists at least one point x ∈ P such that (f l(x))l∈Z is not

closed. Then we can apply Note 4 and — in partial cases — Statement
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2 (namely the case of almost periodic transformations [3]). Here never-

theless we can find ourselves in the situation similar to one described in

Example 2.

3) For any ε > 0 there exist p ∈ P and n, l ∈ Z such that

ρ(f l(p), fn(p)) < ε.

So we must find out what can be said about Br(G) under the specified

restrictions. As was already mentioned the only interesting situations

are 2) and 3).

Statement 3. Under the assumptions of Statement 2, if P be a compact

manifold, then the mean Mx(f(x)) on each leaf L, Mx being the limit

of Mmn(f(x)) =
n∑

i=1

m∑
j=1

f(aiγj)/mn (ai ∈ Hx, γj ∈ Uj) as m,n → ∞,

is finite, not equal to 0 and coincides with the mean defined in [10] as

1/n
n∑

i=1

f(xi). Here Hx is the isotropy subgroup of the leaf passing through

x and Uj is a ε-scattering of L given by f [10].

• This is a consequence of the almost periodicity of the considered set

of functions on the leaves and the existence of the integrable Ehresmann

connection on (M, F ).

We must point out first that for any x ∈ P , lim
n→∞

n∑
i=1

f(aix)/n 6= 0 for

f ∈ Br(M), µ(supp(f)) 6= 0 by Poincaré theorem [2]. Thus we obtain

the limit function fl(x) = lim
n→∞

n∑
i=1

f(aix)/n and note that if fl(x) 6= 0,

x ∈ satF ′(supp(f)) = HP ·supp(f) then the mean of the function M(fl) =

lim
k,l→∞,xl∈δ(S

⋂
supp(f))

1/(kl)
j=k,l=m∑

j,l=1

f(ajxl) 6= 0. .

Hence we get the map M : P → (Br(G)|L)′ which does not depend

on the point p ∈ P . Moreover, almost periodicity provides us with the

following

Statement 4. For any L ∈ F there exists the mean M ′ : Br(G)|L → C
,

M ′(g) = lim
k→∞

1/2k
k∑

i=−k

g(fnk(x))

such that ker(M ′) = 0, (nk)k∈N ⊂ Z has density 0.

• By general assumption there exists a sequence (fnk(x)) ⊂ P , fnk(x) →
x, (k →∞). Then, since g ∈ C0(M) is a continuous function, g(fnk(x)) →
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g(x), k →∞. The only thing left to prove is that these sequences coin-

cide for all y ∈ P .

Since any leaf is dense and there exists an invariant metric, these se-

quences coincide for the everywhere dense set of points. Let fnk(y) 6→ y,

k → ∞. Then there exists fnk(y) → y (k → ∞) because otherwise

Dvf
nk are not bounded from above. .

Let us describe the algebra C0(M)|L in this case.

Statement 5. Assume that all the assumptions of Note 3 are satisfied.

Then the algebra C0(M)|L consists of uniform almost periodic functions

if M is compact.

• Let x ∈ P then for all ε > 0 there exists y(ε) ∈ Uε(x) \ {x}. For

hm(ε) = min{h ∈ HP |y = hx} we can cover a manifold M by varieties

{hUε(x)|h ∈ H, h ≥ hm}. It is clear that hm(ε) →∞ as ε → 0. Consider

the continuity modulus ∆f of the function f of C0(M)|L. Then by general

assumption for all x ∈ M , |f(hx) − f(x)| < ∆f (ε) if d(x, hx) < ε. For

any ∆ > 0, there exist ε > 0 and h ∈ HP . .

The last case is then the worst to explore: there is no leaf with the

property similar to one described above, since here we have only sequence

of leaves such that there are leaves with points infinitely close one to

another.

4. The third case.

Let there exist a point x ∈ P such that Bε,x 6→ Br, and the leaf

passing through x is compact. Assume also the following: for any p ∈ P ,

p 6= x there exists a neighbourhood U(p) ⊂ P of the point p such that

HU(p) = HL(p). Thus we assume that the equivalence relation induced

on Pi by HPi
is topological [13]. Let us suppose also that for any point

p ∈ P there exists a basis (a1, . . . , an) of HP such that ak
i (p) → x as

k → +∞. Thus the set HP is a contraction [8] (each ai, i = 1, n is a

contraction of P with the common accumulation point x).

Thus we consider the situation in which the accumulation point belongs

to the diagonal D = {(x, x)|x ∈ X} ⊂ X ×X and is separated from the

other similar points.

Statement 6. The algebra C0,F (M) = {f ∈ C0(M)|for all L ∈ Ff |L ∈
C0(M)} coincides with the algebra CLx = {f ∈ C0(M)|f |Lx = 0}. More-

over this subalgebra is an ideal of C0(M).

• The inclusion C0,F (M) ⊂ CLx is evident. The converse follows from

the consideration of the modulus of continuity.
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The ideal property follows from the definition of the C0,F (M). .

Thus we get C0(M)/C0,F (M) ∼= C(Lx). Let us take into consideration

the following subspace of the almost periodic functions in Bohr sense:

Vτ = {f ∈ C(X)||f(nτ +x)−f((n+1)τ +x)| → 0(n → +∞)}. We must

span the following set of vectors fn =





0, if x < 0;

xeinτx, if 0 ≤ x < 1;

einτx, if x ≥ 1

n ∈ N

as a subspace of Vτ . For the mean we take the limit Mmn(f(x)) =
n∑

i=1

m∑
j=1

f(aiγj)/mn (ai ∈ Hx, γj ∈ Uj). One can induce the scalar product

on Vτ with the help of this mean. This scalar product will be correctly

defined on V ′ = span(
⋃

n∈N
fn). Then the following statement holds true

on any leaf of the foliation:

Statement 7. Let all the assumptions from the first part of this chapter

be true. Then for all f ∈ Vτ , f − f0 ∈ C0(X), here f0 is the element

which provides the best approximation of f with respect to V ′.

• For any ε > 0 let us find an element g ∈ V ′ such that M(|f(x) −
g(x))|) < ε. To do this, first one must find h(x) = lim

n→∞
f(x + nτ) which

exists by the general assumption on the structure of (M,F ). Let us then

construct the function g(x + kτ) = h(x). Since g is a periodic function,

it is enough to approximate it on one period by elements from V ′|[0,τ ],

but this is possible since V ′ is dense in C([0, τ ]). .

Statement 8. The sequence C0,F (M) ↪→ C0(M) → C0(M)/C0,F (M)

can be split.

• To construct the homomorphism φ : C0(M)/C0,F (M) → C0(M) one

can take the following function:

f(t, θp) =





0, if t < −1;

(t + 1)θf0(t), if − 1 ≤ t < 0;

(t + θ(1− t))f0(t), if 0 ≤ t < 1;

f0(t), if t ≥ 0.

Here t =
dim(L)∑

i=1

ti, ti are the natural coordinates on H ' Rn, θ is the

radius coordinate on ∆ = P \ {x}/HP ' Sdim(P )−1 × [0, 1], and p is

the coordinate on Sdim(P )−1. The last diffeomorphism exists due to the

assumptions on the equivalence relation on P . .

Thus Vτ = C0(X)⊕ C(S).

Fix any f ∈ Br \B0.
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Definition 2. Let us define mean on the leaf L of the foliation F as the

limit for m and n → ∞ of Mmn(f(x)) =
n∑

i=1

m∑
j=1

f(aiγj)/mn (ai ∈ Hx,

γj ∈ Uj)

Let Hx be an isotropy subgroup of the leaf passing through the point

x and {Uj} be a ε-scattering of L defined by f [10].

Statement 9. The mean Mx(f(x)) on any leaf L in the third situation, is

finite and strictly less than the mean defined in [10] as lim
n→∞

1/n
n∑

i=1

f(xi).

• The proof follows from the fact that in this case there exists at least

one element h ∈ HP that gives rise to a contraction in a neighbourhood

of the singular point x ∈ P . Moreover, the assumptions of this state-

ment imply that there are no periodic or almost periodic functions in

the considered class, this gives us the second part of the proposition. So

any continuous function must satisfy: for all y ∈ P lim
n→∞

f(hny) = f(x)

implies that for all g ∈ S = H/HP , lim
n→∞

f(hngy) = f(gx).

Let us point out that the mean defined above coincides with the mean

defined in [10] for the set of continuous uniform almost periodic functions.

This is a consequence of

lim
ε→0

1/n
n∑

i=1

f(ai) = lim
ε→0

1/(nk)
n∑

i=1

k∑
j=1

f(aij)

for ai, aij, i = 1, n, j = 1, k, being elements from an ε-scattering of

the leaf L, i.e. for all j ∈ {1, . . . , k}, i ∈ {1, . . . , n} |fi − f(aij)| ≤ ε,

|fi − f(ai)| ≤ ε [10]. Then we must pass to the limit as k, n → ∞ to

obtain the result. .

5. Measures and means.

Let us point out the natural connection between our problem and the

so-called Radon-Nikodym problem on the leaves of the foliation. We can

classify the equivalent, in general non-Borel invariant probability mea-

sures. Assume that the equivalence relation defined on M is generalized

(γ ≡ alγ) and extended (γ ≡ γ′ ↔ s(γ) = hs(γ′), r(γ) = h′r(γ′)) to

the trivial groupoid G = L × L of the leaf L. Let us then assume that

the Radon-Nikodym derivative D(x, y) = D(x, y) + D(y, z) of the given

measure belongs to the set of functions on the trivial groupoids of the

leaves and the corresponding measure is quasiinvariant. So in the first

case D(x, y) → 0 as x, y → ∞. D(ankx, anky) → D(x, y) (nk → ∞) in
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the second case, and in the third case there exists c ∈ R, D(anx, any) → c

(n → ∞). The measure can be a Borel probability measure only in the

first case and in the third case when c = 0. In the first case we can

naturally induce a measure µ(E) on the manifold M as an integral of the

measures νp(E
⋂

Lp) over P/HP .

Since the first case is trivial let us turn to the other cases.

The second case. Fix the cocycle D such that

D(x, alx) =
l∏

i=1

D(ai−1x, aix).

As D(x, ankx) → D(x, x) = 1, this D is a uniform almost periodic func-

tion with respect to each variable.

Statement 10. If there exists a cocycle D(x, y) : R ⊂ H×H → R which

is almost periodic with respect to both variables then

1) there exists a potential p : H → R such that D(x, y) = p(x) − p(y)

(i.e. D is a coboundary cocycle);

2) the mean Mp(f) = lim
T→∞

1
2T

T∫
−T

|f(x)|p(x)dx is equivalent to the mean

M(f) = lim
T→∞

1
2T

T∫
−T

|f(x)|dx in the following sense: M(f) = 0 ⇔ Mp(f) =

0 in case the potential from the first part is a uniform almost continuous

function and for all x ∈ H p(x) > 0.

• 1) Fix y ∈ H and take My(D(x, y)) as p(x). The correctness of this

definition follows from the properties of D:

p(x)− p(y) = lim
T→∞

1/2T

T∫

−T

D(x, t)−D(y, t)dt = D(x, y).

2) By assumption, the potential constructed in the first part is bounded

from above and below by constants, from this follows the result. .

So it seems possible to define a measure on the manifold µ(E) as an

integral over P of the mean E
⋂

Lp, here Lp is a leaf passing through

p ∈ P . Later on we will show that it suffices in some cases to take

only one leaf. Conversely, any measure on M invariant under HP gives

rise to a quasiinvariant measure on any leaf L ∈ F : Let us consider

λ(E1) = µ(E)/ν(E2) for an HP -invariant transverse measure ν on P and

E = E1×E2, E1 ⊂ S, E2 ⊂ S in the decomposition φ : M ↔ S×P [14].
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Statement 11. Assume that dim H = 1. Let P be a compact submani-

fold of M . For any closed E ⊂ M we can take µ(E) = M(IE|L) for any

leaf L ∈ F .

• First let us prove this fact for the sets E1 × E2, where E1 ⊂ P ,

E2 ⊂ σ(H/HP ) ⊂ H. The main problem here is to show that M(E) > 0

in case µ(E) > 0. Let us consider lim
N→∞

1/(2N)
N∫
−N

IEdλ = lim
N→∞

KN

2N
IE,

where KN is the number of returns from a point x ∈ E1 to E1 on the set

[−N, N ] and IE is the restriction of the characteristic function of E to

the arbitrary leaf L. Since HP generates an ergodic transformation on

P , the Kats theorem [2] implies that lim
N→∞

KN

2N
→ µ(E1)

µ(P )
. This completes

the proof since we get a measure, which is correctly defined for simple

functions on M . .

To get a measure of any measurable subset E of M one can’t consider

an arbitrary leaf as a support of the restriction of the characteristic func-

tion IE, nevertheless, since M ' P × S almost every leaf will serve as

the target one.

It seems that this statement is true in general case. To prove it one

should find a generalization of Kats theorem.

So, to get a measure on the closed subsets of M one can take only an

HP -invariant measure on the leaf and consider the standard mean with

respect to this measure.

The third case. Any f ∈ Vτ defines two measures: the periodic measure

on the summand Cp(S) and the ordinary measure on the algebra C0(L)

for all L ∈ F .

Both of them are rather well investigated. The classification problem

for each of them was solved by the Radon-Nikodym theorem. The prob-

lem here is to classify the sum of these objects. We must turn again

to the set of functions on the groupoid of the foliation. Since we must

consider ordinary measures with the multiplicative law of substantiation

the Radon-Nikodym derivatives of the quasiinvariant measures on the

equivalence relation [11] must satisfy the condition lim
x,y→+∞

D(x, y) = 1.

Then as in the previous statement we can prove the existence of a poten-

tial ρ of the probability measure (sum of the objects defined above) by

passing to the mean p(x) = M ′
y(D(x, y)) = lim

T→+∞

T∫
0

D(x, t)dt. Note that

this potential satisfies the following condition: lim
n→∞

1/n
n∑

i=1

ρ(aix) = 1,
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a ∈ HP . Let us define the conditional expectation ED : C(L/HP ) → R
corresponding to ρ as ED(f)(ω) = lim

n→∞
1/n

n∑
i=1

ρ(aiσ(ω))f(aiσ(ω)).

Statement 12. Let µ′ be a measure on X equivalent to the fixed measure

µ. Assume µ(K) = µ(aiK). Let the cocycle Dµ′ being a R-N derivative

of µ′ meet the condition lim
x,y→∞

D(x, y) = 1. Then µ′ is a measure of the

type µ ◦ ED, for ED defined as before.

• We have
∫

lim
n→∞

1/n
∑

π(x)=π(y)

f(x, y)dµ(x)

=

∫
lim

n→∞
1/n

∑

π(x)=π(y)

f(x, y)D(x, y)dµ(y).

Again as in [9] one can put f(x, y) = ρ(x)f(y). .

Now let us turn to the measures generated by the summand from

C0(L).

Statement 13. Let the equivalence relation on R be given by x ∼ x+ k,

k ∈ N . Let µ be a measure on R such that the R-N derivative (A)

D(x, y) → 0 as x or y →∞. Then

1) there exists a potential p : R→ R+ such that D(x, y) = p(x)/p(y);

2) if (B) for all y ∈ R+
∑

x∈R(y)

D(x, y) ≤ ∞ then there exists the unique

potential p′ : R→ R+ such that
∑

x∈R(y)

p(x) = 1.

• The proof repeats that of Renault [9]. Let us consider the natural

projection π : R→ S1 ' R/Z, a locally finite open cover {Vj} of S1 and

continuous sections σj : Vj → R+.

Let us take pj(x) = D(x, σj(π(x))). Then the desired potential p is

given by the product
∏

j hj(π(x))bj. Hence the first part of the statement

holds true.

The second part. First we note that if b(x)/b(y) = b′(x)/b′(y) then

for any x ∈ S1 b/b′|Rx = const, then b/b′ = f ◦ π for f ∈ C(S1). Then

we must take p′(x) = p(x)/
∑
k∈N

p(k + x) as the desired potential of the

second part of the statement. .

Note 5. The second part of the previous statement implies that the quasi-

invariant measure µ is a finite one. And vice versa, if the measure µ is

finite then the assumption of the second part of the statement holds true.
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• The statement follows from the representation of the measure

µ(R) = lim
n→∞

1/n
n∑

j=1

∑

k∈Z
p(j/n + k)).

.

Then the quasiinvariant measure whose R-N derivative satisfies the

assumptions of the previous statement can be classified as in the second

case. Naturally L2(R, µ1) = L2(R, µ2) if D(µ1) and D(µ2) both satisfy

conditions (A) and (B).

It is clear that the measure on the foliated manifold M can be defined

as follows: µ(K) equals the integral of the values of the compactly sup-

ported summand on the characteristic function of K over the set P \{p}
with measure whose R-N derivative satisfies (A) and (B). It holds true

due to the fact that the summand defined by the periodic part of the

function lies on the 0-measure set. Thus, in the second and the third

cases one can exclude subsets on the transversal P in order to get mea-

sure on the foliated manifold M .
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