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Abstract. The main result of this paper is the generalization of the

theorem which represents one of the generally accepted cases concerning

the characterization of the logic of idempotents (see [5], [6], [7]). If R is a

ring then the R-circulant matrices are introduced and some consequences

for the logics of idempotents of the corresponding rings. Some convenient

examples are added as well. Certain results of this paper may find

applications in the foundation of quantum theory.

1. Introduction

For a ring R with identity 1, we denote by U(R) the set of all idempotents of R. If,

moreover, R is a ∗ring with identity, we denote by P (R) the set of all projectors of R.

The following definition will play an important role in the sequel:

Definition 1. Let (L,≤, 0, 1,′ ) be a poset with 0 and 1 as the smallest and the greatest

element, respectively, and a unary operation ′ : L → L (the orthocomplementation) such

that

(i) p ≤ q ⇒ q′ ≤ p′, p, q ∈ L

(ii) (p′)′ = p, p ∈ L

(iii) p ∨ p′ = 1, p ∈ L

(iv) p ≤ q′ ⇒ p ∨ q exists in L, p, q ∈ L

(v) p ≤ q ⇒ q = p ∨ (p′ ∧ q), p, q ∈ L

Then L will be called a logic or also an orthomodular poset. If L is also a lattice, then

L is called an orthomodular lattice.
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Suppose now that R is a commutative field. Denote by M22(R) the set of all (2, 2)-

matrices over R. The set M22(R) is a non-commutative ring with identity. We give now

an example.

Example 1 The idempotents of the ring M22(R) are the following matrices:

O =

[

0 0

0 0

]

, E =

[

1 0

0 1

]

, A =

[

a b

c d

]

, T r(A) = 1,

det(A) = 0, a, b, c, d ∈ R.

The set U(M22(R)) is a logic which is a lattice.

The partial order in this example is defined by setting

(A1 ≤ A2) ⇔ (A1A2 = A2A1 = A1, A1, A2 ∈ U(M22(R)))

and the orthocomplementation ′ : U(M22(R)) → U(M22(R)) by A′ = E − A.

Let R be an associative ring with identity. We will suppose furthermore in this paper

that the order in the set U(R) is defined always by setting

(1) (p ≤ q) ⇔ (pq = qp = p, p, q ∈ U(R))

and the orthocomplement by

(2) p′ = 1 − p, p ∈ U(R).

If R is an associative ∗ring with identity then the partial order and the orthocom-

plementation are defined also in P (R) in this manner. It is clear that in this case

{0, 1} ⊂ P (R) ⊂ U(R). It is well known (see [5], [6], [7]) that the sets U(R) and P (R)

are logics with regard to the conditions (1) and (2). In the next section we give some

generalization of this result. First we introduce the following definition:

Definition 2. Let L be a logic. A subset S of L is said to be a sublogic of L if the

following conditions are satisfied:

(i) 0 ∈ S.

(ii) If p ∈ S then p′ ∈ S.

(iii) If p, q ∈ S and p ≤ q′, then p ∨ q ∈ S.

Let R be an associative ∗ring with identity. Then P (R) is a sublogic of the logic U(R)

as will be shown in the sequel.

Let L be a logic. We say that p, q ∈ L are orthogonal (p ⊥ q) if p ≤ q ′. We now

introduce a further example of a sublogic of a given logic L.

Example 2 Let L be a logic containing a subset {pi : i ∈ N} such that pi 6⊥ pj, pi 6⊥ p′j
for i 6= j. We denote by S the following subset of L:

S = {0, 1} ∪ {pi, p
′

i : i ∈ N}.

It can be shown that S is a sublogic of L.



LOGICS THAT ARE GENERATED BY IDEMPOTENTS 13

2. Characterization of some logics of

idempotents

In this section we introduce first of all some conditions which guarantee that a subset

S of a logic L is a sublogic of L. We introduce at the same time some examples and also

certain consequences and conclusions which immediately follow.

Theorem 1. Let R be an associative ring with identity and let S be a subset of U(R).

The conjunction of the following conditions is sufficient for S to be a sublogic of U(R):

(i) 0 ∈ S.

(ii) If p ∈ S then p′ ∈ S.

(iii) If p1, p2 ∈ S and if p1p2 = p2p1 then p1p2 ∈ S and p1 + p2 − p1p2 ∈ S.

Proof. Suppose that S fulfils the conditions (i)–(iii) of the theorem. Define the partial

order ≤ and the orthocomplementation according to the conditions (1) and (2). Clearly

{0, 1} ⊂ S. S is a partially ordered set.

a) If p ∈ S then p · p = p2 = p. Therefore p ≤ p.

b) Suppose that p1 ≤ p2 and p2 ≤ p1, p1, p2 ∈ S. Then it follows that

p1 = p1p2 = p2p1 = p2.

c) Let p1, p2, p3 ∈ S and suppose, moreover, that p1 ≤ p2 and p2 ≤ p3. Then we have

p1p2 = p2p1 = p1, p2p3 = p3p2 = p2.

From this follows p1 = p1p2 = p1 · p2p3 = p1p2 · p3 = p1p3. Therefore p1 ≤ p3. The

relation ≤ is also transitive.

Now we will prove the properties (i)–(v) of Definition 1.

(i): Suppose that p ≤ q if p, q ∈ S. Then pq = qp = p and we have

q′p′ = (1 − q)(1 − p) = 1 − p − q + pq = 1 − p − q + p = 1 − q = q ′.

Therefore q′ ≤ p′.

(ii): Let p ∈ S. Due to condition (ii) of Theorem 1, it follows that

(p′)′ = 1 − p′ = 1 − (1 − p) = p.

We prove property (iv) first, because property (iii) follows immediately from (iv) as a

consequence. Suppose that p ≤ q′, p, q ∈ S. Then p(1 − q) = (1 − q)p = p. From this it

follows that pq = qp = 0 and by (iii) of this theorem we have p + q − pq = p + q ∈ S. We

prove now that p + q = p ∨ q. Indeed, p(p + q) = (p + q)p = p, q(p + q) = (p + q)q = q.

Therefore we have p + q ≥ p and p + q ≥ q. If r ≥ p, r ≥ q, r ∈ S, then rp = pr = p,

rq = qr = q. Therefore we have r(p + q) = (p + q)r = p + q. Also p + q = p ∨ q ∈ S.

(iii): If p ∈ S then p′ ∈ S and p ≤ (p′)′. By (iv), p ∨ p′ = p + p′ = p + (1 − p) = 1. If

p, q ∈ S and if pq = qp, then it can be shown that p ∧ q = pq. The proof is easy.
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(v): Suppose that p ≤ q, p, q ∈ S. Then pq = qp = p. Because p′, q ∈ S and

p′q = qp′, it follows that q∧p′ ∈ S, q∧p′ = q(1−p) = (1−p)q = q−p. At the same time,

p∧(q∧p′) = p(q−p) = pq−p2 = 0. Therefore we have p∨(q∧p′) = p+q∧p′ = p+(q−p) = q.

So it was proved that the conditions (i)–(iii) of the Theorem l are sufficient for S to be

a logic. It remains to prove that S is really a sublogic of U(R), i.e., that operations on

S coincide with those inherited from U(R). Condition (ii) of Definition 2 is condition (ii)

of Theorem 1. To prove condition (iii) of Definition 2, suppose that p, q ∈ S and p ≤ q ′.

Then pq = qp = 0 and p + q = p ∨ q ∈ S. The proof is complete. �

Remark 1. If U(R) is a logic such that for each p, q ∈ U(R) from pq = qp it follows

that pq = 0. Then each sublogic S of U(R) satisfies condition (iii) of Theorem 1. In

particular, if p, q ∈ S and pq = qp = 0, then p ≤ q′ and, by (iii) of Definition 2,

p ∨ q = p + q = p + q − pq ∈ S.

As a consequence, for the logic U(M22(R)) of all idempotents of the ring of all (2, 2)-

matrices over the a commutative field R, each sublogic S of U(M22(R)) satisfies condi-

tion (iii) of Theorem 1.

Example 3 Let R be an associative ∗ring with identity. Then the set P (R) fulfils the

conditions (i)–(iii) of Theorem 1. Therefore P (R) is a sublogic of the logic U(R).

Now we introduce an example which has undeniable connections with the foundation

of the set of all states of the spin of an electron.

Example 4 Let H2 be a two-dimensional Hilbert space over the complex numbers. The

space H2 among others corresponds to the set of all states of the spin of one electron. Let

S be the set of (2, 2)-matrices of the following forms:

O =

[

0 0

0 0

]

, E =

[

1 0

0 1

]

, M1 =

[

1

2

1

2

1

2

1

2

]

,

M2 =

[

1

2

−i
2

i
2

1

2

]

, M3 =

[

1 0

0 0

]

, M ′

i = E − Mi, i = 1, 2, 3.

It can be shown that the set S satisfies conditions (i)–(iii) of Theorem 1. Therefore

(S,≤, 0, E, ′) is a sublogic of the logic U(M22(C)) of all (2, 2)-matrices over the field

C of all complex numbers. This sublogic S is an orthomodular lattice. The picture of

(S,≤, 0, E, ′) is introduced in Fig. 1.

Notice that there exists a connection between the matrices Mi, i = 1, 2, 3 and the Pauli

matrices σi, i = 1, 2, 3. The Pauli matrices are:

σ1 =

[

0 1

1 0

]

, σ2 =

[

0 −i

i 0

]

, σ3 =

[

1 0

0 −1

]

.

As Mi = 1

2
(E + σi), i = 1, 2, 3, and the matrices Si = 1

2
σi, i = 1, 2, 3 correspond to the

projections of the spin on the ith axis.
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Figure 1
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Open Problem 1. Though it is clear that each sublogic S of the logic U(R) satisfies

conditions (i) and (ii) of Theorem 1, it remains an open question whether any sublogic S

of U(R) has to satisfy also condition (iii).

It is very important to determine some condition for a given sublogic S of U(R) to be

a Boolean algebra. The following proposition gives a sufficient condition.

Proposition 1. Let R be an associative ring with identity and let S be a subset of U(R)

which satisfies conditions (i)–(iii) of Theorem 1 and, moreover,

(iv) all elements of S are pairwise commutative.

Then the sublogic (S,≤, 0, 1, ′) is a Boolean algebra.

Proof. With regard to condition (iv) it follows that S is a lattice, i.e., for each p, q ∈ S,

there exist the elements p ∨ q and p ∧ q in S. It is well known that each distributive

orthomodular lattice is a Boolean algebra (see [3]), it suffices to prove distributivity of S.

If p, q, r ∈ S, then

p ∧ (q ∨ r) = p(q ∨ r) = p(q + r − qr) = pq + pr − pqr.

On the other hand, we have

(p ∧ q) ∨ (p ∧ r) = (pq) ∨ (qr) = pq + qr − pqr.

Therefore p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). Similarly, it can be shown that

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r), p, q, r ∈ S.

Therefore the distributivity laws are valid and (S,≤, 0, 1, ′) is a Boolean algebra. �

Example 5 Let R be an associative commutative ring with identity. Then P (R) is a

Boolean subalgebra of the logic U(R) (which is also a Boolean algebra). The proof follows

at once from Theorem 1 and it is a consequence of Proposition 1.

In the general case, it is difficult to establish all Boolean subalgebras of a given logic

U(R). In some special cases it is possible. At the conclusion of this section we introduce

an example of a Boolean subalgebra of the logic U(R). For this purpose we give the

following definition:
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Definition 3. Let R be an associative ring with identity. We say that B is the Boolean

subalgebra of U(R) generated by the elements pi ∈ U(R), i = 1, 2, . . . , n if it is the smallest

Boolean subalgebra of U(R) containing pi, i = 1, 2, . . . , n.

We show now an example of a Boolean subalgebra B ⊂ U(R) which is generated by

two elements of U(R).

Example 6 Let R be an associative ring with identity and suppose that p, q ∈ U(R)\{0, 1},

p 6= q, and pq = qp. Then the set

Bp,q = {0, p, q, 1− p, 1 − q, pq, 1 − pq, p − pq, q − pq, p + q − 2pq, 1 − (p + q − 2pq),

1 − p + pq, 1 − q + pq, 1 − p − q + pq, p + q − pq, 1}

is a Boolean subalgebra of the logic U(R). This Boolean subalgebra Bp,q is generated by

the elements p, q.

In particular, if the elements p, q are orthogonal, then Bp,q is of the following form:

Bp,q = {0, p, 1 − p, q, 1 − q, p + q, 1 − p − q, 1}.

This Boolean subalgebra of U(R) is illustrated in Fig. 2.

Figure 2
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Example 7 Let F be a commutative field. Denote by M22(F ) the ring of all (2, 2)-

matrices over F . Then the logic U(M22(F )) has only the following Boolean subalgebras:

B0 = {0, 1}, Bp = {0, p, p′, 1}, p ∈ U(M22(F )).
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From the physical point of view it is very important to establish at least some Boolean sub-

algebras of given logics because then it is possible to use the methods of classical physics

for the solution of problems which concern certain physical systems. One possibility is

shown in the next section.

3. On rings of circulants

It is well known that the circulants have been applied to data smoothing, signal and

image processing and also to algebraic coding theory. It could be possible to apply the

circulants also in quantum theory to problems which require the use of coding theory.

From the references devoted to the theory of circulants we may recommend the books by

Davis [4] and by Marcus and Minc [11]. However, these books deal only with circulants

over the field of all complex numbers. The approach built up in this paper is more general.

Namely, we suppose, that the curculants are defined over any commutative ring. First of

all we introduce a generalization of the notion of generalized Latin square.

Definition 4. Let R be an associative ring. By a generalized R-Latin square of order n

we mean a square matrix of order n such that the sums of all rows and of all columns are

identical and are equal to some element s ∈ R.

Definition 5. Let R be an associative and commutative ring. By an R-circulant of order n

we mean a square matrix of order n over R which has the form C = circ (c1, c2, . . . , cn), ci ∈

R, i = 1, 2, . . . , n, i.e.,

C =



















c1 c2 c3 . . . cn−2 cn−1 cn

cn c1 c2 . . . cn−3 cn−2 cn−1

cn−1 cn c1 . . . cn−4 cn−3 cn−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c3 c4 c5 . . . cn c1 c2

c2 c3 c4 . . . cn−1 cn c1



















.

We will always suppose that the ring R is commutative. Denote by Ln(R), resp. Cn(R),

the set of all generalized R-Latin squares, resp. R-circulants, of order n.

It is clear that Cn(R) ⊂ Ln(R).

Proposition 2. The set Ln(R) is a non-commutative ring, while the set Cn(R) is a

commutative ring.

Proof. The proof is easy, although quite long. �

Corollary Let R be an associative commutative ring with identity, then U(Cn(R)) is a

Boolean subalgebra of the logic U(Ln(R)).

The determination of all elements of U(Cn(R)) is generally difficult. It depends namely

on further properties of the ring R. In some cases this task is possible. We introduce now

such an example.
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Example 8 Let R be a commutative field. Then the Boolean algebra U(Cn(R)) =

{O, E, M, M ′}, where

O =









0 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .

0 0 . . . 0









, E =









1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1









, M =
1

n









1 1 . . . 1

1 1 . . . 1

. . . . . . . . . . . .

1 1 . . . 1









, M ′ = E − M.

If R is not a commutative field, then the form of U(Cn(R)) remains an open problem.

At the end of this paper we introduce some remarks.

A) Let R be an associative commutative ring with identity e and denote by C the cir-

culant of the form C = circ (0, e, 0, . . . , 0). Then the circulant A = circ (a1, a2, . . . , an),

ai ∈ R, i = 1, 2, . . . , n, can be expressed in the form

A =

n−1
∑

k=1

ak+1C
k.

If R is the field of all complex numbers, then the circulants Ck, k = 1, 2, . . . , n, are

permutation matrices. This particular result is contained in [4] and in [11].

In the following remarks B and C we assume that R is the field of all real numbers.

B) A very important class of matrices (especially from the statistical point of view)

is the class of the double stochastic matrices. Recall that a matrix S is called

double stochastic if the sums of all elements of each row and also of each column

of S are always equal to 1 and if all elements of S are non-negative real numbers.

Thus S ∈ Ln(R) for some n ∈ N . The set Sn(R), n ∈ N of all double stochastic

matrices of order n is of course not a ring, it is only a semigroup with identity

with respect to multiplication (i.e., a non-commutative monoid). (See Birkhoff [3]

and Ward and Dilworth [15].)

C) The square matrix U whose elements are either one or zero and which has exactly

one nonzero entry in each row and each column is called permutation matrix. If U

is a permutation matrix of order n, then U ∈ Sn(R). We remark that Birkhoff’s

theorem states that the set Sn(R) forms a convex polyhedron with permutation

matrices of order n as vertices (see [10, p. 1089], [11], and [14]).

D) Let us also mention a characterization of an arbitrary logic with the help of ortho-

modular fans, i.e., triples {(L\{0, 1}), ′, G} where L is a logic, the unary operation
′ : (L\{0, 1}) → (L\{0, 1}) is a restriction of the orthocomplementation on the set

L\{0, 1} and G is the set

G = {(p, q, r) ∈ (L\{0, 1})3 : p + q + r = 1}.

A characterization of logics by fans and further details are given by P. Ovchinnikov

in the paper [13].



LOGICS THAT ARE GENERATED BY IDEMPOTENTS 19

E) As introduced above (see Example 1), the logic U(M22(R)) is an orthomodular

lattice. In contrast to this, the logic U(Mnn(R)) with n ≥ 3 is not a lattice.

This fact follows immediately from [12, Prop. 1]. Moreover, notice that all blocks

of the logic U(M22(R)) have only the following form: BA = {0, E, A, E − A},

A ∈ U(M22(R)).

Acknowledgements. The author would like to Mirko Navara for help in the prepa-

ration of this paper.
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